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A B S T R A C T

User interactions with smartwatches are limited due to one-finger usage on small touch screens. However,
smartwatch interaction capabilities can be extended beyond the screen into the around-device space by
leveraging multi-finger interactions. In this paper, we explore suitable finger postures and gestures in mid-
air and on the back of the palm to extend interaction capabilities on the unmodified commodity smartwatch
while ensuring their learnability through discoverability. We conduct a design study to find a set of finger
postures and gestures suitable for interacting with off-the-shelf smartwatches. An application is then designed
to detect the posture-gesture set with on-device dual cameras while examining their classification accuracy.
To facilitate learnability through discoverability of the gesture-posture set, we explore ‘context-aware-hints’
that shows a sub-set of gesture-posture and their associated actions based on the usage context. Results from
a user study show that the guidance helps users to discover and learn them quickly and accurately.
1. Introduction

People commonly use one finger to interact with smartwatches —
while leaving the other fingers idle. This is primarily due to the devices’
limited touch input space, making it challenging to use multiple fingers
on the screen. Prior research highlighted that this form of interaction
limits the overall input bandwidth on the device (Van Vlaenderen et al.,
2015; Yeo et al., 2016; Han et al., 2017; Schirra and Bentley, 2015;
Knibbe et al., 2014). Further, small screens on smartwatches exaggerate
many commonly-known issues on smart devices (e.g., smartphones),
such as fat finger (Boring et al., 2012; Siek et al., 2005) and occlu-
sion (Xia et al., 2015). To mitigate these limitations, researchers (Seyed
et al., 2016; Knibbe et al., 2014; Van Vlaenderen et al., 2015; Yeo
et al., 2016; Han et al., 2017; Ahlström et al., 2018) explored ways to
extend smartwatch interaction capabilities beyond the watch screen.
They showed hand gestures and postures leveraging around device
space as a promising solution to extend the interaction space. For
instance, Sridhar et al. (2017) developed a smartwatch prototype ca-
pable of detecting finger activities on and above the back of the palm
with an external depth camera placed on the forearm. Chen et al.
(2014) demonstrated detecting finger gestures in mid-air with the help
of an external depth camera. All these solutions primarily depend on
additional hardware or instrumentation (e.g., 3D depth camera Sridhar
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et al., 2017; Chen et al., 2014, magnetometer McIntosh et al., 2019;
Park et al., 2020) for tracking hand activities, which limits the adoption
of the solutions for everyday use (Yeo et al., 2016). In addition, gestural
interactions are not self-revealing (Baudel and Beaudouin-Lafon, 1993)
and users need to explicitly discover, learn, and memorize them (Bau
and Mackay, 2008; Fennedy et al., 2021) — which further impose
additional challenges to users.

In this paper, we extend the interaction capability of an unmodified
commodity smartwatch by enabling finger input tracking (e.g., gestures
and postures) around the device while ensuring that users can easily
discover and learn the gestures and postures. More specifically, we
leverage dual cameras on an off-the-shelf smartwatch (LEMFO LEM14)
to track users’ finger activities in mid-air above the watch (with the
front camera) and on the back of the palm (with the side camera).
Fig. 1 provides the overview of the works described in this paper.
We started our exploration with a design study to find suitable and
user-preferred finger gestures and postures around the device for in-
teracting with the smartwatch. We selected a set of finger gestures
and postures with a suitable delimiter based on the results and further
investigated how accurately they can be classified with deep-learning
techniques. As discussed above, prior research demonstrated around-
device interaction with the help of additional instrumentation to the
smartwatch which is not practical for everyday use. Moreover, to our
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Fig. 1. Our system extends smartwatch input space to leverage (a) mid-air and the back of the palm space to extend interaction capabilities on unmodified commodity smartwatches.
We explored (b) context-aware-hints that guide users to show available postures and gestures they can use with a delimiter (i.e., thumb touch on screen). (c) a user can use finger
posture and (e) gesture on the extended interaction space to perform tasks on smartwatches. Here, (d) the user changes the volume level to 60% with (c) a straight two-finger
posture in mid-air and (f) lowers the screen brightness level with (e) one finger gesture on the back of the palm space.
best knowledge, no prior work has leveraged both mid-air and the
back of the palm space with user-preferred finger postures and gestures
accompanied by delimiters on an unmodified commodity smartwatch
to extend the device’s input capabilities. Therefore, exploring around-
device finger input accompanied by suitable delimiters for unmodified
commodity smartwatch can open new possibilities for extending overall
input capabilities of commercial smartwatches. Results showed that the
selected gesture set could be classified with high accuracy (average
93.27% with Mask-RCNN), while some postures were less accurate due
to multi-finger occlusions. As the gesture and postures are not self-
revealing like buttons, we next investigated ways to assist users in
discovering and learning the set of gestures and postures to interact
with smartwatches which has never been explored before. We thus
explore ‘context-aware-hints’ — a learning guidance technique that
shows available postures or gestures and associated tasks with on-
screen overlays based on the application context when touching the
screen. With a user study, we provide evidence that (1) showing only
application-relevant gestures improves learning and (2) additional steps
(i.e., scrolling) can detract from learning.

Our main contributions include:

• An exploration of user-preferred suitable finger gestures and pos-
tures that can be used to interact with an unmodified commodity
smartwatch

• An proof-of-concept prototype application to detect finger ges-
tures and postures both in mid-air and on the back of the palm
with a high accuracy

• An exploration of a guidance techniques for learning through
discoverability of the postures and gestures

2. Related works

We briefly review previous works that inspired us to design our
interaction technique. This section is organized into two sections: the
first section focuses on around-device interaction techniques for smart-
watches, and the second section discusses the discoverability and learn-
ability of new interactions.

2.1. Around-device interaction

This section includes reviewing the prior works focusing on around-
device interaction capabilities and around-device sensing techniques
for smartwatches.

2.1.1. Around-device interaction capabilities
Researchers have explored ways to extend smartwatch interaction

space beyond its tiny screen into the around device space (Knibbe et al.,
2014; Zhou et al., 2016; McIntosh et al., 2019; Zhang et al., 2016b;
Sridhar et al., 2017; Jannat et al., 2022; Pietroszek et al., 2017). For
instance, Lim et al. (2015) demonstrated tap, swipe and scrolling on
smartwatches by detecting the index finger gesture on the back of
2

the palm. Knibbe et al. (2014) demonstrated single-finger tap, swipe
gesture and two-finger pinch-to-zoom gesture on the back of the palm
to support around-device interaction on smartwatches. Arefin Shimon
et al. (2016) explored a set of 31 hand gestures for smartwatches,
including motion gestures, gestures on bezel and touch gestures. How-
ever, Most of the gestures (e.g., motion gestures of the wearing hand,
touch on the bezel) on their list are not identifiable with the on-
device’s cameras. Also, they did not explore any delimiter options
for gesture-based input which is very crucial for differentiate a valid
intentional gesture from an unintentional one. During our exploration,
we considered the gestures (e.g., hovering over the watch face) from
their list that are recognizable through cameras. McIntosh et al. (2019)
presented tracking users’ index finger around the watch to support tap
and hovering. In a recent work, Hayashi et al. (2021) presented Radar-
Net, where a miniature radar is capable of tracking and recognizing
five swiping gestures around the smartphone space by analyzing the
electromagnetic waves emitted by the radar.

A few other prior works (Zhou et al., 2016; Park et al., 2020) also
investigated finger gestures in around-device space to control applica-
tions on smartwatches. In a recent work, Sridhar et al. (2017) used a
combination of mid-air and multi-touch input on and above the back
of the palm for controlling games, scrolling menus and zooming maps.
Several prior works (Xu et al., 2015; Gupta and Balakrishnan, 2016;
Gong et al., 2018) demonstrated writing on the smartwatch using finger
gestures in mid-air space. Gil et al. (2017) identified thumb, index
and middle fingers in mid-air to use the on-screen keyboard on the
smartwatch efficiently. Nascimento and Soares (2020) demonstrated
controlling videos on smartwatches by detecting finger gestures in mid-
air. Nascimento et al. (2019) did the same to control Netflix movies
on a smartwatch. Mid-air finger gestures were also used for mode
switching or triggering commands (Kim et al., 2007; Sun et al., 2017).
Moreover, there are prior works (Perrault et al., 2012; Zhang et al.,
2016b; Klamka et al., 2020) leveraging different parts (e.g., strap,
knob, bezel) of the watch as around-device interaction space. For
instance, Perrault et al. (2012) explored touch gestures on watchstrap
while Zhang et al. (2016b) used both bezel and strap as interaction
space. In a recent work, Klamka et al. (2020) presented watch straps
as both input and output spaces with multi-touch and pressure-touch
inputs. Further, researchers (Gong et al., 2016; Reyes et al., 2018; Zhu
et al., 2018b; Wen et al., 2016) demonstrated using hand gestures on
the around-device space to support one-handed input on smartwatches.

In summary, over the past few years, researchers explored different
input methods (e.g., gestures and motions) on different input spaces
(e.g., mid-air, back of the palm) to extend the interaction capabilities.
However, none of these prior works explored delimiters for the around-
device input. Our work explores a large set of user-preferred finger
postures and gestures along with a delimiter that leverages both mid-air
above the watch face and the back of the palm as input space.

2.1.2. Around-device sensing
Prior research investigated different sensing mechanisms to detect

gestures and postures around the device. For instance, Lim et al. (2015)

detected finger gestures using Infrared (IR) sensors in the around-device
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space of smartwatches. Similarly, Knibbe et al. (2014) tracked multi-
finger activity on the back of the palm using multiple infrared (IR)
sensors. Zhang et al. (2016a) presented TapSkin, which recognizes tap
gestures at eleven locations (ten on the back of the palm and one on
the forearm) on the hand skin around the watch. They used inertial
sensors and microphones attached to the smartwatch to classify the
gestures. They claimed to achieve higher classification accuracy for
all the gestures. Hayashi et al. (2021) presented solutions for tracking
and recognizing five swiping gestures around the smartphone space by
sensing the electromagnetic wave with a miniature radar (Trotta et al.,
2021) developed under Google’s project Soli. Several prominent re-
search (McIntosh et al., 2019; Gil et al., 2017; Lyons, 2020; Park et al.,
2020; Park and Lee, 2019; Reyes et al., 2018) investigated magnetic
sensing techniques for tracking finger activities in around smartwatch
space. Zhou et al. (2016) used electric field sensing through electrodes
and antennas to capture finger activities in around-device space. Srid-
har et al. (2017) captured multi-finger activities on and above the back
of the palm through a depth camera attached to the forearm. Chan
et al. (2015) presented tracking finger motion using a miniature fisheye
camera attached to the edge of a ring. It could track seven hand
gestures observing from the finger joint position through a fisheye
perspective. Yang et al. (2015) presented around-device hand posture
recognition for smartwatches with EMG sensors. Xu et al. (2015) inves-
tigated tracking around-device gestures by capturing the motion of the
fingers through accelerometers and gyroscope sensors. Lim et al. (2018)
explored scenarios where multiple fingers are used on smart devices,
with one finger engaged in touch input while the remaining fingers
perform mid-air gestures to extend touch-based input capabilities. They
explored 20 Touch+Finger gestures using two ring-like devices on the
finger that have IMU sensor attached to recognize the mid-air gestures
and suggested 8 Touch+Finger gestures to extend touch-based input
capabilities. Both Zhu et al. (2018b) and Gupta and Balakrishnan
(2016) identified around-device finger gestures by built-in IMU sensors
in smartwatches. Wen et al. (2016) also recognized finger gestures
using IMU sensors to support touch-less around-device smartwatch
interaction.

Prior research investigated different sensing techniques for detect-
ing around-device input that primarily depended on external sensors
(e.g., IR sensor, mini radar, EMG sensor, depth camera) where addi-
tional instrumentation is needed. This paper investigates and presents
a camera-based system on a commodity smartwatch that detects finger
input in both mid-air above the watch face and back of the palm
without any external sensors and additional instrumentation.

2.2. Discoverability of interaction

Any new and/or unconventional mode of interaction is difficult
to discover (Baudel and Beaudouin-Lafon, 1993). For instance, ges-
tural interactions are not self-revealing like graphical buttons and
menus (Bau and Mackay, 2008). As a result, users sometimes re-
main unaware of the features that could make their tasks easier. It
is important that the system exposes the new capabilities to users.
Several prior research (Kurtenbach et al., 1994; Bau and Mackay, 2008;
Anderson and Bischof, 2013; Delamare et al., 2016; Fennedy et al.,
2021; Goguey et al., 2018) investigated design guidelines to enable
the users to discover the available capabilities of a new interaction
technique. For instance, Anderson and Bischof (2013) used a static
learning guidance: ‘‘crib-sheet’’ to discover the new capabilities, which
lists the tasks and visual illustrations of the associated gestures. In
an earlier work, Kurtenbach et al. (1994) presented a combination
of crib-sheet and contextual animation to let the users know which
gestures are currently available, where a pop-up crib-sheet displayed
the relevant subset of the gestures depending on the context. Grossman
et al. (2006) demonstrated how users could learn mid-air pen gestures
by hovering the pen above the screen to display all the possible
3

gestures. Later in OctoPocus, Bau and Mackay (2008) presented a
dynamic learning guidance technique that displays the whole or portion
of the corresponding gesture paths on-screen and provides feedback
after completing the gesture. In recent years, Delamare et al. (2016)
investigated OctoPocus (Bau and Mackay, 2008) for 3D mid-air gestures
and Fennedy et al. (2021) for virtual reality. Both of them reported that
the guidance technique makes the gestures more discoverable; hence
learnable. Sodhi et al. (2012) proposed a different visual guidance
technique where the upcoming gesture direction is projected onto the
user’s hand as a spot or a 3D arrow.

As discussed, learning guidance can make the interaction self-
learnable through discoverability. To our best knowledge, no prior
work has explored the discoverability and learnability of postures and
gestures on smartwatches. Therefore, we systemically explore the user-
preferred finger gestures and postures along with a delimiter, develop
a finger posture-gesture detection system supported by the built-in
sensors and explore learning guidance techniques to support learning
through discoverability.

3. Design space exploration

Prior work showed that extending the input space beyond the
smartwatch screen opens opportunities to increase the input bandwidth
on the device. However, they primarily relied on external sensors
(e.g., depth cameras Sridhar et al., 2017) or instrumentation to the
device (Lim et al., 2015; McIntosh et al., 2019) and/or attachment to
hands (Park et al., 2020) — which might not be practical for everyday
use (Schirra and Bentley, 2015; Yeo et al., 2016). We aimed to extend
the smartwatch input space without relying on external instrumenta-
tion or attachments. While exploring commercial smartwatches, we
found that many of them are now equipped with multiple (e.g., front
and side facing) cameras (e.g., LEMFO LEM14, ZEBLAZE THOR 6,
Kospet Prime S), enabling users to capture their finger activities in
mid-air on top of the screen and on the back of the palm with the
front and side cameras, respectively. However, prior work (Markussen
et al., 2014) showed that around-device interaction should have an
explicit delimiter to be activated. Therefore, we started our exploration
by examining possible delimiters and finger activities (i.e., gestures and
postures) that can be captured with the on-devices’ cameras and used
on the smartwatch.

3.1. Delimiters

Touch input has an implicit delimiter where a gesture begins with
a finger touching the screen and ends with the finger lifted from the
screen. However, no implicit delimiter is available for around-device
gestures or postures with smartwatches. As users’ finger movements
around the watch can either be intentional or unintentional, we need
a way to avoid detecting unintentional finger movements from users’
intended inputs. Markussen et al. (2014) explored different delimiter
options for a mid-air gestural keyboard and showed that touch on the
screen could be a potential delimiter. Chen et al. (2014) also suggested
touch on the screen as an intuitive delimiter to indicate a valid mid-air
gesture input for smartphones. We are unaware of prior work exploring
the delimiters for the around-device gesture input on smartwatches.
Consequently, in this work, we considered touch on the screen as a
delimiter while using gestures and postures with smartwatches.

We observed that people naturally use either their index finger or
thumb to touch the watch screen while leaving the other fingers idle.
Therefore, we decided to use the following two options as delimiters:
(1) Thumb On-screen as Delimiter where users are required to touch
the screen with the thumb to initiate a gesture or posture and lift
off the finger to end it; and (2) Index On-screen as Delimiter is similar
to the previous delimiter; however, users touch the screen with the
index finger instead of the thumb. Note that touching the screen can
potentially trigger an on-screen item. Therefore, we only considered a
touch as a delimiter when the touch is detected outside any UI widgets

(e.g., buttons, menus).
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Fig. 2. Postures and gestures that we considered in our study. Images with arrows [↔, ↕] were used for gestures and postures, whereas images without arrows were only used
for postures. Arrows also represent the directions of finger movements.
3.2. Finger interaction

While one finger, i.e., thumb or index, is being used as a delimiter,
other fingers and their combinations can create many possibilities for
postures and gestures. Hence, we reviewed prior works (Dim and Ren,
2014; Delamare et al., 2015; Seyed et al., 2016; Lu et al., 2020; Zhu
et al., 2018; Ruiz et al., 2011; Arefin Shimon et al., 2016) that leverages
finger postures and gestures for smart device interaction. None of these
prior works explored the finger postures and gestures that can be
detected by on-device cameras. We considered the finger postures and
gestures from the prior works that could likely be recognizable through
watch’s cameras. For instance, Arefin Shimon et al. (2016) presented a
list of non-touchscreen hand gestures for smartwatches and we have
considered the gestures from their list that can be identified through
built-in cameras of the watch. Based on our review, we prepared
a list of finger postures and gestures that can be used with smart
devices (e.g., smartwatches). We (two co-authors) further refined this
set (i.e., gesture-posture set) that are not difficult to perform while
touching the screen and can be captured by the device’s front and
side-facing cameras. The set is shown in Fig. 2.

3.2.1. Postures
For the posture-gesture set, we selected a total of nine mid-air

postures with the thumb on the screen as delimiter. The postures are:
straight index finger, straight middle finger, straight two fingers (index
and middle), straight all fingers, V, hook index finger, hook middle
finger, hook two fingers (index and middle), and hook all fingers
(Fig. 2(a–i)). We also selected five possible mid-air postures with the
index finger on the screen as a delimiter. The postures are: straight
middle finger, straight all fingers (middle, ring and small finger), hook
4

middle finger, hook all fingers (middle, ring and small finger and
thumb) (Fig. 2(j–n)). We chose four possible postures on the back of the
palm with the thumb on the screen as delimiter: index finger, middle
finger, two finger (index and middle), and all finger tapping on the
palm (Fig. 2(o–r)). For the index on the screen as a delimiter, there
were three possible postures: middle finger, two finger (middle and ring
finger) and all finger on the back of the palm (Fig. 2(s–u)).

3.2.2. Gestures
We selected eight possible mid-air gestures with the thumb on the

screen as delimiter. The selected gestures are: one finger hovering with
the index finger, one finger hovering with the middle finger, two finger
(index and middle finger) hovering, all finger hovering, one finger
crawling with the index finger, one finger crawling with the middle
finger, two finger (index and middle finger) crawling, and all finger
crawling (Fig. 2(a–d, f–i)). Next, we chose five possible mid-air gestures
with the index finger on the screen as delimiter. These gestures are: one
finger hovering with the middle finger, one finger hovering with the
thumb, all finger than the thumb hovering, one finger crawling with
middle finger, and all finger other than the thumb crawling (Fig. 2(j–
n)). We chose four possible gestures on the back of the palm with the
thumb on the screen as a delimiter: one finger sliding on back of the
palm with the index finger, one finger sliding with the middle finger,
two finger (index and middle) sliding, and all finger sliding (Fig. 2(o–
r)). For the index on the screen as delimiter, there were three possible
back of the palm gestures: one finger sliding with the middle finger,
two finger (middle and ring finger) sliding and all finger other than
the thumb sliding (Fig. 2(s–u)).
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3.3. User study

We ran a user study to gather users’ preferences on the gesture-
posture set that we selected. We recruited 30 participants (21 male,
9 female) ages between 20 and 40 (M = 28.47, SD = 5.75) by posting
the study advertisements on different online forums (e.g., Facebook)
and advertising sites (e.g., Castanet). Due to the surge of the Covid-
19 omicron variant, we conducted study sessions online via Zoom by
inviting each participant individually. At the beginning of the session,
we informed the participants of the project’s goal and showed them the
images for the initial set of all the postures and gestures from Fig. 2.
As mentioned earlier, this set of postures and gestures was prepared
for this study by reviewing prior works (Dim and Ren, 2014; Delamare
et al., 2015; Seyed et al., 2016; Lu et al., 2020; Zhu et al., 2018; Ruiz
et al., 2011; Arefin Shimon et al., 2016). We used PowerPoint slides,
where each slide contained either gestures or postures for a delimiter
option, and one interaction space (e.g., mid-air/back of the palm
gestures/postures for the thumb on screen/index on screen delimiter).
During the session, one co-author performed the gestures and postures
to show to the participants and asked them to try these by themselves.
Once they were done with all the gestures/postures presented on a
slide, the author asked them to provide their preference on the gestures
and postures based on if they would like to use the gesture in reality
and the ease of performing the gesture with 5-point Likert scales on
an online questionnaire hosted on Qualtrics. More specifically, the
participants were asked two questions for each of the gestures and
postures:

• One question collecting users’ preference (i.e., Would you prefer
using the gesture in real life while interacting with the smartwatch?
Provide your preference on a scale of 5 where 1 represents least
preferred and 5 represents most preferred)

• Another question on the ease of performing the gesture (i.e., How
easy it was to perform the gesture? Provide your rating on a scale of
5 where 1 represents very hard and 5 represents very easy).

Besides providing their preference, participants were also asked to
uggest potential gestures and postures that are not presented in the
lides but are worth exploring. Further, participants provided feedback
n other factors such as the number of fingers that are suitable for
estures/postures, their preferred interaction area, preferred delimiter,
nd a comparison between mid-air and back of the palm gestures
pace for such interaction. Each session took approximately 45 min to
omplete.

.4. Results

We used Friedman tests with Wilcoxon tests for post-hoc pairwise
omparisons to analysis the 5-point Likert scale data. Post-hoc pairwise
omparisons were Bonferroni adjusted. The same tests were used for
nalyzing postures, gestures and other factors (e.g., delimiter).

.4.1. Postures in mid-air
While analyzing the mid-air postures with the Thumb On-screen

s Delimiter, we found statistically significant differences among the
ostures (𝜒2(8, 𝑁 = 30) = 80.01, 𝑝 < 0.001). Wilcoxon tests (Bon-
erroni: 𝛼-level 0.05 to 0.001) showed significant differences between
he Straight Index Finger and all other postures, between Straight Two
Finger and Hook Middle and between Straight All Finger and Hook Middle
inger (all 𝑝 < 0.001). However, Straight Index Finger (𝑀 = 4.73),
Straight Two Finger (𝑀 = 3.4), Straight All Finger, V (𝑀 = 3.1) and
ook Index Finger (𝑀 = 3.0) received higher mean ratings than other
ostures. Therefore, we included them for our future exploration. We
ext analyzed postures with the Index On-screen as Delimiter and found

no statistically significant differences among the postures (𝜒2(4, 𝑁 =
5

30) = 6.31, 𝑝 = 0.18).
3.4.2. Postures on the back of the palm
We analyzed the data for the postures on the back of the palm

with the Thumb On-screen as Delimiter and found statistical differences
(𝜒2(3, 𝑁 = 30) = 41.23, 𝑝 < 0.001). Wilcoxon tests (Bonferroni: 𝛼-
level 0.05 to 0.008) showed significant differences between One Finger
(Index) (𝑀 = 4.53) and other postures and between Two Finger (𝑀 =
4.20) and other postures. Therefore, we included One Finger (Index),
Two Finger into our final posture-gesture set. We next analyzed the
postures perform on the back of the palm with Index On-screen as
Delimiter and found no statistical differences (𝜒2(2, 𝑁 = 30) = 8.598, 𝑝 <
0.05).

3.4.3. Gestures in mid-air
We next analyzed the mid-air gestures with the Thumb On-screen as

Delimiter. A Friedman test showed statistically significant differences
among the gestures (𝜒2(7, 𝑁 = 30) = 98.29, 𝑝 < 0.001). Bonferroni
adjusted Wilcoxon tests (𝛼-level 0.05 to 0.001) showed differences
between Straight Index Finger and all other gestures, Straight Two Finger
and all other gestures except for Hook Index Finger and between Hook
Index Finger and other gestures except for Straight Two Finger and
Straight All Finger. However, we included Straight Index Finger (𝑀 =
4.53), Straight Two Finger (𝑀 = 3.6) and Hook Index Finger (𝑀 =
3.67) for future exploration as they received higher mean ratings than
other gestures. We then analyzed the gestures with the Index On-screen
as Delimiter and found no statistical differences among the gestures
(𝜒2(4, 𝑁 = 30) = 5.206, 𝑝 = 0.267).

3.4.4. Gestures on the back of the palm
We next analyzed the gestures on the back of the palm with

the Thumb On-screen as Delimiter and noticed statistical differences
(𝜒2(3, 𝑁 = 30) = 44.47, 𝑝 < 0.001). Bonferroni adjusted Wilcoxon
tests (Bonferroni: 𝛼-level 0.05 to 0.008) showed that One Finger (Index)
(𝑀 = 4.73) and Two Finger (𝑀 = 4.33) on the back of the palm were
significantly different than other gestures (all 𝑝 < 0.001). Therefore,
we included them for further exploration. We then analyzed the ges-
tures with the Index On-screen as Delimiter and observed no statistical
differences (𝜒2(2, 𝑁 = 30) = 8.374, 𝑝 = 0.015).

3.4.5. Preferred delimiter and number of interacting fingers
We asked participants to rate two delimiter (Thumb On-screen and

Index On-screen) on a 5-point Likert scale. A Friedman test showed
statistical differences (𝜒2(1, 𝑁 = 30) = 9.00, 𝑝 < 0.01) where Wilcoxon
tests revealed that using thumb is preferred over using the index finger.
We next ask questions on the number of fingers that they prefer to
use for performing postures or gestures. There were three options —
using one finger (e.g., index), two fingers (e.g., index and middle)
and all fingers (e.g., index, middle, ring and small). The Friedman test
showed statistical differences (𝜒2(2, 𝑁 = 30) = 13.218, 𝑝 < 0.001) on
their preference where Wilcoxon tests showed that using one finger was
significance preferred over two fingers (𝑝 < 0.001).

3.4.6. Interaction space
Next the participants rated three interaction space: using mid-air,

back of the palm and a combination of mid-air and back of the palm. A
Friedman test showed significant differences (𝜒2(2, 𝑁 = 30) = 23.38, 𝑝 <
0.001). Wilcoxon tests (Bonferroni: 𝛼-level 0.05 to 0.017) showed sig-
nificant differences between mid-air and other two interaction spaces.

No other comparisons were significant.
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3.5. Discussion

We asked participants to select gesture or posture as their preferred
mode of interaction. We found that 13 participants selected gestures
as their preferred mode of interaction, where 17 selected postures.
Consequently, we decided to have both gestures and postures for our
implementation. For delimiter, participants preferred to use a single
finger with a preference for using the thumb. Therefore, we selected the
Thumb On-screen as the delimiter for the postures and gestures. When
electing gestures and postures, we considered both back of the palm
nd mid-air spaces. Therefore, in our Final Posture-Gesture Set, there are

five mid-air postures with the Thumb On-screen as the delimiter (letters
beside the gesture-posture are from Fig. 2): (i) Straight Index Finger(a),
(ii) Straight Two Finger (c), (iii) Straight All Finger (d), (iv) Hook Index
Finger (f) and (v) V (e); three back of the palm postures with the Thumb
On-screen as the delimiter: (i) One Finger (Index) (o), (ii) Two Finger (q)
and (iii) All Finger (r). The Final Posture-Gesture Set contains three mid-
air gestures where Thumb On-screen is the delimiter: (i) Straight Index
Finger (a), (ii) Straight Two Finger (c) and (iii) Hook Index Finger (f); and
two back of the palm gestures: (i) One Finger (Index) (o) and (ii) Two
Finger (q).

4. Implementation

We developed an application to detect and classify finger pos-
tures and gestures on a smartwatch. LEMFO LEM14 smartwatch is
used for implementation and testing which has built-in dual cam-
eras (5MP front-facing camera and a 2MP side-facing camera) and
runs Android 10 OS. The front-facing camera captures the mid-air
space above the watch screen, and the side-facing camera captures the
area on the back of the palm. We used Mask-RCNN (Mask-RCNN); a
widely used machine learning model for classifying images based on
instance-segmentation.

From the design study, we selected eight postures and five gestures.
We observed that all five gestures are related to the postures where
the postures have no finger movements. Therefore, once we can detect
and classify the postures, corresponding gestures can be classified by
detecting the finger movements of the corresponding postures over
time. Thus, we first investigated how well the postures can be tracked
and classified on smartwatches.

4.1. Participants, data collection and annotation

Due to the surge of the Covid-19 Omicron variant, we had limited
options to collect data in a lab environment while ensuring all safety
protocols. Consequently, we recruited eight participants (5 male, 3
female) ages between 25 and 31 (M = 27.86, SD = 2.09) and collected
images related to the selected finger postures. We used the LEMFO
LEM14 smartwatch to capture the images. One author showed the par-
ticipants how to perform the postures on the smartwatch. Participants
were then asked to wear the smartwatch and perform the postures.
We showed them postures one-by-one on a PowerPoint slide. Once
participants confirmed their finger positions for a posture, we took an
image on the smartwatch with its front or side camera. We collected
15 images for each posture from each participant — resulting in a
total of 960 images. The participant made new poses for each image
of a given posture while 15 images were captured. Next, we next
applied basic image manipulation-based data augmentation techniques
(e.g., rotation(10◦), cropping) (Shorten and Khoshgoftaar, 2019a), to
increase the image set to 1024 images. Next, we manually annotated
the dataset into JSON format using VGG Image Annotator (VIA) (Dutta
et al., 2016). We randomly split the dataset into 70% (∼720 images;
90 images per class) to train the model, 20% (∼200 images; 25 images
per class) to validate the model and 10% (∼104 images; 13 images per
class) to test the model. The random splitting of data was done based on
participants so that the outcomes are cross-user results — which was
also used in Wang et al. (2021), Khan et al. (2018), Bendersky et al.
(2017) and Christoudias et al. (2006).
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4.2. Posture detection

For classifying the postures, we used the official implementation of
Mask-RCNN (Abdulla, 2017), which is the widely used version of this
deep-learning model. This implementation is developed by following
the original Mask-RCNN paper (Mask-RCNN) with a few deviations for
the sake of generalization and coding simplicity. We started with the
provided pre-trained weights for the Microsoft COCO dataset in the
implementation as a starting point to train our dataset. We customized
the system to best support our vision in an easier way while keeping
the structure of the model unchanged. The original implementation was
developed on TensorFlow 1. We updated the model into TensorFlow 2
to easily access the supporting APIs and libraries. We used Resnet (He
et al., 2016) with 50 layers as the backbone. We resized all the images
to the same size (i.e., 512 × 512px) to allow the training of multiple
images per batch. We used the same learning rate of 0.02 as the original
implementation as the model converged faster with the smaller learn-
ing rates. Note that we developed our Mask-RCNN model in Google
Colab for faster training through accelerated run-time on Google Colab-
provided GPUs. It took approximately two and a half hours to initially
train and validate the model which can potentially vary based on the
server load. Finally, we evaluated the model with the testing set on
the Colab server. Fig. 3(i) shows the confusion matrix. We deployed
the trained model on the Colab cloud server for further inference as
the deep learning models are usually very computationally heavy for
handheld devices. Therefore, no further overhead with training and
computation while using it. The watch only needs to capture images
and send the images to the cloud server and receive the numeric results
back. Since Google Colab is an always available cloud-based service,
there is no need for external instrumentation.

4.3. Results

We used 104 images (∼10% of the dataset) – 13 images per class – to
examine our model’s performance. Fig. 3i shows the confusion matrix
across eight postures and their classification accuracy. We observed
that our model successfully classified 97 out of 104 images into the
correct classes, yielding an overall accuracy of 93.27%. We found that
the model achieved an accuracy of 98.45% for mid-air postures and
84.62% for the back of the palm postures. Among the mid-air postures,
the model classified all the postures with 100% accuracy except for the
Straight All Finger (Fig. 2d) posture (i.e., 92.31% accuracy). For the back
of the palm postures, our model detects One Finger (Index) (Fig. 2o)
posture with an accuracy of 100% while the other two postures Two
Finger (Fig. 2q) posture (84.62%) and All Finger (Fig. 2r) (69.23%)
showed lower accuracy. We believe this is primarily due to finger
occlusions, where the index finger commonly occludes the other fingers
on the back of the palm (e.g., Two Finger (Fig. 2q) and All Finger
(Fig. 2r) — thus lowering the detection accuracy. Therefore, the system
shows comparatively higher accuracy in mid-air postures than the back
of the palm postures.

4.4. Implementation on smartwatch

We developed an android smartwatch app to continuously capture
and send finger images to the Mask-RCNN model hosted on Google
Colab. We changed the application on Google Colab so that the model
could classify the image into a posture and sends the class id, class
name and bounding box coordinates. We found this system can process
7 to 10 images per second (i.e., sending images to Colab and receiving
results). The Android smartwatch application stored the class id and
the bounding box coordinates and checked the difference between
the bounding box coordinates with the previous frames stored in the
last second. Once the application detects a difference higher than a
threshold value (i.e., 50 pixels) for the same class ids, it is classified
the user’s finger movement as a gesture of the corresponding posture
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Fig. 3. (a–h) Sample output of the posture detection from the testing image set; (i) Confusion matrix of classification results across 8 finger postures classes.
class as the movement of the posture is the corresponding gesture. We
observed that the accuracy of gestures was similar to the accuracy of
the corresponding posture as gesture detection relies on detecting the
related posture.

4.5. Discussion

We acknowledge that a large set of images and advanced deep-
learning algorithms would result in even higher classification accuracy.
However, our current results showed that the model can still classify
the set of finger postures with reasonably high accuracy (average
93.27%). We observed that finger postures on the back of the palm
offer lower classification accuracy due to occlusion, which could po-
tentially be increased through additional images with features. We also
demonstrated that finger gestures could be detected from postures by
leveraging the same model. As our primary goal is to demonstrate a
deep learning-based proof-of-concept application suitable for detecting
around-device finger postures and gestures on an unmodified commod-
ity smartwatch while ensuring their learnability and discoverability, we
next moved to explore guidance techniques to facilitate learnability and
discoverability.

5. Discoverability and learnability of gestures and postures

Prior research highlighted concerns regarding the learnability and
discoverability of gestures and postures on and off the devices as they
are not self-revealing (Baudel and Beaudouin-Lafon, 1993). Here, users
need to explicitly discover, learn, and memorize them to use with
their associated activities (Bau and Mackay, 2008; Fennedy et al.,
2021). Learnability and discoverability for gesture-based input on a
smartwatch have never been explored before. Thus, we next explore
gesture guidance techniques to help users to discover, learn and re-
call our selected postures and gestures and their associated tasks on
smartwatches.

5.1. Guidance techniques

Prior research explored different guidance techniques to help users
to discover, learn and memorize postures and gestures while interact-
ing with devices. For instance, Crib-sheet (Kurtenbach et al., 1994;
Anderson and Bischof, 2013), the most basic form of discoverability
guidance technique, provides guidance by displaying the static list of
all postures and gestures that can be used to interact with devices.
Another well-explored approach is the context-aware guidance tech-
nique (Kurtenbach et al., 1994), which displays currently available
postures and gestures with their corresponding commands based on
their usage context in a desktop environment. Inspired by the prior
works, we explored the following two guidance techniques in this paper
to explore smartwatches.
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5.1.1. Crib-sheet
Similar to the prior research (Bau and Mackay, 2008; Delamare

et al., 2016; Fennedy et al., 2021), we used crib-sheet as the base-
line for guidance techniques comparison. In our implementation, we
initially showed the crib-sheet before starting any of the tasks with
a static list of images displaying possible postures-gestures and the
command associated with each gesture, as shown in Fig. 4(b). With
crib-sheet, participants were required to touch the screen (on the empty
space where there were no UI elements like buttons, icons or menus)
with the thumb as a delimiter while performing a valid intentional
posture/gesture to execute the displayed task. In addition, the crib-
sheet was always available to participants, allowing them to access it
at any time by tapping on the ‘‘Help’’ button at the top of the screen —
mimicking the traditional ways to seek help in an application. The users
required to scroll through the list to check all the postures-gestures.

5.1.2. Context-Aware-Hints
Our implementation of Context-Aware-Hints was inspired by the

YouTube (Android App) where the app shows possible tasks (e.g.,
pause, next) with highlighted buttons when tapping on the screen. We
adapted their design in our Context-Aware-Hints by showing a limited
set of available postures or gestures and associated tasks based on
the application context. Each of the tasks appeared at the top of the
screen (Fig. 4(c)). Our design of context-aware hints was inspired by
the recent work of Fennedy et al. (2021), where they provided visual
guidance whenever users performed any gesture. Similar to their work,
the context-aware hints technique only appears when users perform a
gesture, allowing them to leverage the hints to guide their learning
and performance of the correct gestures. To invoke the Context-Aware-
Hints, participants had to touch the screen where there were no UI
widgets, and the application displayed available postures and gestures
based on the context with their corresponding tasks (4(d)) as an overlay
on the screen for 4s. Based on a pilot study, we determined the 4-
second time duration to keep the hints on display, allowing participants
sufficient time to review the hints and perform the required pos-
tures/gestures. Additionally, automatically hiding the hints after 4 s
eliminates the need for users to perform additional gestures. The users
can wait for the overlay to fade away or issue postures and gestures
immediately while the overlay is still there. Thus, the Context-Aware-
Hints were visually hidden; however, were always available to become
visible to users and guide them to recall and learn a gesture/posture to
interact with the application.

5.2. Gestures-postures and tasks mapping

To mitigate the potential learning effect, we utilized two distinct
sets of gestures and postures for the two guidance techniques. In this
context, we also aimed to investigate any performance differences
between the gesture-posture sets designed by expert and non-expert
designers. Therefore, we opted to use two different sets of gesture-
posture-task mappings to compare the performance of gesture-posture-
task mappings designed by expert and non-expert designers, with the
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Fig. 4. (a–b) Crib-Sheet displays all the postures, gestures, and associated tasks. A user can access them by pressing the ‘‘help’’ button; (c–d) Context-Aware-Hints shows available
postures-gestures and associated tasks based on the application context. A user can trigger the guidance by touching on the screen; (e) Postures/gestures and corresponding task
set for media player app (Set 1); (f) Postures/gestures and corresponding task set for a map app (Set 2).
findings from this comparison potentially providing insights for future
directions in designing gestures and postures for specific tasks, taking
into account the background of the designers. We selected a media
player and a map app to investigate the two guidance techniques. To
create mappings between gestures/postures and frequently used tasks
with these apps, we reviewed a list of related prior works (Sridhar et al.,
2017; Arefin Shimon et al., 2016; Ruiz et al., 2011; Ferron et al., 2019;
Je et al., 2018) and observed the following frequently used tasks: (i)
opening an app (e.g., map, media player), (ii) changing volume levels
(e.g., 30%, 60%, 100%), (iii) navigate between media (e.g., next or
previous song), (iv) changing brightness levels (e.g., 30%, 60%, 100%)
and (v) workspace manipulation (e.g., zoom in, zoom out) etc. We
also found that though there are studies exploring mappings between
gestures and tasks (Ruiz et al., 2011; Ferron et al., 2019), none of the
prior work explored how users’ performance changes based on how the
mappings were created (e.g., created by design expert or general user).
To this end, we created two sets of mappings: (Set 1): created by a
group of design experts and (Set 2): assigned by us.

5.2.1. Set 1
To create (Set 1), we conducted a design workshop (Je et al., 2018;

Ali et al., 2018; Wobbrock et al., 2005) by recruiting eight Computer
Science graduate students (3 PhD and 5 MSc; 5 male) aged 25–30 (𝑀 ∶
27.25, 𝑆𝐷 ∶ 1.56) from four different universities. All the participants
have a degree in design and took courses in Interface and/or interaction
design. We conducted two zoom sessions where in the first session, we
provided them with a PowerPoint file containing all gesture-posture
images from the Final Posture-Gesture Set and a list of tasks that we
discussed above. We then asked them to select a task and place a
posture or gesture image that they believed was suitable for the task.
This session lasted about 40 min.

After this session, we reviewed 35 mappings received from the par-
ticipants and removed duplicate mappings that resulted in 24 unique
mappings for eight activities. The second Zoom session was conducted
with the same participants to refine the set further. In this session, we
provided them with a Qualtrics form containing all the mapping. We
asked them to provide their preference for the mappings with a 5-point
Likert scale. We asked the participants to provide their preferences on
the mapping between posture/gesture and eight activities as listed in
Fig. 4(e). More specifically, they were asked to provide their preference
ratings for the mapping between the posture/gesture and the corre-
sponding activities — which were collected on a scale of 5, where 5
represented the most preferred and 1 represented the least preferred.
This session took around 15 min.

We selected the patterns (e.g., single posture, sequence of postures
and single gesture) with the highest mean ratings to generate one set
of posture-gesture and task mappings. As this set mostly contains the
posture-gesture and task mappings related to the media player app,
we considered using those posture-gesture and task mappings for Set
1. Fig. 4(e) shows Set 1; the posture-gesture mappings for the media
player app.
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5.2.2. Set 2
This set contains 8 posture-gesture and task mappings which is done

by two co-authors. Fig. 4(f) shows Set 2 for a map application. During
the assignment, we discussed tasks and possible gestures or posture that
can be mapped. We assigned a gesture or postures once we mutually
agreed on the posture or gestures for a task.

5.3. Participants and apparatus

We recruited 12 participants (7 male, 5 female) ages between 22
and 33 (M=26.67, SD=3.01). Each study session lasted approximately
45 min and participants received CA$15 for their participation. We
used the smartwatch application that we developed to identify the
posture/gesture while using the LEMFO LEM14 smartwatch to conduct
this study. We invited the participants to come to a research lab and
wear the smartwatch to perform the tasks for the study.

5.4. Tasks and procedure

Our tasks involved participants using two apps: a media player and
a map and performing a set of tasks. We used the two posture/gesture-
task Set that we discussed above, one for each app. Each Set con-
tains eight postures/gestures-tasks pairs, totaling 16 postures/gestures-
task combinations. Set 1 (Fig. 4(e)) holds 8 postures/gestures-task
set for media player app and Set 2 (Fig. 4(f)) contains another 8
postures/gestures-task set for map app. We followed the procedure as
used in prior work (Bau and Mackay, 2008; Delamare et al., 2016;
Fennedy et al., 2021) where the study session was divided into four
phases: pre-test, main-phase (a sequence of alternating training and
testing trials), post-test and subjective feedback.

5.4.1. Pre-test
This phase aims to investigate if the posture/gesture-task mappings

are known to the participants even before seeing them for the first time.
This is done to establish a recall baseline. In this phase, the participants
go through testing trials for each of the 16 postures/gestures without
any guidance technique or feedback in random order and are not given
any feedback on the correctness of posture and gestures. Since the
participants are unaware of the postures/gestures-tasks mappings, the
accuracy is 0% similar to the prior works (Bau and Mackay, 2008;
Delamare et al., 2016; Fennedy et al., 2021). Note that all the gestures
were different than what we traditionally use e.g., pinch gesture with
index and thumb fingers for zooming in and out of a map. Instead, in
our gestures set, users always had to keep the thumb on the smartwatch
screen and use the remaining fingers for gestures. This creates a differ-
ent gesture set than the traditional one. We use this accuracy value as
the baseline to understand the recall rate better.
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5.4.2. Main-phase
This phase aims to train the participants through alternating se-

quences of training and testing trials. There are three blocks of trials
in this phase — each with a sequence of training trials followed by
a sequence of testing trials. Each training sequence has 16 trials,
eight postures/gestures, each with 2 repetitions, randomized within
each block. Each testing sequence has eight trials — for each of the
postures/gestures they are just trained, however, without any guid-
ance techniques. During the main-phase trials, the participants com-
pleted tasks using a guidance technique, either with the crib-sheet or
the context-aware-hints. While one set of postures/gestures (8 pos-
tures/gestures) was used with one guidance technique, another set of
postures/gestures was used with another guidance technique alterna-
tively that we managed through counterbalancing.

5.4.3. Post-test
This phase examines the overall learning and recall after all the

main-phase trials. Similar to the pre-test phase, in this phase, partic-
ipants completed test trials for all 16 postures/gestures in a random
order without any guidance technique. This phase also measures par-
ticipants’ performance in recalling and performing tasks regarding
execution time and accuracy.

After completing all the pre-test, main-phase, and post-test ses-
sions, the participants provided subjective feedback for each guidance
technique. They rated the techniques based on ease of learning, ease
of recall, speed of learning, the accuracy of learning and recall, and
comfort using a 7-point Likert scale in an online Qualtrics form. The
participants also chose between the techniques they preferred most.

Participants started with a pre-test phase, followed by three blocks
of sequential training and testing trials in the main phase; and finished
with post-test trials. A trial starts when the participants touch the screen
with the thumb and it ends when the participant releases the touch
after performing the posture/gesture. The total execution time for each
block denotes the time required to complete all the trials in that block.
Accuracy for each block was measured by the number of times the
participant performed the postures/gestures correctly while completing
that block.

Participants’ performance was evaluated in terms of execution time
(i.e., measures total execution time for each block) and accuracy
(i.e., measures the number of incorrect postures/gestures) for each
guidance technique. For each trial in a block, the trial execution time
includes the time for reading the task, performing the correspond-
ing posture/gesture, checking the help from guidance techniques (in
training trials) and recalling the posture/gesture (in testing trials).

In both training and testing trials, whenever the participant per-
formed a correct posture/gesture, the task accomplishment message
was shown as visual feedback and the next task appeared. In case
of incorrect postures/gestures, ‘‘Incorrect gesture’’ was shown. During
testing trials, participants completed the tasks without any guidance.

We used a 2 × 2 × 3 within-subjects design for the factors Guidance
technique (Crib-Sheet, Context-Aware-Hints), Set (Set1, Set2), and Block
Block1, Block2, Block3). The different set was paired with a different
uidance technique over alternating participants. We did this so to
void any confounding effect of Set on Guidance technique. During the

main phase, each participant completes a total of 96 training trials (2
Guidance technique × 3 Block × 8 postures/gestures × 2 repetitions) and
48 testing trials (2 Guidance technique × 3 Block × 8 postures/gestures
× 1 repetition). In the post-test phase, each participant completes 16
testing trials (16 postures/gestures × 1 repetition). Fig. 5 shows the
overall design for this discoverability and learability study.

5.5. Results

To analyze measures (e.g., execution time and accuracy), we used
repeated-measures ANOVA with pairwise t-tests with Bonferroni cor-
rections for post-hoc comparisons. We used Wilcoxon Signed-Rank tests
9

to analyze subjective ratings.
5.5.1. Execution time
We examined task execution times of each block of both training

and testing trials.
Training Time: Results from repeated-measure ANOVA showed Guid-

nce technique has no main effect on Training Time (𝐹1,11 = 1.77, 𝑝 =
.21, 𝜂2𝑃 = 0.14). The mean training time across all blocks of Context-
ware-Hints (𝑀 = 57.48 s) was lower than Crib-Sheet was (𝑀 =
5.12 s) as shown in Fig. 6a. However, we found significant main
ffect of Block (𝐹2,22 = 10.41,p< 0.001, 𝜂2𝑃 = 0.49) on training times.
airwise comparisons show that participants were significantly faster
n Block3 (𝑀 = 53.52 s) compared to Block2 (𝑀 = 62.19 s, 𝛥 =
.67 s, [1.24 s, 16.11 s]) and Block1 (𝑀 = 68.16 s, 𝛥 = 14.64 s,
2.89 s, 26.39 s]). No interaction between Guidance technique and Block
as found. Testing Time: For testing trials, both Guidance technique
𝐹1,11 = 8.38, 𝑝 = 0.02, 𝜂2𝑃 = 0.43) and Block (𝐹3,33 = 4.49, 𝑝 = 0.01, 𝜂2𝑃 =
.29) has main effect on execution time. The participants were 3.10s
aster with Context-Aware-Hints 𝑀 = 26.39 s) than Crib-Sheet (𝑀 =
9.48 s) across all the testing trials (Fig. 6(b)). Pairwise comparisons
howed that participants were significantly faster in Block3 (𝑀 =
4.05 s) compared to Block2 (𝑀 = 28.07 s, 𝛥 = 4.02 s, [.65 s, 7.39 s]) and
lock1 (𝑀 = 29.55 s, 𝛥 = 5.05 s, [.68 s, 10.33 s]). The accuracy increased
ignificantly from the test Block3 (𝑀 = 24.05 s) to the post-test block
𝑀 = 30.07 s, 𝛥 = 6.02 s). We noticed the participants were taking a long
ime in recalling the postures/gestures in post-test trials. No interaction
etween Guidance technique and Block was found.

.5.2. Execution accuracy
We examined the execution accuracy of each block of both training

rials and testing trials.

Training Accuracy: During training trials, Context-Aware-Hints was
ore accurate than Crib-Sheet by 1.74% (Fig. 6(c)). Results from

epeated-measure ANOVA showed that there was a statistical main
ffect of Guidance technique (𝐹1,11 = 5.85, 𝑝 = 0.04, 𝜂2𝑃 = 0.35) on
verall Training Accuracy, with Context-Aware-Hints (𝑀 = 99.13%)
eing more accurate than Crib-Sheet (𝑀 = 97.39%, 𝛥 = −1.74%,
−3.32%,−0.16%]). We also found statistical main effect of Block (𝐹2,22 =
.12, 𝑝 = 0.01, 𝜂2𝑃 = 0.36) on training accuracy. Pairwise comparisons
howed that participants were more significantly accurate in Block3
𝑀 = 99.74%) compared to Block2 (𝑀 = 98.70%, 𝛥 = −1.04%,
−2.70%, 0.62%]) and Block1 (𝑀 = 96.35%, 𝛥 = −3.39%, [ − 6.72%,
0.05%]). There was no interaction between Guidance technique and
lock.

Testing Accuracy: Repeated-measure ANOVA showed that both Guid-
nce technique (𝐹1,11 = 27.39,p< 0.001, 𝜂2𝑃 = 0.71) and Block (𝐹3,33 =
.25, 𝑝 = 0.002, 𝜂2𝑃 = 0.36) have significant main effect on accuracy.
airwise comparisons showed that participants were significantly more
ccurate with Context-Aware-Hints (𝑀 = 94.79%) than Crib-Sheet
𝑀 = 88.28%, 𝛥 = −6.51%, [−9.25%,−3.77%]) (Fig. 6(d)). In addition,
heir accuracy was significantly high in Block3 (𝑀 = 94.79%) compared
o Block2 (𝑀 = 91.67%, 𝛥 = −3.13%, [−8.91%, 2.66%]) and Block1 (𝑀 =
85.94%, 𝛥 = −8.85%, [−16.84%,−0.87%]). The accuracy did not change
significantly between the test Block3 (𝑀 = 94.79%) and the post-test
block (𝑀 = 93.75%, 𝛥 = −1.04%). There was no interaction between
Guidance technique and Block.

5.5.3. Subjective feedback
After completing all the training and testing phases, each partic-

ipant provided feedback on a 7-point Likert scale. Fig. 6e presents
the participants’ responses to each subjective measure for each guide.
Results from the Wilcoxon Signed Rank tests showed that Guidance
techniques elicited a statistically significant effect on both Ease of
Learning (𝑍 = −3.130, 𝑝 = 0.002) and Ease of Recall (𝑍 = −2.213, 𝑝 =
0.027). Participants rated Context-Aware-Hints more favorably than
Crib-Sheet for ease of learning (𝑀𝑒𝑎𝑛 = 6.15,𝑀𝑒𝑑𝑖𝑎𝑛 = 6.00 vs

𝑀𝑒𝑎𝑛 = 4.00,𝑀𝑒𝑑𝑖𝑎𝑛 = 4.00, respectively) and ease of recall (𝑀𝑒𝑎𝑛 =
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Fig. 5. Discoverability and Learnability study design.
Fig. 6. Execution Times for (a) Training Blocks and (b) Testing Blocks, Execution Accuracy (c) Training Blocks and (d) Testing Blocks for each Guidance technique. (e) Subjective
feedback (B = Block and PT = Post Test).
5.42,𝑀𝑒𝑑𝑖𝑎𝑛 = 5.50 vs. 𝑀𝑒𝑎𝑛 = 3.75,𝑀𝑒𝑑𝑖𝑎𝑛 = 4.00, respectively).
We also found that Guidance techniques also has a statistically signif-
icant effect on both Speed (𝑍 = −2.831, 𝑝 = 0.005) and Accuracy
of learning (𝑍 = −3.097, 𝑝 = 0.002). Participants rated speed of
learning with Context-Aware-Hints (𝑀𝑒𝑎𝑛 = 5.50,𝑀𝑒𝑑𝑖𝑎𝑛 = 6.00)
higher than Crib-Sheet (𝑀𝑒𝑎𝑛 = 3.58,𝑀𝑒𝑑𝑖𝑎𝑛 = 4.00). Similarly, we
observed a higher participant rating for the accuracy of learning with
Context-Aware-Hints (𝑀𝑒𝑎𝑛 = 6.58,𝑀𝑒𝑑𝑖𝑎𝑛 = 7.00) than Crib-Sheet
(𝑀𝑒𝑎𝑛 = 4.00,𝑀𝑒𝑑𝑖𝑎𝑛 = 4.00). Although the Guidance techniques did
not show any statistically significance of Comfort (𝑍 = −1.437, 𝑝 =
0.151); the participants were in favor of Context-Aware-Hints (𝑀𝑒𝑎𝑛 =
5.50,𝑀𝑒𝑑𝑖𝑎𝑛 = 6.00) than Crib-Sheet (𝑀𝑒𝑎𝑛 = 4.67,𝑀𝑒𝑑𝑖𝑎𝑛 = 4.50).
Finally, 9 out of 12 participants selected Context-Aware-Hints as their
preferred technique than the Crib-sheet.

5.5.4. Discussion
We explore the crib-sheet and the context-aware hints based on

prior works (Bau and Mackay, 2008; Delamare et al., 2016; Fennedy
et al., 2021; Anderson and Bischof, 2013; Kurtenbach et al., 1994).
However, there is a fundamental difference between these two tech-
niques. The crib-sheet is more like traditional ‘‘help’’ feature that shows
the list of all the postures-gestures regardless of the application context.
Then the user requires additional clicks to open the list and scroll
through it to see all the postures and gestures. On the other hand, the
context-aware hints automatically show only the postures and gestures
that are available based on the application’s current context. Therefore,
Crib-sheet requires users to take additional actions such as scrolling
through the list compared to the context-aware hints. Therefore, both
10
techniques guide users to discover and learn the available postures
and gestures in two different ways. We conducted a study to explore
which technique can better guide users in learning the postures and
gestures quickly. In our discoverability and learnability study, partici-
pants learned through these techniques during the main phase, and in
the post-test phase, they executed tasks without any guidelines based
on their memory. Results from this study indicate that the partici-
pants learnt the postures and gestures with Context-Aware-Hints more
quickly and accurately than Crib-Sheet. Moreover, the results of the
post-test measures demonstrate better recall for Context-Aware-Hints
than the Crib-sheet. Subjective feedback also showed better user rat-
ings for Context-Aware-Hints than Crib-Sheet. Thus our study provides
evidence that displaying only application-relevant postures-gestures
improves learning while additional steps like scrolling can detract from
learning.

6. Discussion and design guidelines

The small form factor of the smartwatch screen limits the avail-
able input space, resulting in limited interaction capabilities on the
device (Van Vlaenderen et al., 2015; Yeo et al., 2016; Han et al.,
2017; Schirra and Bentley, 2015; Knibbe et al., 2014). Consequently,
researchers (Seyed et al., 2016; Knibbe et al., 2014; Van Vlaenderen
et al., 2015; Yeo et al., 2016; Han et al., 2017; Ahlström et al., 2018)
explored around device interaction for extending the interaction space
beyond the watch – however, primarily through external instrumenta-
tion (McIntosh et al., 2019; Lim et al., 2015; Sridhar et al., 2017) –
which might not be practical in many cases (e.g., outdoor) and limit
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the applicability of these solutions for everyday use (Yeo et al., 2016).
Leveraging users’ finger input (e.g., finger gestures/postures) around
the device to extend input capabilities on an unmodified commodity
smartwatch can be a potential solution to this issue. Therefore, we
started our exploration to find suitable user-preferred finger gestures
and postures that can be detected through the smartwatch’s built-in
cameras on the commodity smartwatch.

We first reviewed several prior related works (Dim and Ren, 2014;
Delamare et al., 2015; Seyed et al., 2016; Lu et al., 2020; Zhu et al.,
2018; Ruiz et al., 2011; Arefin Shimon et al., 2016) that leverages finger
postures and gestures for smart device interaction. However, we found
that none of these prior works include any delimiter for the postures
and gestures. Prior work (Markussen et al., 2014; Chen et al., 2014)
showed that around-device interactions benefit from an explicit delim-
iter to avoid detecting any unintentional finger movements. Therefore,
our work extended the prior work by incorporating delimiter options
(e.g., index or thumb on the screen) into around-device finger pos-
tures and gestures that can be tracked with an unmodified commodity
smartwatch.

We observed participants’ positive attitudes towards using both mid-
air and back-of-the-palm spaces, which guides us in leveraging both
spaces for around-device interaction. Thus, we continued our explo-
ration, further investigating user-preferred finger postures and gestures
that are detectable by watches’ built-in cameras into the spaces. Inter-
estingly, we found that there were more postures and gestures (i.e., five
postures, three gestures) than back-of-the-palm (i.e., three postures,
two gestures) participants preferred with the Thumb On-screen as
the delimiter. We believe this is primarily due to the large mid-air
space available to participants where they can move their fingers to
perform gestures and postures rather than limited the back-of-the-palm
space. We also observed that finger postures and gestures on the back-
of-the-palm showed a lower classification accuracy. When observing
participants, we found that while positioning multiple fingers on the
back of the palm, the finger at the front causes occlusion to the rest
of the fingers and thus lowers the classification accuracy. We also
observed similar issues with other camera-based systems (e.g., Leap
Motion) where finger occlusions lower the gesture and posture de-
tection accuracy (Sridhar et al., 2015; Sharp et al., 2015; Kim et al.,
2012).

Another common concern with posture/gesture-based interaction
is that they are not self-revealing like graphical buttons and menus
(Baudel and Beaudouin-Lafon, 1993). Users need to explicitly discover,
learn, and memorize those postures and gestures (Bau and Mackay,
2008; Fennedy et al., 2021). Therefore, a discoverability mechanism
or gesture guidance is critical to help users quickly discover, learn
and memorize the possible postures and gestures with their associated
activities. To our best knowledge, no prior works investigated the dis-
coverability and learnability of postures and gestures for around-device
interaction on smartwatches. Therefore, we also explored gesture guid-
ance techniques for around-device finger postures and gestures based
interaction on smartwatches ensuring learning through discoverability
on unmodified commodity smartwatches.

Inspired by prior work (Bau and Mackay, 2008; Delamare et al.,
2016; Fennedy et al., 2021), we explored Context-Aware-Hints, where
a limited set of postures and gestures and associated tasks are displayed
based on the application contexts. We further compared it with Crib-
Sheet which displays a static list of postures-gestures and associated
commands. Similar to prior works (Bau and Mackay, 2008; Fennedy
et al., 2021; Delamare et al., 2016), we showed evidence that showing
only application-relevant gestures improves learning. Our study find-
ings align with those of Fennedy et al. (2021), which suggest that
context-aware hints are significantly more accurate than crib-sheet in
training users to perform postures and gestures more precisely. Addi-
tionally, both Bau and Mackay (2008) and Fennedy et al. (2021) found
that both training and recall time were lower for context-aware hints
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compared to crib-sheet. Our study results further confirm the lower
training and recall time for context-aware hints compared to crib-sheet.
We believe that the Context-Aware-Hints is always available to visually
guide users based on the application context, thus minimizing the
cognitive load for memorizing the postures-gestures and the associated
tasks. Consequently, our results demonstrated that participants could
easily discover, learn and recall the postures/gestures to interact with
the smartwatch with Context-Aware-Hints.

Here we summarize our main findings and present the possible
design considerations of our exploration of around-device interaction
along with learning guidance on commodity smartwatches. The results
from our studies offer the following guidelines to the designers of
around-device smartwatch interaction:

Interaction space and Gesture-Posture: Our study results revealed
that the participants rated both mid-air and the back of the palm
favorably as smartwatch interaction spaces. Seventeen out of thirty
participants rated mid-air as their preferred around-device input space
while thirteen participants preferred the back of the palm. Therefore,
we suggest considering both mid-air and the back of the palm as
extended interaction space while designing around-device interaction
on the smartwatch. As indicated in the paper, finger activities in mid-
air can be captured with the front camera, whereas activities on the
back of the palm can be captured with the side camera on the device.
We found that participants had an equal preference for finger postures
and gestures. Thus, finger gestures and posture should be considered as
around-device smartwatch input.

Delimiter: Results from the design space exploration study indicated
that the participants preferred touch on the screen over any posture
and gesture as a delimiter. Prior research (Markussen et al., 2014; Chen
et al., 2014) also suggested touch on the screen as an intuitive delim-
iter. Therefore, we considered touch on the screen with different fingers
(e.g., index, thumb) as possible delimiter options while using gestures
and postures with smartwatches for further investigation. Participants
preferred touching the screen with the thumb as the delimiter to indi-
cate the beginning of a valid intentional posture or gesture. Designers
should consider this form of interaction as a potential delimiter option
for starting any mid-air interaction.

Using comfortable gestures/postures: We found that some postures
were not comfortable to perform due to awkward finger combinations
and their positions. For instance, placing the index, middle and ring
finger straight and the pinky finger bent while the thumb is touching
the screen was very uncomfortable for most participants. We suggest
designers only consider gestures or postures that are comfortable and
not awkward. In addition, we need to ensure that comfortable finger
gestures and postures are possible to track with the device’s camera
while avoiding finger occlusions.

Guidance technique: Crib-Sheet used a static list of possible postures-
gestures and the command associated with each gesture (Fig. 4(b))
whereas Context-Aware-Hints only showed the available postures and
gestures and their associated tasks based on the application context
(Fig. 4(d)). Through our exploration of guidance techniques, we found
that Context-Aware-Hints assisted users to learn the postures and
gestures more accurately and quickly than Crib-Sheet. Additionally,
Context-Aware-Hints assisted users by providing step-by-step visual
guidance for tasks based on an application context, which eventually
helps the users to discover and learn the postures/gestures naturally
and more easily. Therefore, we suggest including Context-Aware-Hints
as a guidance technique for gesture or posture-based interfaces to
support learnability through discoverability.

7. Limitations and future work

In this paper we present a proof-of-concept solution for extend-
ing the input capabilities of commodity smartwatches with expressive

finger posture/gesture on the back of the palm and in mid-air while
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ensuring learning the interaction through discoverability. However,
future work can address some existing limitations we discuss here.
For instance, we found that delimiters for gesture-based interaction
have not been explored thoroughly for smartwatches. Therefore, we
used touch on the screen as a delimiter as suggested in Markussen
et al. (2014) and Chen et al. (2014) as well as based on participants’
subjective feedback during the first study. However, Future work can
explicitly explore suitable delimiters for gesture-based interaction on
smartwatches — while considering both users’ performance and their
feedback.

All the training data for the deep-learning classifier model were col-
lected and tested in a lab environment. As our focus was to demonstrate
proof-of-concept around-device interaction capabilities on an unmod-
ified commodity smartwatch, we moved forward with the settings.
We believe that a large set of training images captured in different
conditions (e.g., outdoor, lighting) with any advanced deep learn-
ing algorithms will further show higher classification accuracy for
different environments and usage scenarios. Future work can collect
more data with different conditions (e.g., lighting, outdoor) to improve
the model’s overall accuracy. In addition, we did not explore how
users’ attributes (e.g., finger shape, skin color) can have an impact
on the detection accuracy which can be investigated further. We have
not investigated the performance of the system for different mobility
conditions (i.e. standing, walking, and running). Future work can eval-
uate the design and performance of the system for different mobility
conditions.

We implemented and deployed our deep-learning detection model
in the Google Colab server as the smartwatches have limited processing
capability. In addition, deep learning models are usually very compu-
tationally heavy for handheld devices. As standard smartphone and
smartwatch applications leverage external servers for processing and
data storage (e.g., Firebase), we deployed our deep-learning model on
the Google Colab server. Future work can explore ways to incorporate
the deep-learning model into smartwatches. Further investigation can
explore lightweight deep-learning models (e.g., MobileNets Howard
et al., 2017) to embed them into smartwatches. We noticed that placing
more than one finger on back-of-palm occludes other fingers, resulting
in lower posture detection accuracy. Participants also expressed that
adjusting the fingers to avoid occlusion is a bit uncomfortable. Future
work can explore ways to detect multi-finger posture/gesture on the
back of the palm reliably using advanced deep-learning models.

Although results indicate that Context-Aware-Hints supported par-
ticipants to learn the postures/gestures more accurately and quickly,
Crib-sheet also showed comparable performance. A few participants
found Context-Aware-Hints to be annoying as the hints popped up
every time they attempted to perform a posture/gesture. They found
crib-sheet as a simpler guidance technique. Therefore, future work can
explore other potential simple guidance techniques like crib-sheet. For
instance, we can explore ways to redesign buttons in an expressive
way (e.g., embedding hand posture/gesture images into the button)
to incorporate hints for the next hand actions. We acknowledge that
our proposed system is suitable for smartwatches with built-in cameras
and there are a limited number of smartwatches with the same feature
(e.g., LEMFO LEM14, ZEBLAZE THOR 6, Kospet Prime S). However, the
current trend of having multiple cameras on smartphones indicates that
we will most likely see multiple cameras integrated into a vast range
of smartwatches in the near future.

8. Conclusion

In this paper, we have presented a set of user-preferred around-
device finger postures and gestures in both mid-air and back of the
palm accompanied by a delimiter to be used for interacting with smart-
watches. We have also demonstrated a camera-based proof-of-concept
prototype system that is capable of detecting finger gestures and pos-
tures on around the device (mid-air and back of the palm) to extend
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the interaction capability of the commodity smartwatches with built-in
cameras. The postures and gestures are not self-revealing and the users
need to explicitly discover, learn, and memorize them to use further.
Therefore, we have finally explored ‘‘Context-Aware-Hints’’; through
which the user can easily discover and learn those finger postures-
gesture and their corresponding tasks easily and quickly. We believe
the user-preferred finger posture-gesture-based interaction along with
context-aware learning guidance can be an effective and unique solu-
tion to pushing the boundary of current around-device interactions for
commodity smartwatches.
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