
Phrase-Gesture Typing on Smartphones
Zheer Xu Yankang Meng

Dartmouth College Huazhong University of Technology and Science
zheer.xu.gr@dartmouth.edu u201810824@hust.edu.cn

Xiaojun Bi Xing-Dong Yang
Stony Brook University Simon Fraser University

xiaojun@cs.stonybrook.edu xingdong_yang@sfu.ca

Figure 1: Phrase-gesture typing allows text to be entered phrase by phrase. (a) The phrase “do not worry about this” can be
entered by swiping through all the letters of the words in the phrase without the need to use the space key between words. (b)
to (d) Alternatively, the phrase can be entered via a mixture of word- and phrase-level gestures, e.g., a phrase gesture of “do
not” followed by a phrase gesture of “worry about”, and a word gesture of “this”. The user can select the intended text from
the candidate list shown above the phrase-gesture keyboard. The items in the list are shown in descending order with the
top-ranked candidate placed at the bottom to make it closer for the fnger to select.

ABSTRACT
We study phrase-gesture typing, a gesture typing method that al-
lows users to type short phrases by swiping through all the letters
of the words in a phrase using a single, continuous gesture. Unlike
word-gesture typing, where text needs to be entered word by word,
phrase-gesture typing enters text phrase by phrase. To demonstrate
the usability of phrase-gesture typing, we implemented a prototype
called PhraseSwipe. Our system is composed of a frontend interface
designed specifcally for typing through phrases and a backend
phrase-level gesture decoder developed based on a transformer-
based neural language model. Our decoder was trained using fve
million phrases of varying lengths of up to fve words, chosen ran-
domly from the Yelp Review Dataset. Through a user study with
12 participants, we demonstrate that participants could type using
PhraseSwipe at an average speed of 34.5 WPM with a Word Error
Rate of 1.1%.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specifc permission and/or a
fee. Request permissions from permissions@acm.org.
UIST ’22, October 29–November 02, 2022, Bend, OR, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9320-1/22/10. . . $15.00
https://doi.org/10.1145/3526113.3545683

CCS CONCEPTS
• Human-centered computing → Text Input.

KEYWORDS
text entry, gesture input, language model, machine learning

ACM Reference Format:
Zheer Xu, Yankang Meng, Xiaojun Bi, and Xing-Dong Yang. 2022. Phrase-
Gesture Typing on Smartphones. In The 35th Annual ACM Symposium on
User Interface Software and Technology (UIST ’22), October 29–November 02,
2022, Bend, OR, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.
1145/3526113.3545683

1 INTRODUCTION
Gesture typing is a common text input method on touchscreen
devices. Since its introduction in the early 2000s [36], gesture typ-
ing has gained wide adoption in commercial products including
Gboard, SwiftKey, ShapeWriter, Swype, SlidIt, and TouchPal. Unlike
typing by tapping keyboard keys (tap typing), gesture typing allows
intended words to be expressed via fnger stroke shapes that can be
drawn less precisely on a touchscreen, where the tactile feedback of
the keys is lacking. With practice, skill transition may occur from
the novice model of visually guided tracing to the expert mode of
recall-based gesturing that is quicker and can be performed with-
out visual attention. The development of gesture typing over the
years has led to variations suitable for new device form factors,
such as laptops [13] or TV remote trackpads [41], and new use

https://doi.org/10.1145/3526113.3545683
https://doi.org/10.1145/3526113.3545683
https://doi.org/10.1145/3526113.3545683
mailto:permissions@acm.org
mailto:xingdong_yang@sfu.ca
mailto:xiaojun@cs.stonybrook.edu
mailto:zheer.xu.gr@dartmouth.edu
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3526113.3545683&domain=pdf&date_stamp=2022-10-28

UIST ’22, October 29–November 02, 2022, Bend, OR, USA Zheer Xu et al.

scenarios where both hands are available [7] or visual attention is
not guaranteed [41].

In this paper, we study a new variation of gesture typing, called
phrase-gesture typing. Unlike the existing approach, where an
input phrase is typed through individual gestures, each represent-
ing an intended word, the phrase-gesture typing allows users to
type not only words but also phrases through a single, continuous
gesture composed of concatenated segments for each word of a
short phrase, similar to handwritten signatures with a single stroke.
Phrase-gesture typing has several benefts. First, users now have the
choice not to lift the fnger of the touchscreen and reengage for the
next word and can swipe on the screen as long as they are willing
to. This means after each word, users can immediately move the
fnger to the frst letter of the next word once the current word is
completed, or they can break as usual by lifting their fnger. Phrase-
gesture typing is a natural extension of the basic word-gesture
typing and can be useful, especially for typing frequent phrases
(e.g., “on my way”, “thank you”) and recall-based gesturing. Further,
with phrase-gesture typing, text input speed can increase without
the need to disengage and engage the touchscreen for every other
word. Lastly, from the decoding perspective, with more contextual
information in the input data, the keyboard decoder can better
determine the users’ intended words.

Despite these benefts, enabling phrase-gesture typing is chal-
lenging from both technical and interface design perspectives. Con-
sidering the technical challenge, it is hard to decode a long input
stroke into a meaningful phrase without the user explicitly specify-
ing delimiters (spaces to separate the words). None of the existing
keyboard decoders supports phrase-level decoding for gesture typ-
ing. Further, the noises in the input data could accumulate with the
concatenation of word gestures, making it even harder to correctly
decode the users’ intended words. From the interface design per-
spective, the usability of phrase-gesture typing relies on several
design parameters that need to be carefully considered, including
how long a phrase is allowed to type, how the feedback of the
entered text is given, and how editing is supported.

To address these challenges, we developed PhraseSwipe, a ges-
ture keyboard prototype that allows users to type via phrase-level
gestures on smartphones (Figure 1). With PhraseSwipe, a user can
swipe through all the letters of the words in an intended phrase
of diferent lengths up to fve words with a single continuous ges-
ture. Alternatively, the user can type using a mixture of word- and
phrase-level gestures. Switching among gesture typing of words
and phrases with diferent lengths can occur at any point and the
system can decode them accordingly without any knowledge about
the number of words in the input. For example, a user can type
“happy to see you” using a phrase gesture “happy to see”, followed
by a word gesture “you”, or just a single phrase gesture “happy to
see you”.

The core of PhraseSwipe is a phrase-gesture decoder, devel-
oped using a transformer-based, end-to-end neural decoder that
is capable of translating an input gesture directly into an ordered
sequence of words. Unlike the existing neural language models in
non-keyboard applications where both input and output are text,
our decoder takes touch gestures as input and can work on any
smartphone keyboard of diferent sizes and key ratios. While the
typical approach of developing a massive neural language model

involves a signifcant amount of time and efort, we demonstrate
that an existing large language representation model, like BERT,
can be fne-tuned with simple adaptions to enable phrase-gesture
decoding without the huge model to be built and trained completely
from scratch.

The efectiveness of our decoder still relies on a training dataset
of phrase gestures, which, unfortunately, does not exist. To over-
come this challenge, we trained our model with phrase gestures
simulated based on minimum-jerk theory [27]. Our model was
trained with over fve million phrases randomly chosen from the
Yelp Review Dataset [40] with the length of each training phrase
ranging from one to fve words. The decoder runs on a local server
and generates real-time output, shown to the user on the phone
through a list of top candidate phrases ranked based on confdence.

Through a system evaluation, we demonstrate the accuracy of
our decoder and show that it’s more efcient when phrases are
entered using a single gesture than using several shorter ones. Fur-
ther, to evaluate the usability of PhraseSwipe, we conducted a user
study with 12 participants. Our results revealed that participants
could achieve an average speed of 34.5 WPM with 1.1% uncorrected
errors, which is 2.5 WPM faster than a baseline word-gesture typing
method.

The main contributions of this work include: (1) a phrase-gesture
typing keyboard developed for smartphones and a decoder trained
for phrase-gesture typing; and (2) a user study demonstrating the
efectiveness and usability of our implementation.

2 RELATED WORK
Text input as a part of HCI research has been widely studied in the
past several decades. Work has been done on a variety of diferent
topics, including interaction techniques and keyboard layout opti-
mization for new use scenarios and device form factors. Our review
of the existing literature primarily focuses on the state-of-the-art
in gesture typing and decoding methods.

2.1 Gesture typing
Gesture typing was frst introduced by Zhai and Kristensson in the
early 2000s for mobile touchscreen devices [19, 36-38]. Unlike tap
typing, where the letters in a word are entered by a user selecting the
corresponding key on the keyboard, gesture typing allows uses to
enter the word directly (rather than individual letters) by gesturing
through the desired keyboard keys. Aside from its wide adoption
on smartphone products, gesture typing has been extended by the
research community to new use scenarios and device platforms.
For example, Bi, et al. [7] converted the original gesture keyboard
into a split keyboard suitable for larger devices like tablets to allow
two thumbs to work together to enter a word. Zhu, et. al. [41]
presented a method to enable gesture typing on a trackpad of a TV
remote. Unlike gesturing on a touchscreen device, the keyboard is
not visible on a TV remote but their method allows gesture typing to
be carried out without the need for the users to pay visual attention
to the keyboard or fnger movement.

While much of the existing work focuses on touch surface de-
vices, gesture typing is not limited to touch input. For example,
Markussen, et al. demonstrated that gesture typing can be per-
formed in the mid-air with a system capable of tracking the hand

Phrase-Gesture Typing on Smartphones UIST ’22, October 29–November 02, 2022, Bend, OR, USA

movement projections on a vertical display [22]. Chen et al. [12]’s
work demonstrates that gesture typing can also be carried out us-
ing a pair of handheld controllers, making it a good candidate for
text input in VR environments. Within the same space, Yu, et al.
[35] studied how to develop interactions and decoding methods to
enable gesture typing on VR headsets using the movement of the
user’s head. Aside from the head, the tile motion of a user’s wrist
[34] or fnger [17] can also provide control for performing gesture
typing, allowing text input to be carried out on small wearable
devices using only one hand.

Among all the existing methods, what appears to be similar to
our approach is a feature provided by SwiftKey [4], with which,
the users can enter a sequence of words through a single gesture.
The diference, however, is signifcant in two ways: (1) From a
user’s perspective, SwiftKey requires the user to specify a delimiter
between two adjacent words by gesturing through the space key.
Crossing the space key for every other word inherently increases
swiping distance, which is an extra efort that may lead to fatigue
over time and may unnecessarily impact typing speed. Our work
difers in the way that no delimiter is needed when a phrase gesture
is drawn, meaning that the burden is on the system (not the user)
to handle the ambiguity in the input data. (2) Beyond the input
method, the decoding principle of SwiftKey is also diferent. It uses
a word-level decoder, which could be less accurate than a phrase-
level decoder because the context of the entire input phrase is
not used for decoding [30, 32]. In contrast, with our method, the
decoding result of the earlier words is constantly updated for better
accuracy as the gesture continues. To the best of our knowledge,
our research is the frst in the literature to study phrase-gesture
typing and decoding.

2.2 Keyboard Decoder
One of the most signifcant challenges in developing text input
methods for touchscreen devices is that user input data is noisy. To
address this problem, keyboard decoders were developed. A typical
keyboard decoder is composed of a spatial model, which provides
the probability distribution over all keys on a keyboard, and a
language model, which provides the probability distributions of a
sequence of words for a certain language. Goodman and colleagues
[15] were the frst who studied how tap typing errors can be reduced
by combining the spatial model and language model through the
Bayes’ rule. This approach has been widely adopted in modern
commercial keyboards. Gboard [3], as an example, contains a spatial
model and a low order n-grams language model, that was designed
to be compact to handle real-time processing on mobile devices
[24].

Keyboard decoders are far from perfect. As such, work has also
been done to address some of the most signifcant issues. For ex-
ample, Gunawardana et al. [16] demonstrated that an aggressive
spatial model could sometimes prevent users from typing their de-
sired text. Their approach using an anchored key-target method
could efectively address this problem. Concerning the language
model, accuracy is also an issue but recent studies have shown that
the accuracy of language models can be largely improved using ma-
chine learning methods based on neural networks [10, 11, 14]. With
some of the new deep language models, the contextual information

in the input data can now be better used to determine the intended
text. Machine learning methods have also been used to develop
better decoders for word-gesture typing. For example, Alsharif and
colleagues [5] showed that combining recurrent networks such
as Long Short Term Memories [18] with conventional Finite State
Transducer decoding [23] could lead to an improvement of accuracy
up to 22% over the existing shape-matching-based approach.

While most popular keyboard decoders rely on delimiters, re-
searchers have investigated ways to allow users to type contiguous
words without using spaces. Thus, the systems need to handle
phrase-level decoding [30-32, 39]. An example of the existing re-
search in the phrase-level decoder is the work from Vertanen, et al.
[32]. Their tap-typing keyboard is composed of a spatial model, a
12-gram character language model, and a 4-gram word language
model. Through a user study, the authors showed that omitting the
space key between words led to a faster entry rate. They also found
that even novice users could adapt to writing sentences quickly
without intermediate feedback for each word. Aside from the tech-
nical aspect, Zhang and Zhai [39] studied user interface design
options for tap-typing keyboards with a phrase-level decoder and
demonstrated that poorly designed interfaces could hinder user
performance. The authors showed that the feedback design that
could avoid cognitive overhead is key to the success of phrase-
level typing. Again, unlike our work, the previous decoders were
developed only for tap typing.

In summary, our review shows that within the existing literature,
most, if not all, eforts have been made to develop better methods
for word-gesture typing or better phrase-level decoders for tap
typing. Our research advances the existing knowledge by studying
phrase-gesture typing and decoding methods.

3 PHRASESWIPE INTERFACE DESIGN
We start by presenting our design of the PhraseSwipe interface on
a smartphone and discuss the unique user experience of phrase-
gesture typing introduced by the way how text is entered, commit-
ted, viewed, and edited.

3.1 Typing
Typing using PhraseSwipe is performed by swiping through all
the letters of the words in an intended phrase. However, drawing
a gesture that covers all the words in the phrase is not the only
option that the users can type. This is because the users may some-
times have to stop at a random word within a phrase and resume
to complete the remaining words. This could happen especially in
mobile scenarios, where the users can be easily interrupted. Ad-
ditionally, our implementation also allows the users to gesture a
single word, meaning that the users can type using a mixture of
word- and phrase-level gestures. As an example, the phrase “I trust
your judgment” could be typed using a single phrase or a mixture
of shorter phrases, such as “I trust”, followed by “your judgment”
or a phrase “I trust your”, followed by a word “judgment”. This
provides the users with the fexibility needed in the mobile context.

An important consideration of phrase-gesture typing is the
length of the phrases allowed for the users to type. In principle,
phrases of any length should be allowed. However, an ideal design

UIST ’22, October 29–November 02, 2022, Bend, OR, USA Zheer Xu et al.

should consider optimizing both user experience and system imple-
mentation. We chose fve in our implementation because a study
investigating the usability of phrase-level decoding showed that
showing phrases longer than fve words could be harder for the
users to follow and may introduce a sense of uncertainty about
decoding progress [39]. From the system perspective, while longer
phrases may, in contrast, lead to better decoding accuracy due to
more available context, studies have found that phrases longer than
fve words may not necessarily lead to signifcant improvements in
decoding accuracy [32].

3.2 Feedback
Aside from showing the trajectory of the fnger movement, the
output of the decoder needs to be shown to the user as feedback
of their input. Several diferent strategies can be used to control
when the feedback is shown. One option is to show the real-time
decoding output of an ongoing gesture whenever the fnger moves.
With this strategy, the users get the most frequent update on the
fy but the cost of frequent attention to the output could impair
typing speed [26]. An opposite approach presents the feedback only
after the gesture is completed (e.g., the user lifting the fnger from
the touchscreen). The downside is that the user will not see any
output candidate when drawing a gesture but the advantage is that
they will not be distracted, which may lead to faster typing speed
[26] without sacrifcing input accuracy [32]. However, this strategy
might not be preferred by the user due to the lack of transparency
of the decoding progress [39]. We took a midground approach,
where feedback is given only when the system thinks the user is
swiping across a target letter. This is determined by comparing
the real-time speed/jerk with the average speed/jerk of the current
gesture. When the current speed is below average (i.e., the user
moves signifcantly slower) and the jerk is below 1/3 of the average
jerk (i.e., the user is not actively accelerating/deaccelerating) (value
determined through a pilot study), the decoding output of the ongo-
ing swipe is shown to the user on the screen. Our feedback consists
of three candidate phrases/words in a vertical layout (Figure 2)
ordered by the probability calculated by the decoder (details in the
next section). The top-ranked candidate is placed at the bottom of
the list to make it closer to the keyboard for the user to see and
select.

3.3 Committing Input Text
Tapping one of the three candidates commits the input text (Figure
3a-b). This is the same as the current word-gesture typing inter-
face. Alternatively, the users can skip this action and start the next
gesture directly. This way, the top-ranked phrase/word will be
committed automatically.

3.4 Editing and Deleting
Editing is needed when an error occurs or when the committed
text needs to be revised. With our implementation, the users can
frst select a target word or multiple adjacent ones and then draw
the gesture of a new word to replace the selected one(s). As an
attempt to save the users’ time from drawing a new gesture, we
implemented an auto-correction feature, with which, the system
provides the users with a list of candidate words that are similar

Figure 2: The PhraseSwipe interface is composed of (a) a text
feld; (b) a list of candidates; and (c) a QWERTY keyboard
supporting phrase gesture input.

to the selected one (ranked based on the minimum word distance
[6]). If the user’s intended word is in the list, the user can simply
select it without the need to draw a new gesture (Figure 3c). Lastly,
if the user wants to delete the selected word(s), they can simply tap
the delete button. If no word is selected, tapping the delete button
removes the last word.

4 PHRASESWIPE DECODER
We developed our decoder via a machine-learning-based approach.
Our goal was to investigate if an existing neural language model
developed for non-keyboard applications can be fne-tuned to sat-
isfy our needs as a phrase gesture decoder. Repurposing an existing
model is benefcial because it saves the massive resources needed
for a huge model to be built and trained from scratch. In our imple-
mentation, our model was built upon a powerful transformer-based
neural language model. More specifcally, we designed the decoder
as an end-to-end framework that translates an input gesture di-
rectly into an ordered sequence of words. We aimed to transfer
the strong representation capabilities of a neural model proved in
other natural language tasks (e.g., GLUE) to keyboard decoding to
efectively handle the noises widely existing in users’ input gestures
and the inherent ambiguity of non-delimiter phrase input.

4.1 Neural Language Model
Decoding a phrase-level input gesture is essentially a sequence-to-
sequence task (Seq2Seq), which, in our case, aims at transforming a
sequence of touch points into a sequence of English words. To solve
the Seq2Seq problem, we adopted an encoder-decoder architec-
ture in our system. The encoder of this architecture turns an input
gesture into a hidden vector representation in a continuous space,
whereas the decoder reverses the process by turning the vector into
an ordered sequence of output words. To boost the performance of
our model, we further adopted a pre-trained transformer-based lan-
guage model, BERT [14], and used it for both encoder and decoder
[28]. We chose BERT for its exceptional capabilities of language
representation proved in many NLP applications. However, the

Phrase-Gesture Typing on Smartphones UIST ’22, October 29–November 02, 2022, Bend, OR, USA

Figure 3: (a) – (b) After a phrase gesture is entered by the user, they can tap one of the items in the candidate list to commit the
input text. (c) Auto-correction candidates appear if the user selects a word in the committed text.

Figure 4: The gesture trajectory of the word “sea” passes the
keys “s”. “e”, “w”, and “a” so our system converts the x,y
representation of the trajectory into a series of “s”, followed
by a series of “e”, a series of “w”, and then a series of “a”.

issue is that like many other massively trained language models,
BERT was designed to handle language tokens as input, whereas,
the input data from PhraseSwipe is touch point from Euclidean
space. Our approach to this problem is to use an ordered sequence
of English characters instead of integer coordinates as input for the
language model. When a user enters a gesture, our system converts
the x and y coordinates of the gesture trajectory into a series of
nearest keys on the keyboard, represented by an ordered sequence
of characters. All 26 characters are set as special tokens to the tok-
enizer and the encoder of BERT, meaning that each character in the
input sequence is an individual special token input to the model. In
the example shown in Figure 4, the gesture for the word “sea” was
translated into a series of “s”, followed by a series of “e”, a series
of “w”, and then a series of “a”. The number of each letter that ap-
pears in this representation is determined by the number of touch
points sampled inside the corresponding key as well as the speed,
at which, a gesture is drawn at a certain time and location. Note
that a signifcant advantage of using letter sequences is that letter
sequences are independent of keyboard size and ratio. Therefore,
our decoder works on any smartphone keyboard.

model. While such a dataset can be created over time with people’s
real typing gestures, it is impractical at the current stage of the
research, where our goal is to show feasibility. Therefore, we opted
to simulate phrase gestures and generate a dataset.

Our method is based on a gesture production model developed
by Quinn and Zhai [27] for gesture typing. While the model was
initially developed for word gestures, the principle remains appli-
cable to phrase gestures. To produce a phrase gesture, our system
frst generates a set of intermediate points (via-points) around the
center of the keys involved in the gesture. Noises were introduced
to the location of the via-points as ofsets to the key centers, which
were generated under bivariate Gaussian distribution established
for tap typing [9]. The trajectory segments connecting two adjacent
via-points were generated by following the minimum jerk theory
of motor control to minimize the total amount of jerk (the third
time derivative of a point) in the produced trajectory [29].

Using our method, we generated 5 million phrase gestures using
the Yelp Review Dataset [40]. Each phrase used in our training sam-
ples contains up to 5 consecutive words, randomly segmented from
the review text. This way, our dataset contained phrases that were
semantically incomplete (e.g., instead of “better late than never”, we
might have “better late than”), increasing the generalizability of the
decoder to handle the situation where the user may break a sentence
into chunks at will (i.e., no grammatical or semantical principle).
We included a million samples for each phrase length ranging from
two to fve. Further, to allow for word-level gesture decoding, we
included a million single words, also randomly selected from the
Yelp review dataset. Non-alphabetic characters were removed from
the training samples. Each produced gesture contained 500 points
generated based on the default Android keyboard on a Nexus 6P
smartphone with a 5.7-inch touchscreen (phones of other sizes will
also work). We then converted the trajectories into the sequences
of nearest characters using the method described above.

Typing errors are inevitable as the users may accidentally skip
a key, include an extra key, or substitute a letter for another. To
handle these situations and increase the robustness of our decoder
against human errors, we alerted the training phrases by randomly 4.2 Data Collection
injecting these three types of errors. To do so, we traversed all the

Data collection is another challenge due to the lack of phrase ges- letters in a phase, and for each letter, we assigned a probability (5%)
tures available at a massive scale needed to train a neural language

UIST ’22, October 29–November 02, 2022, Bend, OR, USA Zheer Xu et al.

Table 1: The percentage of the target words appeared in the top 1 and top 3 entries of the candidate list. The data was obtained
with testing phrases picked randomly from the Amazon review dataset, Movie dialog, and Yelp review dataset. The number
inside the parentheses indicates the length of the testing phrases. Word Error Rate was calculated using the data from the
top-ranked candidates with decoding errors.

Dataset (Phrase length) Top-1 Top-3 Top-1 Word Error Rate

Movie (1) 89% 93.4% 10.9%
Movie (2) 80.5% 88.1% 13.3%
Movie (3) 76.5% 85.7% 11.9%
Movie (4) 71.7% 82% 11.8%
Movie (5) 65.7% 75% 12.5%
Amazon (1) 89.5% 93.3% 10.4%
Amazon (2) 79.7% 86.5% 13.6%
Amazon (3) 75.4% 82.9% 12.6%
Amazon (4) 69.4% 78.8% 12.5%
Amazon (5) 64.5% 75.6% 12.4%
Yelp (1) 94.8% 97.2% 5.2%
Yelp (2) 88.7% 94.5% 7.5%
Yelp (3) 86.9% 93.1% 6.2%
Yelp (4) 85.1% 91.4% 5.6%
Yelp (5) 82.4% 90.4% 5.5%
Average 80% 87.2% 10%

for that letter to be either missed, substituted, or inserted with an
unwanted prefx. The characters used to create the substitution and
insertion errors were randomly sampled from adjacent characters.

4.3 Model Training
Both the encoder and decoder of our model architecture were ini-
tialized with a pre-trained BERT-base model. Our keyboard decoder
was then fne-tuned on our training data for 3 epochs, with an
AdamW optimizer [20] at a learning rate of 5e-5. The training was
conducted on a 4-GPU machine (NVIDIA Tesla V100), with a total
batch size of 32 (8 per device). Our software was implemented using
an open-source transformers library [33]. Initial testing showed
that the entire system runs at a latency of around 120ms to 160ms
including the latencies caused by computation and network commu-
nications. This is fast enough to provide real-time feedback needed
for PhraseSwipe.

4.4 Evaluation
We tested our decoder with 30000 phrases, within which, 10000 were
randomly sampled from the Yelp Review Dataset [40], 10000 were
sampled from the Amazon Review Dataset [40], and the remaining
10000 from the Movie Dialog Dataset [2]. Including the testing
phrases from the Amazon Review Dataset and Movie Dialog Dataset
allowed us to measure how well the decoder can handle out-of-
domain input. Within each dataset, we had 2000 samples for each
phrase length from two to fve words. We also included another
2000 single words. To measure the robustness of our decoder against
human errors, we randomly included three types of human errors
in the testing phrases as well. We show the results in Table 1.

By averaging the results across all the phrase lengths and tested
datasets, we found that 80% of the intended phrases appeared as
the top-ranked candidate provided by the decoder. So theoretically

speaking, most of the time, the users can directly accept the top can-
didate without encountering any error. Even with the errors, over
87% of the intended phrases ended up within the top-3 candidates,
meaning that users can still fnd their target words quickly in the
suggestion area. Looking deep into the top-ranked candidates with
decoding errors, we found a Word Error Rate of around 10% per
phrase. The Word Error Rate was calculated by dividing the smallest
number of word deletions, insertions, or replacements needed to
correct the input text by the number of words in the phrase [8]. The
error rate is not high considering our testing phrases were all quite
short with no more than fve words. When a decoding error occurs,
the users can fx it using the editing tools described in Section 3.4.

With the input from the Movie and Amazon dataset, the perfor-
mance of our decoder was not as good when compared to that of
the Yelp dataset but it is still reasonably good. Concerning the ques-
tion regarding whether a higher level of accuracy can be achieved
when a given phrase is entered using a single gesture versus several
short ones (i.e., more vs fewer words in the input data). Our result
suggests that the answer is yes. Using the results from the Movie
data as an example, when the phrases of fve words were entered
using a single continuous gesture, 65.7% of the targets appeared
as the top-ranked candidate (see Table 1 second column), whereas
in theory, when entering fve consecutive words one by one, the
number (score) will drop down to 55.8% (89%5 = 55.8%, where, 89%
is the percentage of the intended words appeared as the top candi-
date with word-gesture typing). This fnding remains mostly true
for both top-1 and top-3 scores. For example, we found that typing
a phrase of any length using a single gesture led to a top-1 score
of 75%, which is 3% higher than typing using a mixture of shorter
phrases or phrases and words. Figure 5 shows the top-1 and top-3
scores obtained for all the possible mixtures of gesture length to
type phases of up to fve words.

Phrase-Gesture Typing on Smartphones UIST ’22, October 29–November 02, 2022, Bend, OR, USA

Figure 5: The percentage of the target words appeared in
the top 1 and top 3 entries of the candidate list obtained for
all the possible mixtures of gestures length to type phrases
of up to fve words. The x-axis labels show unordered mix-
tures of phrase and word gestures. For example, “1+1” indi-
cates typing a phrase of two words using two separate word
gestures. Similarly, “1+1+1+1+1” indicates typing a phrase
of fve words using fve separate word gestures. “1+3” in-
dicates typing a phrase of four words using a word ges-
ture followed by a phrase gesture of three words. “2+3” in-
dicates typing a phrase of fve words using a phrase ges-
ture of two words followed by another phrase gesture of
three words.

5 USER STUDY
To further understand the usability of PhraseSwipe, we conducted
a user study. The goal of the study was to measure how well people
could enter text using our implementation of phrase-gesture typing
on a smartphone. We were also interested in learning the users’ typ-
ing behaviors with this new type of text input method, concerning
how they type phrases and coordinate phrase and word gestures
to input text. To set a reference for us to better understand the
benefts and costs of gesture typing via phrases, we also included
word-gesture typing as a baseline.

5.1 Participants
We recruited 12 right-handed participants (9 male and 3 female)
aged between 20 and 26. All the participants are familiar with
smartphone keyboards and QWERTY layout. One of them has
previous experience with word-gesture typing.

5.2 Apparatus and Task Conditions
The study was conducted using a Huawei Nova 8 smartphone
with a keyboard of 70.4mm wide and 40mm high. The sampling
rate of the touchscreen is 240Hz. All the collected gestures were
resampled to 500 points to match the training set of the neural
decoder. Redundant touch points caused by pauses were removed.
Our phrase-level gesture decoder ran on a separate machine with a
GTX 1050TI graphics card (4GB). The smartphone and the machine
were connected through WiFi.

During the study, participants sat in a chair in a comfortable
position and performed a transcription task with their right index
fnger under one of the three conditions: (1) Phrase-Gesture Typing;
(2) Free-Style Typing; and (3) Word-Gesture Typing. In the Phrase-
Gesture Typing condition, participants were asked to enter a testing
phrase using a single gesture. An experimenter supervising the
study made sure that each phrase was entered in this way. In the
Free-Style Typing condition, participants were not restricted to ei-
ther method, meaning that they could choose to complete a testing
phrase using a single gesture, a series of word gestures, a series of
shorter phrase gestures, or a mixture of phrase and word gestures
in whatever way they wanted. Lastly, in the Word-Gesture Typing
condition, participants entered a testing phrase word by word. We
implemented word-gesture typing by following the method de-
scribed in SHARK2 [19]. Note that we didn’t include other phrase
input methods in the study (e.g., VelociTap [31] or PhraseFlow [38])
as none of them supports gesture typing. There are other variations
of word gesture decoder (e.g., SwiftKey [4]) but we chose SHARK2
because it is the most widely adopted gesture typing method. For
the corpus, we used the top 15,000 words from the American Na-
tional Corpus [1], which covers over 95% of common English words.
All the information, including the testing phrases, text entered by
participants, and the top three candidates generated by our system,
were shown on the smartphone screen above the keyboard (Figure
6). In all the conditions, editing was performed using our editing
tool described in the previous section.

5.3 Procedure and Design
Prior to the experiment, participants were given time to practice
until they felt confdent to type using the methods. During the
study, participants transcribed 60 phrases (20 per condition) picked
randomly from MacKenzie’s phrase set [21]. Since the data set does
not have single words or phrases of less than 3 words, our testing
phrases are all 3 to 5 words long. The same set of 60 phrases was
used for all participants. The three testing conditions were coun-
terbalanced among participants. The experimental session lasted
around 60 minutes. Participants were encouraged to take breaks
whenever they wanted during the study. In total, we collected 12 par-
ticipants × 20 phrases × 3 conditions = 720 phrases. Upon comple-
tion of the study, participants flled out a post-experiment question-
naire where they indicated subjective ratings for Efciency, Accu-
racy, Demanding, and Learnability (1: very low, 5: very high) using a
continuous numeric scale. Decimal ratings like 2.8 were permitted.

5.4 Result
We analyzed the data using a series of one-way repeated-measures
ANOVA and Bonferroni corrections for pair-wise comparisons.

UIST ’22, October 29–November 02, 2022, Bend, OR, USA Zheer Xu et al.

Figure 6: The software interface used in our study.

Mauchly’s test did not indicate any violation of sphericity for text
entry speed (X2 (2)=0.59, p=0.74) or error rate (X2 (2)=2.99, p=0.22).

5.4.1 Text-Entry Speed. ANOVA yielded a signifcant efect of the
typing conditions (F2, 22 = 12.7, p < 0.001, �p2 = 0.5). Post-hoc pair-
wise comparisons revealed signifcant diferences between Word-
Gesture Typing and Phrase-Gesture Typing, Word-Gesture Typing
and Free-Style Typing (both p < 0.05). There was no signifcant
diference between Phrase-Gesture Typing and Free-Style Typing (p
= 1).

Overall, the average text entry speed across all the tested condi-
tions was 33.5 WPM (s.d. = 5.5). In particular, participants achieved
31.9 WPM (s.d. = 4.3) using Word-Gesture Typing, 34.5 WPM (s.d.
= 3.4) using Phrase-Gesture Typing, and 34 WPM (s.d. = 3.2) using
Free-Style Typing.

The speed of Word-Gesture Typing was close to what was re-
ported from a large-scale feld study (32.2 WPM) in the literature
[25]. It was approximately 2.5 WPM slower than phrase-gesture
typing. One of the main reasons is that when typing phrase by
phrase, the participants did not need to lift their fnger from the
screen as often as typing word by word, which saved time. Fur-
ther, we found that the speed of Free-Style Typing is on a par with
the speed of Phrase-Gesture Typing. To understand the reason, we
examined the data closely and found that most of the phrases in
the Free-Style Typing condition were entered using a single gesture
despite their length (average number of gestures per phrase is 1.12).
After talking to our participants, we realized that most of them
found it handy enough to simply draw a single gesture instead of
breaking it down into small pieces. Note that the fnding of this
typing behavior is preliminary as it may not be generalizable to
longer phrases but, at least, our result suggests that phrase gestures
of up to fve words can be performed with ease.

5.4.2 Word Error Rate. As in Section 4.4, Word Error Rate was
calculated by dividing the smallest number of word deletions, inser-
tions, or replacements needed to correct the input text by the length
of the phrase in word [8]. ANOVA did not show any signifcant
efect of the typing conditions (F2, 22 = 2.1, p = 0.1, �p2 = 0.1). Over-
all, the average error rate across all the tested conditions was 1%
(s.d. = 6). In particular, the error rate for the Word-Gesture Typing,

Phrase-Gesture Typing, and Free-Style Typing conditions were 0.3%
(s.d. = 0.6), 1.1% (s.d. = 2.1), and 1.6% (s.d. = 2.1) respectively.

Note that the word error rate reported in Section 4.4 appears to
be higher than what was found in the user study. This is because
Section 4.4 compares the ground truth with the top prediction from
the decoder, while in our user study, the participants could choose
the best input from multiple candidates. Many tested phrases in
the simulation study were semantically incomplete (explained in
Section 4.2). This could have also led to a lower performance for
the decoder. We did the simulation again using MacKenzie’s phrase
set and got a 1.5% word error rate. This is well aligned with the
uncorrected word error rate reported here.

To better understand the cause of the errors in the Phrase-Gesture
Typing condition, we looked carefully into how errors were missed
by the participants. An important fnding was that errors were not
obvious to catch in a phrase. This can be explained by the following
example, where the intention is to enter the phrase “prescription
drugs require a note” but “s” was missed in the word “drugs” in one
of the three candidates alongside the correct one. Unless the user
inspects them carefully, it was easy to slip. Most errors recorded
in our data are of this type. Other examples include typing “his”
instead of “this” or typing “broke” instead of “broken”.

When an error was caught, editing could be performed by ei-
ther redrawing a gesture to replace the selected word or using the
auto-correction feature if the intended word was provided by the
decoder. We found that out of 84 edits that occurred in the Phrase-
Gesture Typing and Free-Style Typing conditions, over 88% of them
were carried out using the auto-correction feature, which suggests
that our decoder was able to efectively identify the users’ target
words and provided them to the users if it knew where the error
was. The time saved to perform another gesture to fx the error
also contributed to the faster typing speed in the Phrase-Gesture
Typing condition. Considering that the error rates and the number
of edits were both low, the decoder seems to do well on handling
the gestures from the users, even as our model was trained using
artifcial gestures.

5.4.3 Typing Behavior. Phrase-gesture typing typically requires
the user to swipe longer than word-gesture typing, which may
impose extra cognitive overhead on the user, especially when plan-
ning for the next movement, because there is more to recall, search,
and draw. For example, when a user does not know where to strike
next, they may slow down or pause the fnger to mentally or vi-
sually search for the next key. To assess the cognitive overhead of
phrase-gesture typing, we analyzed the participants’ typing behav-
iors using average Finger Movement Speed and Pause Rate. The
Finger Movement Speed of a gesture was calculated as the length
of the gesture trajectory divided by the corresponding gesture com-
pletion time. The Pause Rate of a gesture was calculated as the
percentage of the period when the fnger moved slower than 1/10
of the fnger movement speed.

Our result showed that, on average, the Finger Movement Speed
for the Word-Gesture Typing, Phrase-Gesture Typing, and Free-Style
Typing conditions was 64.2 mm/s (s.d. = 6.1), 59.4 mm/s (s.d. = 6.4),
and 61.2 mm/s (s.d. = 6.6) respectively, showing that participants
were 7.5% and 4.6% slower in the Phrase-Gesture Typing and Free-
Style Typing conditions than in the Word-Gesture Typing condition.

Phrase-Gesture Typing on Smartphones UIST ’22, October 29–November 02, 2022, Bend, OR, USA

ANOVO showed there was a signifcant diference among the three
tested conditions (F2, 22 = 8.6, p < 0.05, �p2 = 0.4). The Pause Rate
for the Word-Gesture Typing, Phrase-Gesture Typing, and Free-Style
Typing conditions was 13.9% (s.d. = 1.6), 13.2% (s.d. = 0.9), and 13.4%
(s.d. = 1.3) respectively. No signifcant diference was found among
the three tested conditions (F2, 22 = 2.1, p = 0.1, �p2 = 0.1). This
result suggests that participants moved their fnger slower with the
increase of gesture length but didn’t stop or hesitate in the middle
of a gesture. Although phrase gesture typing seems to introduce
extra cognitive overhead on the participants, the impact does not
seem to outweigh the beneft as text entry speeds were faster in
the two conditions where phrase-gesture typing was used, than in
the word-gesture typing condition.

5.4.4 Subjective Feedback. The post-experiment questionnaire
flled out by all the participants shows that the users welcomed the
unique experience provided by PhraseSwipe. They also indicated a
high level of interest in using phrase gesture typing if it was made
available on smartphone keyboards. Below, we report our fndings
in detail. The continuous numeric scale data was analyzed using
one-way repeated-measures ANOVA and Bonferroni adjustment
for pairwise comparison.

The participants gave an average of around 3.8 (5 being most
efcient) to Phrase-Gesture Typing and Free-Style Typing as the two
most efcient methods. These ratings were signifcantly higher than
the ratings for Word-Gesture Typing (avg. 3.4; both p < 0.05). All
the participants told us that they felt faster when typing phrase by
phrase than word by word. This is consistent with our quantitative
results described in the previous section. In contrast, the partici-
pants gave an average of 3.9 (5 being most accurate) to Word-Gesture
Typing as the most accurate method among the three. This rating
was signifcantly higher than both Phrase-Gesture Typing (avg. 3.6;
p < 0.05) and Free-Style Typing (avg. 3.5; p < 0.05) as the participants
were more confdent that fewer errors were left uncorrected when
typing word by word.

Additionally, the participants found that none of the three meth-
ods were physically demanding to use but they rated Phrase-Gesture
Typing signifcantly less demanding (avg. 2.1 with 1 being the least
demanding) than Word-Gesture Typing (avg. 2.6). Over half of the
participants explicitly said that they found phrase gestures easy
to draw. For example, P1 said that “I liked that I could type with-
out raising my fnger between words”. P12 told us that “It was very
handy to type without worrying about using the space key”. P6 and
P9 mentioned that drawing phrase gestures reminded them of hand-
writing, which was a part of the reasons why they liked it. Finally,
the participants gave Word-Gesture Typing an average of 3.9 (5 be-
ing the most learnable) in response to “rate each method for its
learnability”. The rating was signifcantly higher than the rating
of Phrase-Gesture Typing (avg. 3.4; p < 0.05). As expected, learning
how to use phrase-gesture typing may be a burden at the beginning
for some users but for the others, they found it easy and fun to
learn.

6 DISCUSSION, LIMITATIONS, AND FUTURE
WORK

We present insights we learned from the execution of this research,
discuss the limitations, and propose future work.

6.1 Usability and Practicality
Phrase-gesture typing as a less understood text input method war-
rants deeper investigations in the future. In this work, we took
an initial step toward demonstrating its technical feasibility and
understanding its usability. Through our experiment, we show that
users could quickly enter phrases of up to fve words using phrase
gestures. Beyond the knowledge provided in this work, an inter-
esting avenue for future research is to investigate how gesture
length may have an impact on the performance and usability of
this type of text input method. Questions related to the efciency,
accuracy, learnability, or fatigue caused by phrase gestures of dif-
ferent lengths are all important and need to be answered before
the user experience can be better optimized. One of the unique
benefts of typing using gestures, at least word by word, is skill
acquisition over time, which allows the users to eventually develop
themselves into experts for faster typing speed. Thus, an exciting
research question to be answered in the future concerns whether
the transition of expertise occurs in phrase-gesture typing and how
to facilitate skill transition to better serve the needs of the users.

Our current implementation runs the decoder on a server.
Though our study participants didn’t report any noticeable net-
work delay, it could be a problem in practical settings as the infer-
ence time of a large model and network delay may occur at a scale
large enough to impact their typing experience. We are currently
investigating methods that could deliver the promise for on-device
inference (e.g., model compression, structure search).

6.2 Interface Design
As a key infuencer of usability, the interface design of a phrase
gesture keyboard also warrants more investigation. Our immediate
future research concerns the optimal number of candidates that
should be shown to the user. Our current implementation follows
the standard developed for tap and word-gesture typing by showing
three candidates. The tradeof is obvious as extra screen real estate
needs to be occupied to accommodate the increasing amount of
text in the output phrases. While it is less of an issue for today’s
smartphones as the screens are large, it may potentially become
a problem on devices with smaller screens, such as smartwatches.
As a part of our future research, we will investigate how much the
size of the candidate list shown to the user may afect their typing
performance and whether an optimal size exists for the general
population.

Aside from the candidate list, we are also interested in investi-
gating the ways, in which, how feedback is provided may impact
the performance of phrase-gesture typing. While our current imple-
mentation shows intermediate feedback during the execution of a
gesture, the study shows that the users often chose to wait until the
completion of a gesture to examine the output of the system. While
a part of the reason was that maintaining close attention to the
output may slow down their typing speed, another possible reason
could be the lack of auto-complete in our current prototype. Thus,
the participants had no motivation to check the feedback during
typing. So more research needs to be done in this space to better
understand the impact of intermediate feedback and its timing.

The current implementation of PhraseSwipe supports word-
level editing for correction and deletion. In some situations,

UIST ’22, October 29–November 02, 2022, Bend, OR, USA Zheer Xu et al.

character-level editing may be needed for additional fexibility and
efciency. While not included in our current prototype, character-
level editing can be supported with an addition of a cursor that is
triggerable through a long touch, similar to what is widely available
in smartphone keyboards.

6.3 Decoder
Our decoder was trained with artifcial gestures generated using
a computer. Through the controlled user study, we showed that
it was a cost-efcient method for the rapid development of an ef-
fective neural decoder. However, the limit is that it is unlikely for
our current model to be able to handle individual variances among
diferent users or user groups without training data from real users.
A personalized keyboard decode could, in theory, improve the per-
formance of our system for individual users. Future work will focus
on data collection using our prototype to acquire phrase gesture
data at scale. We are also interested in developing an adaptive al-
gorithm that can efectively shift a general decoder to a personal
one. Further, including the committed text as input to the decoder
may potentially improve the decoding accuracy. It is our plan for
the future to investigate ways to improve our decoding methods
by including the data beyond the scope of the current phrases.

In principle, our decoder could work on phrases of any length.
While in this current study, we only focused on phrases of fve
words or less, we see it as an interesting opportunity in the future to
investigate the decoding performance and user behaviors on longer
phrases. Possible research questions include how to maintain a high
decoding accuracy despite the length of input phrases, and whether
and when users would prefer typing using long phrase gestures.

Some of the obvious language issues were not well handled by
the current decoder. As such, grammatically wrong phrases could
be found in the candidate list. For example, the phrase “the treasury
department its broke” (“its” is the error) was shown alongside the
correct one, in which, “its” was replaced by the correct word “is”.
As shown in our study, we cannot rely on the users to capture such
errors as they are often not obvious inside a phrase. If the users
picked the candidates with errors, they may end up spending extra
time fxing the errors or in the worst case, the errors may be left
uncorrected. Future research will investigate methods to improve
the accuracy of our decoder.

Lastly, we acknowledge that phrase gesture typing can be per-
formed on Gboard [3] in Chinese. Our work provides insights into
decoding phrase gestures in English, which has unique challenges.
For example, in the most used Hanzi characters for Simplifed Chi-
nese (6763 from GB2312), there are only 413 distinct Pinyin syllables.
In contrast, there are 15831 in English. Further, unlike English, most
Pinyin syllables consist of initials and fnals that are very diferent
from each other (e.g., in “zhan”, “zh” is initial, “an” is fnal). Both
make it relatively easy to segment a non-delimiter letter sequence
into separate Pinyin syllables and decode them with a language
model. We see that other languages may have similar characteristics
as English and may beneft from our research.

7 CONCLUSION
In this paper, we created a new gesture typing method that al-
lows the users to enter text using phrase gestures. We call this

method phrase-gesture typing. Unlike word-gesture typing, where
text is entered word by word, phrase-gesture typing allows text to
be entered phrase by phrase. Through a prototype developed for
smartphones, we were able to demonstrate the technical feasibility
of phrase-gesture decoding and understand the usability of text
input through phrase gestures. Our prototype is composed of a
frontend interface designed specifcally for phrase-gesture typing
and a backend decoder developed based on a transformer-based
neural language model. We showed that phrase-level decoding can
achieve higher accuracy than word-level decoding in gesture typing.
We also showed that training the model using artifcial gestures
generated using a computer is a cost-efcient way to develop an
efective neural decoder for phrase-gesture keyboards. Lastly, the
result from our user study shows that users were able to type faster
using phrase gestures than word gestures. Our fndings provide
the important groundwork for the future development of new text
input methods on mobile devices.

REFERENCES
[1] American National Corpus. Retrieved April 2, 2022 from http://www.anc.org/.
[2] Cornell Movie–Dialogs Corpus. Retrieved April 2, 2022 from https://www.cs.

cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html.
[3] Gboard - the Google Keyboard. Retrieved April 2, 2022 from https:

//play.google.com/store/apps/details?id=com.google.android.inputmethod.
latin&hl=en_US&gl=US.

[4] Microsoft SwiftKey Keyboard. Retrieved April 2, 2022 from https://play.google.
com/store/apps/details?id=com.touchtype.swiftkey&hl=en_US&gl=US.

[5] Ouais Alsharif, Tom Ouyang, Françoise Beaufays, Shumin Zhai, Thomas Breuel
and Johan Schalkwyk. 2015. Long short term memory neural network for key-
board gesture decoding. In 2015 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), IEEE, 2076-2080.

[6] Xiaojun Bi, Shiri Azenkot, Kurt Partridge and Shumin Zhai. 2013. Octopus: evalu-
ating touchscreen keyboard correction and recognition algorithms via remulation.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Sys-
tems (CHI’13), ACM, 543-552.

[7] Xiaojun Bi, Ciprian Chelba, Tom Ouyang, Kurt Partridge and Shumin Zhai. 2012.
Bimanual gesture keyboard. In Proceedings of the 25th annual ACM symposium
on User interface software and technology (UIST’12), ACM, 137-146.

[8] Xiaojun Bi and Shumin Zhai. 2016. IJQwerty: What diference does one key
change make? Gesture typing keyboard optimization bounded by one key posi-
tion change from Qwerty. In Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems (CHI’16), ACM, 49-58.

[9] Xiaojun Bi and Shumin Zhai. 2016. Predicting fnger-touch accuracy based on the
dual Gaussian distribution model. In Proceedings of the 29th Annual Symposium
on User Interface Software and Technology (UIST’16), 313-319.

[10] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry and
Amanda Askell. 2020. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165.

[11] Ciprian Chelba, Mohammad Norouzi and Samy Bengio. 2017. N-gram language
modeling using recurrent neural network estimation. arXiv preprint arXiv:1703.
10724.

[12] Sibo Chen, Junce Wang, Santiago Guerra, Neha Mittal and Soravis Prakkamakul.
2019. Exploring word-gesture text entry techniques in virtual reality. In Extended
Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems
(CHI EA’19), Association for Computing Machinery, Glasgow, Scotland Uk, Paper
LBW0233.

[13] Wenzhe Cui, Jingjie Zheng, Blaine Lewis, Daniel Vogel and Xiaojun Bi. 2019.
HotStrokes: word-gesture shortcuts on a trackpad. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems (CHI’19), Association
for Computing Machinery, Paper 165.

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805.

[15] Joshua Goodman, Gina Venolia, Keith Steury and Chauncey Parker. 2002. Lan-
guage modeling for soft keyboards. In Proceedings of the 7th international con-
ference on Intelligent user interfaces (IUI’02), ACM, 194-195.

[16] Asela Gunawardana, Tim Paek and Christopher Meek. 2010. Usability guided
key-target resizing for soft keyboards. In Proceedings of the 15th international
conference on Intelligent user interfaces (IUI’10), Association for Computing
Machinery, Hong Kong, China, 111–118.

http://www.anc.org/
https://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html
https://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html
https://play.google.com/store/apps/details?id=com.google.android.inputmethod.latin&hl=en_US&gl=US
https://play.google.com/store/apps/details?id=com.google.android.inputmethod.latin&hl=en_US&gl=US
https://play.google.com/store/apps/details?id=com.google.android.inputmethod.latin&hl=en_US&gl=US
https://play.google.com/store/apps/details?id=com.touchtype.swiftkey&hl=en_US&gl=US
https://play.google.com/store/apps/details?id=com.touchtype.swiftkey&hl=en_US&gl=US
arXiv:2005.14165
arXiv:1703.10724
arXiv:1703.10724
arXiv:1810.04805

Phrase-Gesture Typing on Smartphones

[17] Aakar Gupta, Cheng Ji, Hui-Shyong Yeo, Aaron Quigley and Daniel Vogel. 2019.
RotoSwype: word-gesture typing using a ring. In Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems (CHI’19), Association for
Computing Machinery, Paper 14.

[18] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural
computation, 9 (8). 1735-1780.

[19] Per-Ola Kristensson and Shumin Zhai. 2004. SHARK 2: a large vocabulary short-
hand writing system for pen-based computers. In Proceedings of the 17th annual
ACM symposium on User interface software and technology (UIST’04), ACM,
43-52.

[20] Ilya Loshchilov and Frank Hutter. 2017. Decoupled weight decay regularization.
arXiv preprint arXiv:1711.05101.

[21] I Scott MacKenzie and Shawn X Zhang. 1999. The design and evaluation of a
high-performance soft keyboard. In Proceedings of the SIGCHI conference on
Human factors in computing systems (CHI’99), 25-31.

[22] Anders Markussen, Mikkel Rønne Jakobsen and Kasper Hornbæk. 2014. Vulture:
a mid-air word-gesture keyboard. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI’14), ACM, 1073-1082.

[23] Mehryar Mohri. 1997. Finite-state transducers in language and speech processing.
Computational linguistics, 23 (2). 269-311.

[24] Tom Ouyang, David Rybach, Françoise Beaufays and Michael Riley. 2017. Mobile
keyboard input decoding with fnite-state transducers. arXiv preprint arXiv:
1704.03987.

[25] Kseniia Palin, Anna Maria Feit, Sunjun Kim, Per Ola Kristensson and Antti
Oulasvirta. 2019. How do people type on mobile devices? Observations from a
study with 37,000 volunteers. In Proceedings of the 21st International Conference
on Human-Computer Interaction with Mobile Devices and Services (Mobile-
HCI’19), 1-12.

[26] Philip Quinn and Shumin Zhai. 2016. A cost-beneft study of text entry suggestion
interaction. In Proceedings of the 2016 CHI conference on human factors in
computing systems (CHI’16), 83-88.

[27] Philip Quinn and Shumin Zhai. 2018. Modeling Gesture-Typing Movements.
Human-Computer Interaction, 33 (3). 234-280.

[28] Sascha Rothe, Shashi Narayan and Aliaksei Severyn. 2020. Leveraging pre-trained
checkpoints for sequence generation tasks. Transactions of the Association for
Computational Linguistics 8. 264-280.

[29] Emanuel Todorov and Michael I Jordan. 1998. Smoothness maximization along a
predefned path accurately predicts the speed profles of complex arm movements.
Journal of Neurophysiology, 80 (2). 696-714.

[30] Keith Vertanen, Crystal Fletcher, Dylan Gaines, Jacob Gould and Per Ola Kris-
tensson. 2018. The impact of word, multiple word, and sentence input on virtual
keyboard decoding performance. In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems (CHI’18), 1-12.

UIST ’22, October 29–November 02, 2022, Bend, OR, USA

[31] Keith Vertanen, Dylan Gaines, Crystal Fletcher, Alex M Stanage, Robbie Watling
and Per Ola Kristensson. 2019. VelociWatch: Designing and evaluating a virtual
keyboard for the input of challenging text. In Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems (CHI’19), 1-14.

[32] Keith Vertanen, Haythem Memmi, Justin Emge, Shyam Reyal and Per Ola Kristens-
son. 2015. VelociTap: Investigating fast mobile text entry using sentence-based
decoding of touchscreen keyboard input. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems (CHI’15), 659-668.

[33] Thomas Wolf, Julien Chaumond, Lysandre Debut, Victor Sanh, Clement Delangue,
Anthony Moi, Pierric Cistac, Morgan Funtowicz, Joe Davison and Sam Shleifer.
2020. Transformers: State-of-the-art natural language processing. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing:
System Demonstrations (EMNLP System Demonstration’20), 38-45.

[34] Hui-Shyong Yeo, Xiao-Shen Phang, Steven J. Castellucci, Per Ola Kristensson and
Aaron Quigley. 2017. Investigating tilt-based gesture keyboard entry for single-
handed text entry on large devices. In Proceedings of the 2017 CHI Conference
on Human Factors in Computing Systems (CHI’17), Association for Computing
Machinery, 4194–4202.

[35] Chun Yu, Yizheng Gu, Zhican Yang, Xin Yi, Hengliang Luo and Yuanchun Shi.
2017. Tap, dwell or gesture? Exploring head-based text entry techniques for
HMDs. In Proceedings of the 2017 CHI Conference on Human Factors in Com-
puting Systems (CHI’17), Association for Computing Machinery, 4479–4488.

[36] Shumin Zhai and Per-Ola Kristensson. 2003. Shorthand writing on stylus key-
board. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI’03), Association for Computing Machinery, Ft. Lauderdale, Florida,
USA, 97–104.

[37] Shumin Zhai and Per Ola Kristensson. 2012. The word-gesture key-
board: reimagining keyboard interaction. Commun. ACM, 55 (9). 91–101.
10.1145/2330667.2330689

[38] Shumin Zhai, Per Ola Kristensson, Pengjun Gong, Michael Greiner, Shilei Allen
Peng, Liang Mico Liu and Anthony Dunnigan. 2009. Shapewriter on the iphone:
from the laboratory to the real world. In CHI ’09 Extended Abstracts on Hu-
man Factors in Computing Systems (CHI EA’09), Association for Computing
Machinery, 2667–2670.

[39] Mingrui Ray Zhang and Shumin Zhai. 2021. PhraseFlow: Designs and empirical
studies of phrase-level input. In Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems (CHI’21), 1-13.

[40] Xiang Zhang, Junbo Zhao and Yann LeCun. 2015. Character-level convolutional
networks for text classifcation. In Proceedings of the 28th International Confer-
ence on Neural Information Processing Systems - Volume 1 (NeurIPS’15), MIT
Press, Montreal, Canada, 649–657.

[41] Suwen Zhu, Jingjie Zheng, Shumin Zhai and Xiaojun Bi. 2019. i’sFree: Eyes-free
gesture typing via a touch-enabled remote control. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems (CHI’19), Association
for Computing Machinery, Paper 448

arXiv:1711.05101
arXiv:1704.03987
arXiv:1704.03987

	Abstract
	1 INTRODUCTION
	2 RELATED WORK
	2.1 Gesture typing
	2.2 Keyboard Decoder

	3 PHRASESWIPE INTERFACE DESIGN
	3.1 Typing
	3.2 Feedback
	3.3 Committing Input Text
	3.4 Editing and Deleting

	4 PHRASESWIPE DECODER
	4.1 Neural Language Model
	4.2 Data Collection
	4.3 Model Training
	4.4 Evaluation

	5 USER STUDY
	5.1 Participants
	5.2 Apparatus and Task Conditions
	5.3 Procedure and Design
	5.4 Result

	6 DISCUSSION, LIMITATIONS, AND FUTURE WORK
	6.1 Usability and Practicality
	6.2 Interface Design
	6.3 Decoder

	7 CONCLUSION
	References

