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Abstract—Combining powerful sensors and near ubiquitous
distribution the smartphone has become an irreplaceable part
of modern day life. Using its pervasive sensing capabilities, the
smart-phone guides us to our destination with precise step-
by-step directions, advises us on what to have for lunch, and
improves our photography skills through stabilizing our camera.
Using the popular Augmented Reality (AR) smartphone app
Pokemon Go as a case study, we explore the world of pervasive
sensing. In this paper we show both the current state of the art
that enable applications such as Pokemon GO to thrive, as well
as the limitations and opportunities inherent in current pervasive
sensing applications.

Index Terms—Pervasive Sensors, Cloud computing, Aug-
mented Reality, Video Streaming, Quality of Experience

I. INTRODUCTION

A new phenomenon is being noticed in public places
around the world. The sight of someone following step-by-step
directions to their destination, checking restaurant reviews, or
posting live videos of them themselves to social media has
become a nearly universal experience. All of these things were
a near impossibility for the average person without expensive
and specialized equipment less than a decade ago, but are now
as simple as downloading an app. The smartphone has become
a nearly indispensable part of life for many around the world,
and recent studies have placed smartphone ownership rates of
over 68% in the world’s “advanced economies” and 37% in
the “emerging world”1.

The meteoric rise of this once luxury device to a ubiquitous
computing and communication platform has been astounding
and has opened up a plethora of new applications and services.
Modern smartphone devices are being built not only with
powerful processing abilities such as multi-core CPUs and
dedicated GPUs but also a vast array of sensors for detect-
ing their environments. Sensors including global positioning
system (GPS), compasses, accelerometers, and gyro-scopes
have pushed the functionality of the devices in many new and
innovative directions. In this paper we explore both the current
success of these pervasive sensing devices as well as many hot
topics being explored in this domain. Through this paper we
will explore the real world deployment of an application that
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1http://www.pewglobal.org/2016/02/22/smartphone-ownership-and-
internet-usage-continues-to-climb-in-emerging-economies/

relies heavily on these advanced sensors, namely the popular
app Pokemon GO.

Combining augmented reality, edge computing, ubiquitous
smartphone usage, and location based massively multi-player
features, Pokemon GO (PKG) exploded onto smartphones in
the summer of 2016. It is estimated that at the peak of the
craze PKG was installed by over 10% of smart phone users
in the USA2. While one can not disregard the marketing
and popularity of the Pokemon franchise when discussing its
near meteoric rise to popularity, under the hood, it is many
technological advances, including the pervasive sensors on
mobile devices, that are brought together to make PKG a
success.

In this article, we consider PKG as a representative AR
application and discuss how to enhance their gaming expe-
rience through novel services enabled by pervasive sensors.
However, adding these sensor-based services is coupled with
other issues such as increased processing workloads and power
consumption in the mobile devices. We jointly consider these
issues in a proposed cloud based offloading framework.

II. EXPLORING POKEMON GO

A. Pokemon Go Overview

Pokemon Go is one of few games that are truly mobile -
it forces the player to physically roam an area by utilizing
a mobile device’s capabilities. This new genre of gaming
creates architectural challenges and design choices that must
be carefully considered. As the player’s avatar is now attached
to a physical location, strong game server scalability becomes
a necessity due to the high clustering seen in human population
density. Game client optimization also becomes a high priority,
as the mobile device’s sensors are constantly on and causing
drain on the battery. With these in mind, we begin our analysis
by examining the architectural model of PKG. Pokemon
Go can trace its origin back to the Google Maps Pokemon
Challenge. In 2014, Google announced a new job position of
“Pokemon Master” and required applicants to capture all 721
Pokemon before being offered the role3. The challenge drew
in an enormous positive response, and set in motion a series

2https://www.similarweb.com/blog/pokemon-go-update
3https://blog.google/products/maps/become-pokemon-master-with-google-

maps/
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Fig. 1: PGO Server Selection

of events which culminated in the creation of PKG by Niantic,
an internal Google start-up4.

B. Networking Architecture of Pokemon Go

We observed PKG to have a logical networking topol-
ogy resembling a star topology. Namely, a central URL,
pgorelease.nianticlabs.com/plfe/rpc, directs a client to a re-
gional server which then proceeds to serve all future requests
until the connection is terminated. To reconnect back to a game
server, the client must contact the central server and wait for a
response. The client is not guaranteed to connect to the same
edge server. It is important to note that while exploring the
networking topology we found that although the connection
all appear to route to a single Google IP located in Mountain
View California the connection is actually being serviced by
a server closer to the client. We performed an investigation
using trace-route and RTT analysis, and by inspecting the
autonomous systems our packets traversed. Our discoveries
are presented in Figure 1. In our measurements from servers
located in six geo-distributed locations we discovered that
Google handles authentication requests in at least three distinct
locations. Further, regardless of which region we resolve the
URL pgorelease.nianticlabs.com/plfe/rpc in our experiments,
we are always given the same IP address corresponding to a
location in Mountain View California. Based on our network
analysis we find that it is likely Google uses agreements with
major Internet exchanges in order to service authentication
requests closer to the clients.

All communications between the client and the server are
handled over HTTPS and all data is exchanged in the protobuf
format. The bulk of network transactions are the retrieval and
updating of map objects from the server, based on the player’s
location.

Specific API calls are wrapped and sent in the repeated
requests field, and the authentication ticket received from the
central server is added verbatim into a auth ticket. The request

4http://www.cbc.ca/news/technology/pokemon-google-origins-1.3690769

Fig. 2: Pokemon Go Architecture

hash signature is generated using xxHash followed by an in-
house encryption algorithm.

C. Client Architecture and Dataflow of Pokemon Go

In Figure 2, we provide an abstracted datapath of the
augmented reality update process in Pokemon Go. The heart of
the application is the update process to retrieve new Pokemon
spawns and other map entities. We have discovered two
processes to update map entities, a major update and a minor
update. The major update occurs immediately post-login and
retrieves all map entities, i.e. Pokemon, Pokestops, gyms, and
spawn points, over a large area centered on the player. The
minor update is identical to the major update, the difference
being that the minor update receives only Pokemon, Pokestop,
and gym data in a local area, and that it occurs more frequently
than the major process - about once every 6 seconds as
opposed to once every 60 seconds. Figure 2 describes the
major update, where the client requests all map entities around
a specified latitude and longitude. The request is composed of
the player’s current latitude and longitude coordinates, and a
list of S2 cell IDs5 to retrieve Pokestop and gym data for.
Once the request is received by the server, it performs a
displacement check between the current coordinates sent and
the last coordinates received. If this displacement exceeds a
threshold of what is considered physically possible, the player
is silently temporarily banned from interacting with game
entities for an unknown duration. If the displacement does not
exceed this threshold, a secondary check occurs to determine if
the displacement should be counted as valid for the game me-
chanics of egg incubation and badge credit. To pass this check,
the displacement must not exceed 300 meters per minute.
Since this distance check is not pertinent to producing a server
response, we conjecture that this happens asynchronously
while the server builds a response. To construct the response,
the server takes the latitude and longitude of the request and
constructs a list of all Pokemon currently active within a
200 meter radius of the player. If a Pokemon is less than
100 meters away from the player, the exact coordinates and
time-to-live in milliseconds of the Pokemon are included as

5docs.google.com/presentation/d/1Hl4KapfAENAOf4gv-pSngKwvS
jwNVHRPZTTDzXXn6Q/
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Fig. 3: MotoG: Power Consumption (Total: 3544 mW)

attributes. Otherwise, only the distance in meters is included
as an attribute. Simultaneously, the server also takes the S2
cell IDs sent and constructs a list of all Pokestops, gyms, and
spawn points. Pokestop entities contain an attribute for active
modifiers (currently the only modifier is a lure module), gyms
contain attributes for the current prestige, team owner, and the
current highest combat power (CP) pokemon in the gym. Once
both lists are generated, the response is sent to the client.

D. Energy Consumption

During the initial distribution of Pokemon Go there were
many reports of the app having a deleterious effect on the
battery life of mobile devices. Motivated by these reports, we
investigated and quantified the power usage of a smartphone
running Pokemon GO, in order to determine what improve-
ments might be introduced. We devised a measurement strat-
egy involving a real world Android device, namely the Moto G
3rd Generation. Our test platform specifications include Quad-
core 1.4 GHz Cortex-A53 CPU, a Adreno 306 GPU, 2 GB
of RAM and 16 GB of internal flash memory. The devices
operating system was updated to latest available Android
version 6.0 (Marshmallow). We used the phone’s built in bat-
tery discharge sensor and the measurement application GSam
Battery Monitor to profile the Pokemon Go application. To
make a stable testing environment we ran the Pokemon Go
app for 30 minutes and collected the average battery discharge
rate. The adaptive brightness setting of the screen was disabled

to ensure that changes in the testing environments ambient
environment would not affect the measurements.

We find that under our testing conditions Pokemon Go uses
a system wide power consumption of 3544 mW. Figure 3
illustrates the percent of energy and which subsystem is
consuming it as well as a breakdown of which running apps
are consuming power. As can be seen we have an even split
at 49% for both the screen and apps, and only 2% being
consumed by the radio. We find that the device’s screen
consumes exactly 1736.71 mW, Pokemon Go app 1169.62
mW, other apps 567.10 mW, and finally the radio only 70.90
mW. Our results make it clear that the augmented reality app
itself has a very high energy consumption cost.

It is well established in the literature that the screen can
be a large drain on the battery of a smart phone. Why the
augmented reality app Pokemon Go consumes so much power
required further exploration. To that end we further profiled the
application using the development platform Android Studio.
By profiling the app we find that over 80% of the CPU cycles
are being used by the function call UnityPlayer.nativeRender,
which is responsible for processing 3D objects for display.
We conjecture that this function call is likely where the in-
game and AR objects are composed for viewing by the user,
and that this task is extremely computationally expensive. Of
the approximatively 20% remaining CPU time, the largest
contributor is a function call to the Android system’s “Con-
textService”. The context service is responsible for gathering
data from the sensors such as the GPS, accelerometer, and
gyroscope. Pokemon Go makes heavy use of this service to
feed data from the phones sensors to the game engine to
update the game world. In Section V, we further explore these
findings and propose power saving techniques.

E. Mobility and Scalability Pokemon Go

Next, we wanted to investigate the network scalability of
PKG during its initial deployment. It was widely reported that
many users had difficulties connecting to the server in order
to play, and we wanted to investigate which components of
networking architecture was being overloaded. To that end we
collected data of the failure events experienced by our user
during gameplay. Presented in Figure 4, these anomalies were
grouped by type, and the number of events experienced on
each day measured. When logging in failed, this was due to a
login server overload or a timeout event. A Remote Procedure
Call (RPC) fail occurred when too many users were requesting
entities at the edge server, resulting in a error message. The
Misc fails were from unknown or invalid responses, essentially
when the response received was unintelligible to our user.
These results give us insight into the load experienced by the
servers on different days, and beyond that, they tell us when
there were not enough resources allocated. For example, if
failure events of all types were relatively high on a day, such as
occurred on July 22, we observe that servers were overloaded
but resources were fairly distributed. However, if login failures
were low but RPC and Misc events were relatively high such as
on July 26, it likely indicates that server resources could have
been better allocated to cover these services. The extremely
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Fig. 4: Pokemon Go Login Failures

high incidence of RPC failures on July 28 stands out clearly
from this pattern. On this day, service disruptions due to
massive increase in players were reported throughout both east
and west coasts of North America, as well as Japan, related
to issues with Google Login. 6

In an effort to study the distribution of players on our
University campus we created a simulated Pokemon Go user
which we directed to interact with Gym locations in the game
every 5 mins. By tracking the Experience level of the Gym
as our user observed it, we were able to measure the number
of interactions occurring at each location. These interactions
are the sum of all the unique users who interact with that
location and multiple interactions from the same users, giving
an overall picture of where and when users are playing.
Figure 5 shows graphs of this interaction activity at 3 locations
at and near Simon Fraser University on a weekday and on a
weekend day, with some very interesting patterns emerging.
Location 1 is a gym located on a relatively remote hiking
trail, so it is not surprising that it has the fewest interactions.
The users observed at this location on the weekday are likely
people using the trail to walk to and from work, and for
leisure in the evening. There are more interactions on the
weekend, when more people have time to hike for leisure.
Even at this remote location in a forest, at least one user
was playing at 2 am. The gym at location 2 is at the centre
of the university campus with the interactions representing
the traffic that this busy academic centre hosts, so it is not
surprising that this location is the busiest, with consistently
high activity throughout the weekday. This academic centre
is also within easy walking distance to the residential area of
campus and the nearby community, which explains why the
pattern of high activity is maintained throughout the evening
and into the night, and why it is nearly as high on the weekend.
Location 3 is in the residential development called UniverCity,
inhabited by students and staff of the university with their

6https://www.slashgear.com/today-pokemon-go-server-status-is-down-
what-to-do-28449884/

families but also members of the community not affiliated
with the university. Because the number of interactions here
is so much lower than in the academic centre, we can tell
that students who do not live at the university must be the
biggest majority of users at location 2. These activity graphs
paint a picture of smartphone use for gaming by telling us
where, when, and how interactions there are, and even allows
us insight into which demographics these users might be
(students, residents, etc). We have provided an interactive heat
map of many more locations and times around Simon Fraser
University at https://goo.gl/uXbX4V.

III. QOE ENHANCEMENT WITH ACCELEROMETER AND
WIFI SIGNALS

It is common for the game’s players to use the Pokemon
Go app in indoor environments such as cafes, plazas, libraries,
and offices etc. The satellite based GPS suffers from significant
signal attenuation indoors. Since the game relies on GPS to
locate the player, the mobility of the game is severely degraded
indoors. The rapid development of smartphones with rich
built-in sensors has brought great prosperity to various indoor
location-based services (LBS) such as indoor positioning,
personal tracking, emergency management and navigation [1].
The demand for indoor LBS has driven innovative research
on indoor localization and creates the opportunity to improve
and incorporate such a service for AR applications. Given the
pervasiveness of WiFi infrastructures, many WiFi fingerprint-
based indoor localization approaches have been developed,
e.g., [2], [3], [4], [5], [6]. Such approaches normally involve
a cumbersome offline site survey (also known as calibration)
process that collects the WiFi fingerprints in the whole indoor
area, and since the WiFi signal is very sensitive to environ-
mental change, this process is often repeated from time to time
to update the WiFi fingerprints [7]. Hence, such approaches
are not efficient for practical deployment such as AR gam-
ing where players are hopping between place to place (e.g.
“Arenas” in PKG). Furthermore, the accuracy of fingerprint-
based localization systems is not satisfactory. Depending on
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Fig. 5: Pokemon Go activity at SFU (July 21st and July 23rd)
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the environment settings and calibration effort, the median
localization accuracy varies from 2 to 10 meters [2], [6], [7],
[8] which may affect the QoE of the game. For example, a
player may not be able to reach an Pokemon Go Arena indoors
even if he/she is in the range of the Arena.

In this section, we discuss a promising indoor localization
solution which greatly alleviates the difficulties of fingerprint
collection by smartly leveraging the relatively stationary peo-
ple stationary peers (SPs) that are largely available in common
indoor environments to assist localization. The key motivation
behind this solution is that 1. areas where the app is used
are often near locations where people tend to be stay in the
same position for a significant amount of time, e.g., cafe and
office; and 2. we observe that many Pokemon Go players stay
in a fixed location and do not change their position while
playing. We can therefore leverage the sensors on their devices
to perform indoor localization and improve the QoE of the AR
application.

A. Are There Sufficient Stationary Peers?

We have conducted two-hour site surveys in a large five-
story plaza and an indoor office building, respectively. Here,
we define the time during which a person does not change
his/her position as residence time. Figure 6 depicts the cumu-
lative distribution function (CDF) of people’s residence time
in these two environments. We can see that people in the office
all have a residence time of over half an hour; while in the
plaza, the majority of people’s residence times are within half
an hour. Considering that a localization process only needs
around one second, the people with a residence time greater
than a few minutes can be employed to assist localization, and
Figure 6 clearly demonstrates the availability of these people.
In our paper, we define that a person can be employed as an
SP when his/her residence time is over ten minutes and his/her
position is within a cubic area with a side length of 2 meters. It
is worth noting that this condition can be adapted for different
indoor scenarios.

Another issue is obtaining sufficient numbers and distribu-
tion of SPs, as the trilateration localization method needs at
least three beacons surrounding a target. We conduct another
measurement study to explore the distribution of candidate SPs
in an indoor office and a shopping mall. Figure 7 depicts the

layout of candidate SPs in these two real world environments.
Given that the typical acoustic range is around 10 meters (the
maximum is around 40 meters) [9], [10], [11], [12], any point
in the area can be covered by at least three SPs in these two
environments.

In summary, our measurements demonstrate both the avail-
ability and sufficiency of SPs in typical indoor environments
and thus validate the feasibility of utilizing SPs for indoor lo-
calization. The availability of these SPs in the indoor environ-
ment combined with the rich sensors present in smartphones
allow a natural way to bring AR applications such as Pokemon
GO indoors.

B. Overview of the SP Based Localization

We propose an SP-based localization system. The system
includes three main components: SP identification, SP local-
ization, and target localization.

SP Identification. The goal of SP Identification is to
determine whether a person is relatively stationary or not.
Using the accelerometer to identify SPs is a natural solution
given that accelerometers have been widely used to track
people’s activities [13], [14], [15], [16].

Through analyzing SPs’ activities and the corresponding
acceleration signals, we propose a practical and efficient
method to identify SPs. We find that SP’s acceleration signals
either have low magnitude or low root mean square (RMS).
Furthermore, the unbiased autocorrelation of the acceleration
signals exhibits no repetitive pattern. These distinctive features
effectively help us identify SPs.

We have also considered using RSSI, as RSSI signatures are
supposed to remain unchanged at a fixed location. Yet it has
been shown that RSSI is subject to temporal fluctuation [7].
Therefore, utilizing RSSI to identify SP is not viable.

SP Localization: To make the system lightweight and easy-
to-deploy, we do not rely on any customized hardware or
fine-grained physical layer signatures; instead, we still use
RSSI. Due to multipath fading, medium contention and other
electromagnetic noise, RSSI is inherently time-variant [17] and
normally incurs coarse localization accuracy [7]. To this end,
for each WiFi AP, we utilize a set of RSSI measurements
as the fingerprints for each reference location. Compared
with traditional RSSI fingerprint localization methods [2] that
depend only on one-shot measurements and do not account
for temporal variation.....

Target Localization: To locate a target, we need a reliable
ranging scheme. Traditional RF (Radio Frequency) based TOA
or Time-Difference-of-Arrival (TDOA) [18] methods normally
require high precision synchronization, and signal strength-
based approaches [19] not only suffer from coarse ranging
accuracy but are also easily impaired by human obstruction.
Acoustic ranging schemes [9], [10], which have proven they
can be accurate to the range of centimeters, can largely
overcome these shortcomings.

Initially, when a target requests the localization service,
it broadcasts a chirp signal [9], [10]. The surrounding SPs
who receive this signal send a confirmation message to the
remote server. Then, under the direction of the remote server,
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an acoustic ranging method [10] is applied to estimate the
relative distance between SPs and the target. Finally, the
trilateration method is applied to obtain the target’s location.
Taken together, these localization strategies could help solve
the issue of indoor localization for augmented reality appli-
cations, potentially expanding the range of locations available
and improving QoE.

IV. QOE ENHANCEMENT WITH RFID SENSORS

Aside from the location information, AR applications often
involve rich user activities such as sitting, standing, and
walking; correctly identifying these activities could poten-
tially enhance the QoE of these applications. In its current
form, users in PokemonGo interact with the AR world by
GPS geo-located movements and tactile interfaces such as
the touchscreen. These represent only a small fraction of
the movements humans perform on a daily basis. Pervasive
sensors in modern smartphones could help accurately measure
our fine-scale movements such as sitting, eating or talking,
which could be integrated into increasingly rich AR worlds.
For example, Disney has built a RFID gaming system that can
sense when the player is moving or touching objects attached
with tags in near real time [20]. The past few years have
seen booming interest in human activity identification that
provides a range of Internet-of-Things applications, such as
health care and smart homes [21]. Traditional solutions mainly
use radars [22], cameras [23], and various inertial sensors [24].
Yet, sensor or device based radar solutions require targets

carrying sensors/wireless devices that are often not negligible
in both size and weight. While camera-based and device-
free radar-based systems have freed this limitation, they suffer
poor performance in accurately identifying multiple objects,
especially under Non-Line-of-Sight (NLoS) scenarios. Radio
Frequency Identification (RFID) is a promising technology
that can overcome those difficulties due to its low cost, small
form size, and not needing a power source, making it widely
used in a range of mobile applications.

The mobility of targets is an essential and important metric
to differentiate various human activities [25][26], e.g., sitting
and walking. Yet, the granularity of mobility quantified in
existing solutions is not adequate. For example, [25][27] can
only distinguish static and mobile objects, while [26][28] deal
with targets moving at similar speed.

Therefore, quantifying the intensity of mobility that is
closely related to typical indoor activities is not well addressed
yet. One may think of making use of the RFID localization
techniques that have successfully achieved centimeter or even
millimeter accuracy for mobility detection. Unfortunately,
while such advanced solutions as RF-IDraw [28] and Tago-
ram [29] achieve high accuracy through exploring antenna
arrays, their performance degrades heavily for indoor environ-
ments with multipath. Intuitively, their phase measurement, a
core operation, can be remarkably affected by multipath, in-
validating the key assumption [30] that the Angle-of-Arrival of
the direct path is related to the measurement phase difference
between antennas, especially in Non-Line-of-Sight (NLoS)
cases. Other localization solutions relying on predeployed
reference tags [31][32] generally require the tagged objects
to be static or with limited moving velocities (i.e., 0.17-
0.3 m/s), which is not even applicable for walking (1∼1.4
m/s) and running (5∼7 m/s). Mobility may also be estimated
through the doppler effect [26]. Yet it works with only static
communication environments and will again become unstable
in fast-changing indoor environments with dynamic multipath,
random signal/thermal noise, and varying antenna orientations.
Empirically, we show that prior schemes suffer from serious
performance degradation for detecting realworld moving tags
in typical indoor environments, since using a sole parameter
for mobility detection is ineffective in multipath scenarios.

In this section, we present a mobility-aware activity
identification system for RFID tags through intelligent pro-
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Fig. 9: Our supervised learning framework for mobility detec-
tion and activity identification

filing, which works robustly in multipath-rich indoor en-
vironments called i2tag. i2tag constantly generalizes a
huge amount of fine-grained mobility, which further enables
us to utilize a supervised learning framework for activity
identification as shown in Fig. 9.

At a high level, it goes through the following major steps:

• Preprocessing stage. we employ a novel fine-grained
mobility profile to quantify different levels of mobility,
which seamlessly integrates RSSI variance and packet
loss rate, as well as a relative-phase-based fingerprint.
The latter is highly effective in distinguishing tag mobility
in complicated indoor environments with random signal
noise and multipath.
By comparing the measured mobility profile against
known reference mobility profiles, we detect the tag
velocity through a Multiple Dimensional Dynamic Time
Warping (MDDTW) [33] algorithm. We classify tag
mobility into multiple categories based on the estimated
velocity; for instance, stationary, micro-mobility, and
macro-mobility.7 In this stage, we split tag mobility
profile Pi = {p1i , p2i , ...} into segments in equal window
size τ as {p1

i ,p
2
i , ...}, which will be transferred into

a mobility vector as vi = {ν1i , ν2i , ...}, where mobility
vector as an underpinning unit is applied in a multiclass
support vector machine (SVM) [35].

• Training stage. Each tag mobility profile Pi is repre-
sented by a corresponding mobility vector vi, then we
can distinguish different kinds of activities, e.g., sitting,
exercising, walking, and running. To be specific, Vtrain in
training samples with corresponding labels will be trained
to build the mapping σ from the feature xi of mobility
vector vi to activity label yi.

• Prediction stage. We perform activity recognition in a
supervised learning way. For each mobility vector vi ∈
Vtest, we determine whether the feature xi of mobility
vector is concentrated in certain activities, then label it
via σ to achieve corresponding yi.

i2tag is readily deployable using off-the-shelf RFID read-

7Zhou et al. [34] proposed a random mobility model for the different mobile
situations, e.g., the user may slowly move the tag although he/she is stationary
or his/her movement is confined within a small area.

ers8 (a single UHF reader with limited number of antennas)
and allows reusing existing RFID readers for indoor activity
identification. We have implemented a prototype of i2tag
using a Thingmagic reader and Impinj tags, and have
conduct extensive experiments in indoor environments. The
results demonstrate that, with i2tag, a single RFID reader
with two connected antennas can accurately distinguish the tag
velocity, classify the fine-grained mobility and four categories
of activities, with an average detection rate up to 96%. More
details of this work can be found in our paper [36]. Techniques
to measure and identify fine scale movements using pervasive
sensors such as the ones we have described, allow for richer
interactions in AR worlds such as Pokemon Go.

V. CLOUD BASED AR CONTENT DELIVERY: SYSTEM
OVERVIEW

As shown in previous sections, AR applications with per-
vasive sensing capabilities such as Pokemon Go can consume
significant battery power of mobile devices. Since the Poke-
mon Go infrastructure is largely built atop Google’s cloud,
there are great opportunities if we can offload more heavy
lifting workloads to the cloud end. In this section, we outline
a video streaming-based, cloud offloading framework to take
charge of the AR rendering. The framework is motivated by
the following observations:

• While AR content rendering consumes the largest amount
of power, due to the pervasiveness of video applica-
tions, mobile devices nowadays contain power-efficient
hardware chips for video processing (e.g., decoding and
encoding); processing the AR content video stream can be
much more power efficient than rendering the AR content
locally.

• The cloud-based framework could significantly reduce the
hardware requirements of the mobile devices. From the
App developers’ perspective, they do not have to deal
with the vast heterogeneity of mobile devices, adapting
and testing the game against different OS platforms.

• Hosting AR content generation in the cloud could sub-
stantially reduce the time-to-market of the App. It also
reduces the complexity of applying patches and updates
to the app for the game makers.

A. Cloud Server Setup

In Figure 10, we depict the architecture of our cloud based
AR streaming platform, Rhizome-AR.

At the server side, the first two modules are the MetaData
processor and the Client Interaction. The Application Logic is
essentially the game instance. It processes the sensor data and
client actions from the previous two modules and compute the
updates to the game world, based on which the rendering is
then performed by the Screen Rendering module. The rendered
scenes are passed to the Video Encoder module that contains
a video encoder and a discreet framer. The video encoder,
which we will highlight later, is selectable, consisting of either

8It is worth noting that the limited programming interface posed by com-
mercial tag readers provides only RSSI and phase values. As such, advanced
algorithms for powerful wireless device are not necessarily applicable here.
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Fig. 10: Cloud based AR Streaming Framework

a software or hardware H.264 encoder. In either case, the
encoder needs additional support to be adapted for real-time
streaming, namely, a discreet framer, which allows the Live555
streaming library to request live frames from the encoders at
a desired video stream frame rate. The encoded video stream
is then encapsulated and transported in either UDP, TCP, or
HTTP.

The module we want to highlight is the encoding mod-
ule. Rhizome not only supports software encoding using the
highly optimized x264 encoder for H.264 video but also
NVIDIA GRID and its hardware H.264 encoder. The choice
of streaming protocol can also be customized, e.g., RTSP
over UDP or TCP, as well as HTTP streaming, using the the
widely deployed open-source streaming library Live555 as the
streaming engine.

Our design and implementation are platform-independent,
although a GRID GPU is required for our hardware encoding
implementation. We have deployed and experimented the sys-
tem on Amazon EC2 GPU Instances (G2), a of cloud instances
backed by the Intel Xeon E5-2670 (Sandy Bridge) processors
and the NVIDIA GRID-K520 board that contains a GK104
GPU with 1536 CUDA cores and 4GB of video memory.
The GRID’s on-board hardware video encoder supports up
to 8 live HD video streams (720p at 30 fps) or up to 4 live
FHD video streams (1080p at 30 fps), as well as low-latency
frame capture for either the entire screen or selected rendering
objects, enabling a G2 instance to offer high-quality interactive
streaming such as 3D game streaming.

B. Mobile Client Setup

One of key motivations of migrating AR games to the cloud
is to enable resource-constrained (in terms of computation,
memory, battery, etc.) mobile clients to play advanced games.
The AR MetaData module is in charge of casting the various
sensor data collected at the mobile device to the cloud server,
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Fig. 11: Comparison of the original PKG and video offloading
based PKG

interfaced with MetaData Processor module. Hence, when the
video is received by a mobile client, our client-side Video Pro-
cessing module is configured to utilize the hardware decoder
with real-time optimizations to decode the video and display
it on the client device. The User Interaction module supports
input devices including game-pad, keyboard and mouse.

The selected test system mobile device is a Moto G 3rd
Generation smartphone which includes Quad-core 1.4 GHz
Cortex-A53 CPU, a Adreno 306 GPU, 2 GB of RAM and
16 GB of internal flash memory. We updated the device’s
operating system to the latest available Android version 6.0
(Marshmallow).

C. Mobile Device Power Profiling

In Figure 11, we depict the power profiling results on the
tested mobile device. Regardless of which video decoder being
used, Rhizome-AR is able to substantially reduce the power
consumption of Pokemon Go. We see slight increases on the
radio, which is due to the increased usage of radio for video
streaming. Another part of the power saving comes from the
screen. Rhizome-AR is able to adjust the Frame Rate per
Second (FPS) based on players’ preference, helping reduce
the power consumption on the screen when players do not
require high frame rate.

Further, we compare our video based offloading approach
with the locally-rendered Pokemon Go through thermal imag-
ing. As shown in Figure 12, with the use of hardware decoder,
video based offloading greatly reduces the heat generated at
the CPU (block in red), which confirms with our findings in
the previous power profiling.

D. Streaming Quality

We describe the streaming quality of Rhizome-AR in Fig-
ure 13 We analyze the video using two classical metrics,
namely Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity Index Method (SSIM). The results for PSNR are
given in Figure 13a and SSIM are given in Figure 13b,
respectively. The PSNR method quantifies the amount of
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(a) Pokemon GO (b) Offloading SW Decoder (c) Offloading HW Decoder

Fig. 12: Effect of video based offloading on Temperature
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error (noise) in the reconstructed video, which has been
added during compression. The SSIM method calculates the
structural similarity between the two video frames. In terms
of both metrics, Rhizome-AR is able to attain high streaming
quality even at the low bit rate, which allows our system to be
used without excessive bandwidth requirements. More details
of the Rhizome platform can be found in our papers [37][38].
Offloading processing tasks to the cloud helps alleviate a
key limitation of the PokemonGO app, namely its reputation
for rapidly draining batteries. This offloading also free up
resources and battery life for more other tasks such as running
advanced sensors.

VI. RELATED WORK

A. Location Based AR

Prior to Pokemon Go, Ingress is among the first location
based mobile games that paved the way for the later popularity
of the location based AR games [39]. Cloud computing is the
driving force behind these successes. Both games are powered
by the Google Cloud and the Google edge network to achieve
global, high-quality coverage [40][41]. Other than gaming, AR
has been used in areas such as healthcare and commerce [42].

These services share similar server architecture and client
device usage. The future of cloud gaming was discussed in
a recent article by Cai et al. The article forecasted changes in
the programing paradigm of gaming applications to facilitate
better integration between games and cloud offloading [43].

B. Indoor Localization

RSSI-based Localization Previous work on
RF-based positioning primarily relied on RSSI
information [44][45][46][47][48]. The RF fingerprinting,
pioneered by Radar [44], employs RSSI based fingerprinting
matching against a database to determine the indoor location.
LANDMARC [45] introduces the RF fingerprinting technique
to RFID localization. Vire [46] used imaginary reference
tags, referred to as “virtual tags” to achieve higher accuracy.
EZ [47] requires site surveys at only a few user locations.
Later on several other improvements over RSSI fingerprinting
have been proposed, such as incorporating inertial sensor
hints [48]. They typically deployed reference tags on a
monitoring region and then use RSSI values to locate a
specific tag. The major limitation of RSSI-based approaches
is unreliable, since RSSI measured values are highly sensitive
to multipath effects, and thus difficult to achieve high-
precision localization. Other works on device-free localization
rely on RSSI fingerprints [49][50], which are generated in
the training phase by requiring a person to stand in different
locations throughout the area of interest. In the testing phase,
they localize a person by mapping the resulting RSSI to the
closest fingerprint

Distance Ranging One of the simplest approaches is to
calculate the distance between the transmitter and receiver
based on received phase measurements. Here, we discuss only
some recent and relevant works. Li et al. [51] propose a
multi-frequency based ranging method for passive RFID tag
localization. Using phase measurement for distance ranging,
theoretically, could achieve high localization accuracy. Due
to the multipath effects, the phase measurement is not cor-
responding to the dominated path, and leads to high ranging
error. Liu et al. [52] presents an RFID localization scheme by
using multiple antennas to receive phase measurements from
tags, where the hyperbolic positioning method is employed to
correlate phase measurements.

The above methods are somewhat not applicable in mobile
cases, and we focus on leveraging the changing mobility
profile for mobility detection. The intuition behind our design
is that by analyzing the spatial-temporal dynamics in the
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mobility profiles, we can accurately estimate the mobility of
tags. Previous work may rely on the reference tags or the
dedicated hardware with many antennas to capture the mobility
profile. Moreover, SAR-style techniques require constantly
moving either the RFID reader or tags. In contrast, our scheme
works on COTS devices with only two antennas in multipath-
rich indoor environments.

C. Activity Recognition

Activity recognition solutions exploit the change of wireless
signals incurred by the human’s actions. RF-compass [53]
presents a state-of-the-art WiFi-based interface, yet it only
supports the detection and classification of a predefined set
of nine gestures. WiVi [54] utilizes WiFi signals to detect
users through walls and identify their gestures, which focuses
on tracking through dense walls such as concrete by using
MIMO interference nulling to eliminate reflections off static
objects. RistQ [55] leverages the accelerations from a wrist
strap to detect and recognize smoking gestures. RF-IDraw [28]
can track human writing by tracking a passive RFID tag
attached to his/her pen. E-eyes [56] is a location-oriented
activity identification system, which leverages WiFi signals
to recognize in-home human activities.

Ding et al. [26] developed FEMO that uses the frequency
shifts of the movements to determine what exercise a user is
performing.

VII. CONCLUSION

In this article, we explored pervasive sensing applications
through the deployment of the popular augmented reality
application Pokemon GO. We discussed real world limitations
of the current systems, from scalability to energy consumption.
Further, we discussed how to improve these sensing applica-
tions by integrating advances such as indoor localization, and
enriching the AR environment by improving activity identifi-
cation. Finally, because these pervasive sensing application can
have high power consumption, we investigate how innovative
cloud offloading platforms could enhance these applications.
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