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In this article we investigate how preservice elementary school (K–7) teachers under-
stand the concept of prime numbers. We describe participants’ understanding of
primes and attempt to detect factors that influence their understanding. Representation
of number properties serves as a lens for the analysis of participants’ responses. We
suggest that an obstacle to the conceptual understanding of primality of numbers is
the lack of a transparent representation for a prime number.

Key words: Conceptual knowledge; Content knowledge; Number sense; Preservice
teacher education; Representations; Teacher education; Teacher knowledge; Whole
numbers

Prime numbers are often described as building blocks of natural numbers. The
term building blocks can be viewed as a metaphorical interpretation of the
Fundamental Theorem of Arithmetic, which claims that the prime decomposition
of a composite number to prime factors exists and is unique. Although the unique-
ness of prime decomposition presents a challenge for many learners, its existence
is the property that is usually taken for granted (Zazkis & Campbell, 1996b).
However, it is the existence property that is behind the building-blocks metaphor,
creating an image of composite numbers being built up multiplicatively from
primes. What are the structure and the properties of these building blocks?

There are two properties in particular that seem to present a mystery to the learner.
One is the existence of infinitely many prime numbers, which entails very large
primes. Another is the property that prime numbers are not generated by a simple
polynomial function. In fact, mathematicians of different origins have struggled
for centuries to discover a prime number generator. A few successes in this area
have been recorded in the early 1970s (see for example Gandhi’s formula in
Ribenboim, 1996), but these developments present considerable mathematical
complexity and are beyond the scope of our investigation.

Although the understanding of elementary number theory has been the topic of
a few recent studies (Campbell & Zazkis, 2002), there has not been any study
focusing specifically on prime numbers. On a related matter, Zazkis and Campbell
(1996b) investigated preservice teachers’ understanding of prime decomposition
and concluded that “if the concepts of prime and composite numbers have not been
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adequately constructed, this will likely inhibit any meaningful conceptualization
of prime decomposition” (p. 217). 

Understanding numbers, ways of representing numbers, and relationships among
numbers have been identified by the National Council of Teachers of Mathematics
as important aspects in the Number and Operations Standard for all grade levels
(NCTM, 2000). We believe that the significance of understanding primes is in each
of these three aspects. As building blocks, primes are crucial in understanding
numbers and multiplicative relationships among numbers. Further, understanding
primes relies heavily on the representation of numbers, as we illustrate in the next
section.

In this article we describe and analyze preservice elementary school (K–7)
teachers’ understanding of prime numbers and attempt to detect factors that influ-
ence their understanding. We use representation of number properties, and what
can be learned by considering representations of a number, as a lens for the analysis
of participants’ responses. We argue that the lack of a transparent representation
of prime numbers presents an obstacle for students’ understanding of prime
numbers.

REPRESENTATION OF NUMBER PROPERTIES

A number of research studies in mathematics education have addressed the
issue of representation (e.g., Cuoco, 2001; Goldin & Janvier, 1998; Janvier, 1987a).
Various meanings have been attributed to the notion of representation and various
distinctions made. However, only a small part of the work on representation has
addressed representation of numbers, focusing primarily on fractions and rational
numbers (e.g., Lamon, 2001; Lesh, Behr, & Post, 1987), or on negative numbers
(e.g., Goldin & Shteingold, 2001). In the study reported here we focused on the
representations of natural numbers. Prior studies dealing with the representations
of natural numbers in the decimal number system focused on the canonical place-
value representation and students’ understanding of the place-value concept (e.g.,
Boulton-Lewis, 1998) as well as the connection between number-names and their
representations (e.g., Fuson, 1990; Miura, 2001). Properties of natural numbers that
can be expressed by various representations remain largely unexplored.

Lesh, Behr, and Post (1987) introduced the distinction between transparent and
opaque representational systems. According to these researchers, a transparent
representation has no more and no less meaning than the represented idea(s) or struc-
ture(s). An opaque representation emphasizes some aspects of the ideas or struc-
tures and de-emphasizes others. Meira (1998) referred to this distinction in consid-
eration of instructional devices and suggested that transparency is not a feature of
an artifact per se but of its use in a specific instructional activity. His research
suggested that acknowledging transparency in use supports learning.

Borrowing the terminology used by Lesh and his colleagues (1987) in drawing
the distinction between transparent and opaque representations, Zazkis and
Gadowsky (2001) focused on representations of numbers and suggested that all such
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representations are opaque; however, they may have transparent features. For
example, representing the number 784 as 282 emphasizes that this is a perfect square
but de-emphasizes the divisibility of this number by 98. That is, in representing
784 as 282, the property of 784 being a perfect square is transparent and the prop-
erty of 784 being divisible by 98 is opaque. Representing the same number as
13 × 60 + 4 makes it transparent that the remainder of 784 in division by 13 is 4,
but makes opaque its property of being a perfect square. Zazkis and Gadowsky
addressed the importance of students’ awareness to properties of numbers embedded
in their different representations and suggested several instructional activities to
promote this awareness.

In this article we extend the representation of specific numbers to the represen-
tation of sets of numbers possessing the same property through the use of algebraic
notation. We say that, for a whole number k, 17k is a transparent representation
for a multiple of 17, as this property is embedded or “can be seen” in this form of
the representation. However, it is impossible to determine whether 17k is a multiple
of 3 by considering the representation alone. In this case, we say that the repre-
sentation is opaque with respect to divisibility by 3.

It often happens that the definition for a set of numbers relies on the existence
of certain representation. For example, a rational number is a number that can be
represented as a/b, where a is an integer and b is a nonzero integer. Furthermore,
the existence of a certain transparent representation can serve as a discriminating
property. For example, a number is even if and only if it can be represented as 2k
for some whole number k. A number is a perfect square if it can be represented as
k2 for some whole number k. Similarly, we consider 5k as a transparent represen-
tation of multiples of 5 and 17k + 3 as a transparent representation of numbers that
leave a remainder of 3 when divided by 17. Finding an appropriate representation
for a given property is crucial for manipulating representatives of this set.

In learning elementary number theory, consideration of the properties of
oddness/evenness or divisibility of numbers is naturally accompanied by consid-
eration of the property of primality. However, there is no transparent representa-
tion for prime numbers. We often denote a prime number by p, but this represen-
tation is opaque in every regard. Primality cannot be derived from this representation
in a way that, for example, oddness of a number can be derived from the repre-
sentation 2k + 1. How does this lack of transparent representation influence
students’ understanding of primes? In order to address this issue we first need to
examine the significance of the roles that representation plays in acquisition of math-
ematical knowledge. 

ROLES OF REPRESENTATION IN MATHEMATICS

The issue of representation is not new to mathematics education. However, it has
recently attracted fresh attention and examination in mathematics education
research and practice (Cuoco, 2001; Goldin & Janvier, 1998). In the study reported
here we are interested in representations that unravel properties of numbers. We
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consider the standard representational systems of symbols and operations in arith-
metic and algebra, such as decimal representation of numbers and letter represen-
tation of variables. Historically, the achievement of representation we denote
today as standard was a lengthy process guided by need and human ingenuity.
However, for today’s purposes we consider these representations as tools for
learning and communicating mathematics. The following summary draws on a
variety of ideas presented in prior research (e.g., Cuoco, 2001; Goldin, 1998;
Goldin & Janvier, 1998; Goldin & Kaput, 1996; Janvier, 1987a; Skemp, 1986).

Tools for Manipulation and Communication

Representation is often presented as a tool for manipulating objects. Having a
representation in hand allows an individual to detach himself or herself from the
meaning of this representation and operate on the symbols alone, making the
manipulations automatic, and returning later to interpreting the result of the
symbolic manipulation (Skemp, 1986). Further, the nature of the manipulation to
be performed may influence the choice of representation. For example, multipli-
cation of large numbers is better manipulated when these numbers are represented
in Hindu-Arabic, rather than in the Roman, numeration system. Likewise, for the
purpose of multiplying complex numbers, the polar representation is preferable to
the ordered-pair representation of such numbers. 

Communication is often mentioned as an important role of representation (e.g.,
Kaput, 1991; Skemp, 1986). As a tool for communicating, representations serve a
dual purpose: they help in the communication of ideas, and they help in the
communication between individuals. However, a representation itself is just a
string of symbols. Instead, representation comes to life when learners map the
symbols to the mathematical notions. This mapping is a two-way street in that it
enables the learner to communicate ideas more efficiently and it enables the learner
to recognize and interpret what ideas are being communicated by the symbols.
Moreover, availability and awareness of shared representations—be it among
classmates or among research mathematicians—creates a social milieu for math-
ematical discourse. 

Tools for Conceptual Understanding

An important role of representation in mathematics is as a tool for thinking and
gaining insights (Diezmann & English, 2001; Kaput, 1987). Researchers have drawn
strong connections between the representations that students use and their under-
standing (Friedlander & Tabach, 2001; Lamon, 2001), with understanding connected
to the ability to apply various representations and to choose one that is appropriate
to the problem situation. Janvier (1987b) describes understanding as a “cumulative
process mainly based upon the capacity of dealing with an ‘ever-enriching’ set of
representations” (p. 67). Furthermore, representations are often considered as a
means to form conceptual understanding. The ability to move smoothly between
various representations of the same concept is seen as an indication of conceptual
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understanding and also as a goal for instruction (Lesh, Behr, & Post, 1987). Likewise,
research by Even (1998) suggests that knowledge of different representations is inter-
twined with knowledge of underlying notions and the context. 

Since acting on mathematical objects promotes the construction of corresponding
mental objects (Dubinsky, 1991; Sfard, 1991), representation aids learners in their
mental constructions. Representations are also described as tools for generaliza-
tion and abstraction in that expressing generality can be achieved by an appropriate
choice of representation. Moreover, according to Kaput (1991), possessing an
abstract mathematical concept “is better regarded as a notationally rich web of repre-
sentations and applications” (p. 61). 

METHODOLOGY

Participants and Setting

The study reported in this article is part of ongoing research on the learning of
elementary topics in number theory by preservice elementary school teachers
(e.g., Zazkis, 1998b; Zazkis, 2000; Zazkis & Campbell, 1996a, 1996b; Zazkis &
Liljedahl, 2002). In this ongoing research we shadow the learners in their mathe-
matics courses, examine their written work, and invite volunteers to participate in
clinical interviews. In our analyses of extensive amounts of data, various themes
emerge that are worthy of separate focused attention. In this article we present frag-
ments of this work that attend to one such theme: prime numbers and representa-
tions. These fragments draw on data collected from university students enrolled
in a mathematics course “Principles of Mathematics for Teachers,” which is a core
course for teacher certification at the elementary (K–7) level. 

The course involved 4 hours per week of classroom instruction that were followed
by an open lab tutorial, where teaching assistants were available to address students’
questions and to engage them in additional problems or activities. Despite the limi-
tations of a large class of 116 students, the instruction was interactive, and group
work was implemented during class time as well as in the preparation of students’
assignments. The usual practice in the course was for the instructor to engage
students in a mathematical activity or a problem and then draw conclusions or
discuss concepts with references to the activity. For example, students were asked
to list all the possible arrangements of n objects (1 < n < 40) in a rectangular array.
Figure 1 demonstrates four possible arrangements for 6 objects and two possible
arrangements for 5 objects.

The notions of prime and composite number, factor, multiple, and divisibility
were discussed and formally defined with a reference to this rectangular array
activity. Other topics in the chapter on number theory, which were studied for the
period of 3–4 weeks, included divisibility rules, prime decomposition and the
Fundamental Theorem of Arithmetic, and least common multiple and greatest
common divisor. The data were collected from students after the completion of this
chapter on elementary number theory. 
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Questions

Subject matter knowledge is essential in learning to teach for understanding (e.g.,
Ball, 1996). As such, in designing questions we considered what preservice teaches’
knowledge of prime numbers could and should entail. Moreover, we build on the
properties of connectedness and basic ideas, as discussed by Ma (1999) as being
among her indicators of Profound Understanding of Fundamental Mathematics
(PUFM). 

The fact that prime numbers are a basic idea, or building block, of number theory
was a starting point for this research. Further, this basic idea cannot be approached
in isolation because understanding of a mathematical concept presents a complex
web of relations and connections with other concepts. As such, a student’s under-
standing of a prime number is connected to the understanding of multiplicative rela-
tionships among natural numbers, that is, of factors, multiples, composite numbers,
and divisibility. Therefore, we believe that an understanding of a concept of a prime
number by an elementary school teacher should include at least the following:

a) Awareness that any natural number greater than 1 is either prime or composite
and the ability to cite and explain the definition of a prime number;

b) Understanding that if a number is represented as a product it is composite
unless the factors are 1 and a prime; and

c) Awareness that composite numbers have a unique prime decomposition and that
the number of primes is infinite (though not necessarily the ability to provide
a formal mathematical proof for these claims).

For the purpose of this study, we designed the following questions and analyzed
participants’ responses to them.

(1) How do you describe a prime number? A composite number? What is the rela-
tionship between prime and composite numbers? 

(2) Consider F = 151 × 157. Is F a prime number? Circle YES/NO, and explain
your decision. 

(a) (b)

Figure 1. Rectangular array arrangements for 6 objects (a) and 5 objects (b).
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(3) Consider m(2k + 1), where m and k are whole numbers. Is this number prime?
Can it ever be prime?

Our choice of questions related primarily to the understanding listed above in
that Question 1 related to (a) and Questions 2 and 3 related to (b), although some
aspects related to (c) surfaced in the students’ responses. Question 1 was initially
included in the interview as an easy “warm-up” question, intended to create a
conversation and an atmosphere of cooperation. However, the way in which
students describe a concept provides a window into their understanding. Therefore,
Question 1 was analyzed for the ways in which students described prime numbers.
Although students learned the formal definition, we expected to find in their
responses their ways of thinking about prime and composite numbers rather than,
or in addition to, the citation of the definition. Furthermore, we were interested in
the relationships that participants identify between prime and composite numbers. 

Question 2 requires no work because the number F is represented as a product
of natural numbers. We were interested in seeing to what degree this representa-
tion would play a role in the responses of participants. 

Question 3 is also concerned with a number represented as a product. However,
since the product is represented in algebraic notation, whether or not this product
is trivial is not specified by constraining the values of k and m; that is, we consider
a product of two numbers to be trivial if one of the factors is 1. In this case, the
product can be trivial only if m is 1 or if 2k + 1 is 1. Similar to Question 2, the focus
of the analysis of responses to this question was on the participants’ attention to
representation. 

Data Collection and Analysis

Question 2 sought a written response from 116 students. Questions 1 and 3 were
presented in an interview setting to a subset of 18 volunteers. Because group work
was an essential component of the course, several students requested to be inter-
viewed together with their team members. The researchers responded positively
to these students’ request, which resulted in the 18 volunteers being distributed into
two groups of 3, one group of 2 and 10 individual interviews. However, the differ-
ences between individual responses and group interaction are not analyzed here. 

Calculators were available to students during the data collection for this study.
This was consistent with the availability of calculators during their coursework.
Despite the unrestricted availability of calculators, we urged participants to use them
only where appropriate. 

Students’ responses were compiled according to the common themes that
emerged within each question. Furthermore, building on the analysis of the students’
responses across the three questions, we suggested possible avenues for constructing
primality as a mental object.
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RESULTS AND ANALYSIS

Question 1

In Question 1, participants in the interview were asked to describe the meaning
of prime and composite numbers and to describe further how they saw the rela-
tionship between them. Prior to this interview, the formal definition of prime
numbers presented to students in the textbook and by the instructor was this:
Prime numbers are numbers that have exactly 2 factors. A class discussion took
place to clarify whether this definition was equivalent to what students recalled from
their elementary school experience; that is, prime numbers are those that are divis-
ible only by 1 and itself. However, the phrase “divisible only by 1 and itself” created
ambiguity in the consideration of the primality of number 1. It was pointed out to
the students that by mathematical convention the number 1 is not considered to be
prime, and therefore “having exactly 2 factors” was a more accurate indicator of
the property of primality. 

Meaning of prime and composite numbers. All the interviewed participants
provided a reasonable description of prime and composite numbers. The wording
of the question—how do you describe a prime number—did not imply that the
formal definition was expected. Eight students used a variation of a formal defin-
ition (referring to exactly 2 factors or 2 distinct factors), whereas the other 10 used
a variation of a definition familiar from their prior schooling (divisible by 1 and
itself). Two interrelated themes emerged in participants’ responses— providing a
negative description and supplementing the learned definition with personal under-
standing. We exemplify these tendencies with these excerpts from the interviews;
all names that follow are pseudonyms.

Sally: Prime numbers cannot be divided by anything other than 1 and itself.
Composite numbers are not prime numbers. You would have 1 and itself and
you would have other um, what do you call them . . . multiples?

Tom: Primes are those that cannot be factored, yea, like cannot be factored any
further. Composite numbers are like, you can always factor out primes out of
them. 

Karen: Prime number would be a number that would be divisible only by 1 and itself,
it means it wouldn’t have any other factor, besides these two factors, 1 and itself
are the only factors. Composite numbers would have other factors besides these
two, these two you would always have. 

Jenny: Prime numbers have only two factors. They are not having other factors to be
broken down into. Composite numbers have more than two factors, it means
just one more and it makes the number composite. 

Sally and Tom appeared to think of prime numbers in terms of properties these
numbers do not hold in that that the numbers “cannot be divided” or “cannot be
factored.” We refer to these as negative descriptions. Karen’s response contains
the formal definition, but it is accompanied by an additional negative explanation,
“wouldn’t have any other factor.” Likewise, in Jenny’s description the formal defi-
nition is cited, but also supplemented with further explanation of what prime
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numbers “are not having.” For Karen and Jenny, the definition itself is not suffi-
cient for creating and communicating meaning, and as such, it is supplemented with
an additional explanation that attempts to interpret the definition. Negative descrip-
tions appeared in the responses of 15 out of 18 participants either in their initial
description of prime numbers (e.g., Sally and Tom) or in their additional explana-
tions (e.g., Karen and Jenny). 

Relationship between prime and composite numbers. The following excerpts
from two individual interviews with Jenny and Sally are examples of students’
descriptions of this relationship.

Interviewer: And how would you describe the relationship between prime numbers and
composite numbers?

Jenny: A composite number is made up of prime numbers.
Interviewer: Made up? In what way? 
Jenny: It can be decomposed into prime numbers, like broken down into.
Interviewer: When you say decomposed, what do you mean?
Jenny: Breaking it down into smaller numbers that when put together they come up

to the bigger number.
Interviewer: Put together?
Jenny: Multiplied together.

[…]
Interviewer: How would you describe the relationship between prime and composite

numbers?
Sally: Well, not really, there is no relationship, they are one or the other. If you have

a number and it’s prime you know that it’s not composite. 

In Jenny’s response we recognize her awareness of the existence of prime decom-
position. In fact, the majority of the participants (12 out of 18) made some reference
to prime decomposition. Sally sees prime and composite primarily as disjoint sets:
“They are one or the other.” This theme appeared in the responses of 10 participants,
either exclusively or in conjunction with the allusion to prime decomposition.
Although for this particular question Sally’s view appears incomplete, it is exactly
the understanding that is necessary to deal with Question 2 in an elegant manner. 

Question 2

Question 2 asked students to determine whether the number F, given as F = 151 ×157,
was prime and to explain their decision. Table 1 provides a summary of students’
responses to Question 2. Since students were asked to circle their decision
(YES/NO), it was unambiguous how to classify their choice as correct or incor-
rect. However, it was the students’ explanations of their choice, rather than the
choice itself, that revealed their understanding of primes. We identified and clus-
tered the justifications students provided for their decision about the primality of
number F. In Table 1, correct (C) or incorrect (I) refers to the claim itself, rather
than the justification provided to support the claim. In the sections that follow, we
discuss the categories of responses that students gave to Question 2.
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Definition of prime and composite numbers. As shown in Table 1, a total of 74
out of 116 students (64%) have claimed correctly that F was a composite number.
However, not all the correct answers were accompanied by correct justifications.
The majority of the arguments (n = 52) used either the definition of prime numbers
(n = 33; C(1) in the table) or the complimentary definition of composite numbers
(n = 19; C(2) in the table). The following excerpts exemplify students’ responses
in these two categories. 

C(1): A prime number has exactly 2 factors, 1 and itself. F = 151 × 157 = 23707,
thus it is not prime because 151 and 157 are its factors, as well as 1 and
23707. 

C(1): Prime numbers are only divisible by 1 and themselves. F will be divisible
not only by 1 and F but also by 151 and 157. Therefore F is not prime. 

C(2): 151 and 157 are both prime. Therefore they are prime factors of their
product, making their product a composite number. 

C(2): Because it is composed of at least 2 factors, 151 and 157, other than one and
itself. Therefore it is composite. 

It is interesting to note here that 20 out of 52 arguments classified as either C(1)
or C(2) involved considerations that are not essential for answering this question;
it is unnecessary to calculate the number F to address the question. Furthermore,
the claim that 151 and 157 are both prime, although correct, is irrelevant to the case.
In some responses this claim was not only mentioned in passing, but also the prop-
erty of primality of 151 and 157 was derived after students engaged in a consid-
erable amount of calculations, following the learned algorithm for determining
primality or some variation of it. This time and energy investment suggests that
primality of 151 and 157 was important to these students in making their decision
about F. 

Table 1
Summary of Responses to Question 2

Consider F = 151 × 157. Is F a prime number? Circle YES/NO and explain your decision.

Correct claims (NO) 74 

Justification: C(1) Definition of primes 33
C(2) Definition of composite number 19
C(3) Application of algorithm 14
C(4) Lack of closure 2
C(5) Reasoning by example(s) 3
C(6) Other 3

Incorrect claims (YES) 42

Justification: I(1) Product of primes is prime 24
I(2) Misapplication of an algorithm 8
I(3) Misapplication of divisibility rules 6
I(4) Other 4
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Application of algorithm. In this category, which we call C(3), the arguments that
accompanied correct answers were based on an application of an algorithm for
determining prime numbers, carried out for the number 23707. As we reported
earlier in this article, students had access to calculators while working on this ques-
tion. An example of a participant’s response follows. 

C(3): ¡2̀3̀7̀0̀7̀ = 153.9. Now we check if any of the prime numbers lower than 153
divide 23707. 23707 is divisible by 151 and 157 so it is not prime. 

In this case, the algorithm was applied correctly and lead to a correct conclusion.
However, the need for the algorithm is somewhat troublesome because it shows
that these students could not conclude that F was a composite number from
considering its representation as a product. Furthermore, the ability to determine
divisibility of F by 151 only after checking by division implies that these students
did not have a strong connection between divisibility and multiplication, a
finding that is consistent with findings of prior research (Zazkis & Campbell,
1996a).

Lack of closure. Two students based their argument on the lack of closure of
prime numbers under multiplication (labeled C(4) in the table). An example of this
argument follows:

C(4): F is not prime because 151 and 157 are primes and the set of prime numbers
is not closed under multiplication. 

This response may appear as a rather impressive application of recently acquired
terminology. However, a closer look reveals an incorrect logical implication.
Although the claim that primes are not closed under multiplication is correct, the
use of this claim to determine that F is not prime is inappropriate. Lack of closure
means that there exists at least one pair of elements in the set such that the result
of a binary operation applied on this pair is not an element in the set. This does not
imply that the result of a binary operation applied to any two elements does not
belong to the set. 

Reasoning by examples. There were 2 students who based their arguments on
considering examples, which we classified as C(5) responses. One example appears
below:

C(5): 2 × 3 = 6, 5 × 7 = 35, 2 × 5 = 10, 5 × 3 = 15

All of these examples illustrate that when you multiply a prime number by
a prime number your result is not a prime number. Prime numbers are 2, 3,
5, 7, 13, 17, 19, . . . . None of the products were prime numbers. 

This is a clear illustration of an empirical inductive proof scheme (Harel & Sowder,
1998). That is to say, what convinces the student is a consideration of a finite number
of examples, rather than F’s representation as a product. We note here that all the
examples in this student’s illustration are examples of familiar small primes, and
we will return to this observation later.
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We turn now to describing students’ arguments justifying the incorrect claim that
F is prime. As shown in Table 1, this claim was made by 42 out of 116 participants
(36%).

Product of primes. Out of these 42 participants, 24 claimed that F was a prime
number based on the primality of 151 and 157. An example of responses that we
called I(1) follows:

I(1): Both 151 and 157 are prime numbers, and 2 prime numbers multiplied
together are going to give another prime number 

Of these 24 participants, 8 simply claimed that 151 and 157 were prime, whereas
the other 16 explained in detail how they confirmed the primality of these two
numbers. The absurdity of this argument could be an indication of a profound
psychological inclination toward closure, that two of a kind produce a third of the
same kind. 

Misapplication of an algorithm. In responses classified as I(2), 8 students calcu-
lated the product of 151 and 157 to be 23707 and then tested for primality of this
product. The approach of 7 of these students was similar to the algorithmic
approach in C(3). The students followed the algorithmic part of what they learned
in that they determined the square root of 23707 and then attempted to perform divi-
sion of 23707 by all primes smaller that the square root. However, unlike students
applying the correct approach in C(3), they failed to apply the algorithm to its full
extend, considering only a partial list of prime numbers. In some cases, the list of
primes resulted in using familiar primes up to 19 or 29. In other cases, it is diffi-
cult to determine which primes were considered (because the list was not explic-
itly mentioned) to reach the conclusion. An example of an I(2) response is this:

I(2): 151 × 157 = 23707, ¡2̀3̀7̀0̀7̀ = 154

Check all prime numbers lower than 154 to see if the number is prime and
if none of them can divide 23707 then the number is prime. 

One student used her knowledge of divisibility rules to check primality of 23707.
She checked all the familiar divisibility rules, that is, rules for divisibility by 2, 3,
4, 5, 6, 8, 9, and 10 and concluded that F was prime. 

In the responses included in this category we identify an implicit belief that if a
number is composite, it must be divisible by a small prime. Similar observations
were reported by Zazkis and Campbell (1996b). This belief seems to co-exist with
the explicitly stated awareness that in order to determine primality of a number,
all the primes smaller than its square root must be checked. This belief also co-exists
with the awareness of existence of “very large” prime numbers and infinitely
many prime numbers.

Misapplication of divisibility rules. Another justification of the primality of F
was based on the misapplication of divisibility rules—I(3) in the table. For example:

I(3): It is prime because the last digit in the number is 7 and the sum of the digits
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is the number 19. 19 is a prime number and is not divisible by anything but
itself and 1. So F is prime. 

Consideration of the sum of the digits is a common test for divisibility by 3 and
by 9. In the aforementioned response, this divisibility test was overgeneralized to
claim that the number was prime based on the primality of the sum of its digits.
The last digit is also mentioned, but not actually used in the argument. In several
other cases, students justified the primality of F by the primality of its last digit.
Although the number of students making these types of claims is relatively small
(5%), their arguments confirm the observations of prior research, which reported
several similar cases of incorrect generalization of divisibility rules (Zazkis &
Campbell, 1996a).

In category I(4), we clustered other students’ arguments that were either unique
in this group or cases where the argument was incomplete or a student’ strategy
was inconclusive based on the written response. One of the arguments in this cate-
gory requires further attention:

I(4): The product of two odd numbers is always odd. Therefore making F odd
too. 

Although only one student demonstrated confusion between prime and odd in
response to Question 2, a similar confusion surfaced in other encounters as well,
and we discuss these next.

Question 3

In Question 3 students in a clinical interview setting were asked to comment on
whether or not a number represented by m(2k + 1) could be prime. This question
is similar to Question 2 in that it asks the students to consider the primality of a
number presented as a product. However, the explicit use of algebraic notation to
represent the number limited the possibility of applying any of the algorithmic
methods familiar to the participants. Without the option to regress to algorithms,
two main themes surfaced in participants’ responses: (a) attention to definition (or
a perceived definition) of prime and composite numbers and (b) the convincing
power of examples. 

We note here that the participants tended to change their minds—at times more
than once—during the interview. Those interviewed in a group setting were at times
persuaded by their group members to change their responses. Others did so as a
result of prompting by the interviewer. Thus, rather than summarize frequencies
of occurrences, in the next section we illustrate the two main themes.

Definition of prime and composite numbers. In the following excerpt from a group
interview, Dina and Sally attempt to convince Dan that the number m(2k + 1) cannot
be prime.

Dina: Primes are only divisible by 1 and itself, so. . . , yeah, yeah, so if you were just
to write it out, like that could be 1, m, something times m and then the number
itself right? It would have 4, at least 4 yeah.
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[…]
Sally: Because you’re multiplying it in, [pause], because this is just saying m times

this right, do you know what I’m saying? It would be m times this to be the
final product right, so m would be one, and then this would be another, and
then 1 and whatever the answer of this would be right, so it couldn’t be prime
because if it were prime it would just be this times this, right. You’ve got these
two things in the middle, wouldn’t it? Do you know what I mean, do you know
what I’m doing here?

Dan: No.
Sally: Oh, I don’t know like, uh, I don’t know what it’s called, but you know when

you like, let’s say you’re going to say 6 is 2 times 3. . .
Dan: Factors. You mean factors.
Sally: Factors, yeah it’s going to look like that. . .
Dina: Because if it were prime, it would only be multiplied by 1 and it, its factors

would be, prime factors would be 1 and itself.
Dan: You’re saying it has factors. . .
Sally: It has other factors, so it can’t be prime. . .
Interviewer: And those are?
Sally: m and 2k + 1. . .
Dina: Yeah, because that’s the whole point of prime numbers. 

Dina claims in the very beginning of the excerpt that “it would have 4”—implying
4 factors. Sally communicates the same idea by explicitly listing the factors as 1,
m, 2k + 1, and m(2k + 1). She identifies “These two things in the middle”—
pointing to m and 2k + 1—as additional factors, leading Dina and Sally to the
conclusion that the number cannot be prime. This view of primes is incomplete,
rather than incorrect. In Question 2, representation of F as a product 151 × 157
assisted participants in determining that F was a composite number. In Question
3, for Dina and Sally, representation of the number as a product presented a
distraction, rather than an asset. This is consistent with Tom’s perception in
Question 1 that “prime numbers cannot be factored,” in ignoring the possibility of
trivial factorization.

Considering a prime as a number that is only divisible by 1 and itself, it was a
popular choice in this group of participants to assign 1 to m. For Karen, however,
this choice appeared sufficient, and her partner Debra accepted the argument. 

Karen: I was trying to make the tree, and I thought that I couldn’t . . . but if m, if any
number besides 1, you can start making a tree.

[…]
Debra: Ok, just start doing it because I’m not quite following you.
Karen: If you have this number and m is 3, you can immediately factor out a 3 right?
Debra: Okay yeah.
Karen: But I’m, that means if it’s, m is 2 you can immediately factor out a 2, if m is

4 you can immediately factor out a 4. However, if m is 1 you can’t, there’s a
possibility that you can’t, actually there’s maybe a certainty because this is odd,
the 2k + 1 is odd that you can’t start factoring out anything if m is 1. It freezes
this as an odd number. So my proposal is, yes it’s prime if m is 1.

Debra: You’re right.
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Karen’s first inclination is related to a familiar procedure of making a factor tree.
She noticed that in order to “factor out” m, the value of m should be “any number
besides 1.” This leads her to the conclusion that m should be 1 in order for m(2k + 1)
to be prime. Further, Karen recognizes 2k + 1 as a representation of an odd number.
However, she could be, at least temporarily, confusing the notions of prime and
odd—a theme that emerged several times in our investigation. 

Following the same view of primes as numbers divisible only by 1 and itself,
Nora concluded that the number is prime if m is 1 and 2k + 1 is “itself.” 

Nora: Primes you cannot break, you can just write it as 1 and itself, like the number
itself, like 7 is 1 times 7, but nothing else. This will be prime if you can’t break
it any further. So if here you have here m(2k + 1) , to be prime m should be 1
and this [2k + 1] should be itself.

She further developed several examples by solving for k several equations of the
kind 2k + 1 = <prime>. Paul, on the other hand, identified two options:

Paul: It’s possible because then it would only be, like 2k + 1 as one factor, if 2k + 1
is a prime number and m is 1, or of m is a prime number and 2k + 1 equals 1,
then it would also work, it would also be prime. 

However, this complete argument was provided only after some prompting from
the interviewer. Paul’s initial attempt was to represent the number m(2k + 1) as
2km + m, which led him astray. Only after refocusing on the original representa-
tion as a product was Paul able to provide a comprehensive solution. 

Convincing power of examples. Different perspectives on the role of examples
in learning mathematics have been addressed by researchers (Mason, 2002; Mason
& Pimm, 1984; Rissland, 1991; Wilson, 1990; Zaslavsky & Peled, 1996). In
particular, the convincing power of examples was acknowledged by Harel and
Sowder (1998) as an empirical inductive proof scheme. Although it is sufficient
to show an example to support the claim that the number m(2k + 1) can be prime,
the way in which students found such an example reveals their understanding of
prime numbers. The following two excerpts from individual interviews with
Sharon and Lisa illustrate the search for examples.
Interviewer: Our next number is m(2k + 1), m is a whole number, k is a whole number, can

a number written like this be prime?
Sharon: [Pause.] Um, okay, I’m just looking at the 2 here and I just thought if it can

be prime, say if k was a 2 and 2 × 2 = 4, plus 1 equals 5, and if m was 1 then
yeah, it could work. 

Interviewer: So you showed that when m = 1 and k = 2 we get a prime number. Good. Are
there other examples?
[Sharon substitutes different values for k.]

Sharon: [Pause.] So it works for 3, doesn’t work for 4, works for 5 and 6, not for 7, I
don’t know, doesn’t seem to be a rule here. 

[…]
Interviewer: Let’s ask a different question. Our number is m(2k + 1).
Lisa: Okay.
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Interviewer: Can it be a prime number?
Lisa: I guess it would depend on what you put in for k and for m.

Interviewer: Okay.
Lisa: If you put 2 for m, I figure because you’re multiplying something by 2 then it

automatically means that it’s divisible by 2, which would in my brain make it
not prime and then it would be divisible by more than . . . 

Interviewer: Okay.
[Lisa tries several examples at random.]

Interviewer: So now you’re trying 5 for k and 6 for m, any insights?
Lisa: Well, it’s looking to me like it’s not going to get prime. 

Both Lisa and Sharon turned to examples as their first choice of strategy. However,
Sharon’s first choice was a lucky one. Lisa, on the other hand, attempts several
substitutions at random, concluding that “it’s not going to get prime.” Despite the
fact that Sharon answers correctly and Lisa does not, their understanding of primes
appears to be similar. What makes the difference in their responses is Sharon’s
systematic approach in choosing numbers to substitute. However, her system
seems to be guided by neatness and discipline, rather than understanding of primes.
Such understanding is demonstrated, for example, by Nora’s response in acknowl-
edging the fact that 2k + 1 should be prime and calculating k from there. It is also
interesting to note that Lisa immediately knew that substituting 2 for m will result
in an even number that would definitely not be a prime number. However, this real-
ization did not prevent her from substituting 6 for m minutes later. 

In the next excerpt with Wanda, the power of examples is even more explicit.
Having observed Wanda’s quick substitution of numbers to produce a prime result,
the interviewer asks her to consider a different argument, provided by another
student. 

Wanda: Yes, it is possible. I substituted 5 for k and ended up with a prime number. But
k doesn’t have to be prime, just a whole number, so I’m just saying 2 × 4 is 8,
+1 is 9 which is not prime. So that just means it can be prime, but it isn’t always. 

Interviewer: Okay, you found an example where it is possible. A student was here earlier
and she claimed that this number cannot be prime because it is divisible by m
and by 2k + 1 and it is always divisible by 1 and by itself, so it has all these
factors so it cannot be prime, what would you tell her?

Wanda: I would try and show her examples where it didn’t work that way. 
Interviewer: Examples of what?
Wanda: I would use the example that I just found where it does end up being prime.

It’s not such abstract thinking, it’s concrete numbers. But then in terms of
explaining why her reasoning didn’t work, I don’t know what I would do. 

Wanda claims she would convince her classmate by showing her examples that
contradict her claim. However, she does not attend to the flaw in the reasoning,
explicitly claiming “I don’t know what I would do.”

In summary, considering primes as numbers that cannot be represented as a
product ignores the possibility of trivial factorization. Acknowledging trivial
factorization served for some students as a guide in generating examples. Others
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were led to believe that the number represented by m(2k + 1) cannot be prime or
turned to a guess and check by substitution strategy.

UNDERSTANDING PRIMES: 
WHAT HAPPENS WITHOUT REPRESENTATION

The previous sections presented participants’ responses to each of the three ques-
tions separately. In this section, we comment on their responses to the three ques-
tions in an integrated manner. We provide a short summary of the results and then
consider possible approaches to understanding primality. 

As mentioned previously, the subset of participants who responded to Question
1 provided a reasonable description for a prime number. It is not surprising that all
knew what prime numbers were, and it is reasonable to expect that the results would
have been similar had Question 1 been posed to each of the 116 participants.
However, the responses to Question 2 and 3 indicate that this knowledge is often
not implemented in practice. In fact, only 52 out of 116 students (45%, combining
C(1) and C(2)) implemented their knowledge in responding to Question 2. Thus,
understanding of primes appeared incomplete, inconsistent, fragile, algorithm-
driven, and significantly influenced by particular examples.

Treating mathematical concepts as objects supports construction of corresponding
mental objects in the mind of students (Dubinsky, 1991; Sfard, 1991). One possible
way to treat concepts as objects is to involve them as inputs in mathematical
processes, that is, to act on them or to perform operations on them. In order to act
on representatives of certain sets of numbers, representation is an asset. For example,
in order to consider the sum of two odd numbers, we represent them as 2k + 1 and
2m + 1 and perform the operation of addition acting on this representation. Of course
one can use symbols such as x and y for the two odd numbers, but in this case, no
conclusion about the parity of the sum can be drawn from considering x + y. 

Researchers agree that achieving an object conception of mathematical concepts
is challenging (e.g., Sfard, 1991). Supported by the data and informed by the theo-
ries of object construction and the role that representation may play in constructing
mental objects, we suggest that the lack of transparent representation for prime
numbers creates an obstacle for acting on them, and, thus, creates an additional diffi-
culty for constructing a mental object. In the context of our study, an object
conception for a prime number is consistent with responses categorized as C(1) and
C(2) to Question 2 (see Table 1) and with Paul’s and Nora’s responses to Question
3. The majority of students, however, appear not to have reached this stage. We
next suggest three interrelated approaches in which students construct their under-
standing of prime numbers. 

Primality as an Outcome of Factoring

One way to construct understanding of primality is as an outcome of the process
of factoring natural numbers. If a number has a nontrivial factor, where trivial
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factors are 1 and the number itself, then it is not a prime. If a number has only
trivial factors, it is prime. Factoring is closely related to the notion of represen-
tation, because factoring a number is synonymous with representing it as a product
of natural numbers. In this approach, the property of primality is added as a
yes/no property assigned to the object of a natural number that has been constructed
by learners at earlier stages as an outcome of generalization of equivalence and
seriation (Piaget, 1965).

In an attempt to factor a number, how does one look for possible factors?
Sophisticated and fast algorithms for factoring very large numbers used in ciphering
are beyond the scope of our interests here. The students in our study initially recalled
their school experiences and associated the search for factors with the building of
factor trees. Further into the course they were introduced to a standard algorithm,
where in search for nontrivial factors we check for divisibility by primes smaller
than the square root of the number to be factored. This suggests that the property
of primality is assigned to small numbers before it can be assigned to large
numbers. In our study, both correct and incorrect decisions on the primality of F
(Question 2) were accompanied by the algorithm. Out of 116 students, 22 (19%,
combining categories C(3) and I(2); see Table 1) referred to the algorithm in their
response. However, as the data demonstrate, correct application of the algorithm
could be quite meaningless, as it is not needed for determining primality of a number
represented in a factored form. 

A few observations deserve attention in discussing the standard algorithm for
determining primality. One is that students often have difficulty in explaining, and
even in reproducing the explanation, as to why it is sufficient to consider only divis-
ibility by primes smaller than the square root. This inability to explain leads to a
distrust of the algorithm. We witnessed students who, being familiar with the algo-
rithm, would check for divisibility by all the primes up to the number. We observed
students who attempt to check for divisibility by all the numbers, not only primes,
up to the square root or even up to the number itself. “To be on the safe side” was
the usual reason students provided to justify these unnecessary calculations. 

It is clear from the data that the majority of students’ ideas of factors, multiples,
and divisibility are not well connected. Earlier research (Zazkis, 2000) demonstrated
that some preservice teachers do not recognize the claim “B is a factor of A” as
equivalent to the claim of “A is divisible by B.” This research also showed instances
where, given a number in its prime factorization, 117 = 33 × 132, and a request to
list all its factors, students attempted to factor 117 by building a factor tree, rather
than to build factors from its prime factors. In the study reported here a similar idea
is illustrated with a more striking example: students attempted to perform factoring,
and in some cases failed to do so correctly, when all the factors were explicitly
presented to them. 

Primality by Observing Examples

The existence of a transparent representation for a specific number property can
help in abstracting and generalizing that property. However, a lack of transparent
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representation for prime numbers may lead students to generalize from examples.
Of course, generalizing from examples takes place regardless of the available repre-
sentations; however, with the lack of transparent representation, this approach may
be preferable for constructing understanding of primes. 

Based on examples from their experience, the following conclusions are drawn,
either explicitly or implicitly, by some learners:

• Prime numbers are small;

• Every large number, if composite, is divisible by a small prime number.

This understanding of primes is illustrated explicitly in the excerpt from an inter-
view with Tanya, reported in Zazkis and Campbell (1996b). This student, similarly
to some participants in our study, claimed that 391 (391 = 17 × 23) was prime after
dividing it by a few “small” primes.

Tanya: I guess it’s probably more experience than anything, but it just seems to me
that when you factor a number into its primes, I mean when you’re doing this,
you’re trying to find the smallest, I mean numbers that can no longer be
broken into anything smaller aside from 1 and itself, so that. I guess, it’s just
the whole idea of factoring things down into their smallest parts gives me the
idea that those parts are themselves going to be small (p. 216).

In the study reported here the belief in small primes was a belief in action. That
is, in their attempt to determine primality of F (Question 2), eight participants
checked the divisibility of F only by using a small number or small primes in order
to draw their conclusion. Although the frequency of occurrence of this intuitive
belief among the participants in this study was small, we have included it here
because of the connection to prior research. 

Another property of primes derived by considering examples is that prime
numbers are, for the most part, odd. This observation leads at times to a mathe-
matically incorrect implication that all prime numbers are odd (Zazkis, 1995).
Furthermore, by confusing the relationship between prime and odd, some students
believe that odd numbers are prime. This appears to be a logical misinterpretation
in considering a necessary condition for primality (for numbers greater than 2) as
a sufficient condition. 

Primality by Exclusion: What Primes Are Not

Another approach for constructing primality is by exclusion—by considering not
what prime numbers are but what prime numbers are not. This is the idea under-
lying the famous Sieve of Eratosthenes—the process of “sieving out” composite
numbers from a list of natural numbers in order to be left with primes only. 

As indicated by the responses to Question 1, considering what primes are not is
a salient feature in students’ descriptions of prime numbers. In the words of partic-
ipants, “Prime numbers are those that cannot be divided by anything, other than 1
and itself” or “Primes cannot be factored.” Rather than, or in addition to, repeating
a positive definition such as that prime numbers have exactly 2 factors, the majority
of students phrased their description of primes by attending to features that prime
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numbers do not possess. In other words, they are not composite numbers. When
the participants were asked specifically in Question 1 about the relationship
between prime and composite numbers, there was an expectation that the theme
of prime factorization would emerge more frequently in participants’ responses.
However, for some students, the relationship between prime and composite numbers
consisted entirely of their membership in disjoint sets. In students’ words, “They
are one or the other, cannot be both” or “They are sort of opposites of each other.” 

In considering what primes are not, a number’s representation can be a major
indicator. If primes are numbers that cannot be nontrivially factored, then repre-
senting a number in a nontrivially factored form is definitely evidence that the
numbers are not prime. However, less than half (52 out of 116, or 45%) of the partic-
ipants responding to Question 2 based their decision on such a representation. We
believe that the reason for this finding could be the lack of a strong connection (at
least in the minds of the majority of participants) between the factored form repre-
sentation of F as 151 × 157 and the ability to identify 151 and 157 as factors or
divisors of F. Polysemy1 of the word factor may be a confusing factor here, as
numbers that appear as factors (multiplier and multiplicand) in a number sentence
are not necessarily factors of the product. Another possible explanation for ignoring
the given representation could be related to participants’ school experience, in which
the decimal representation of numbers prevails, and all the alternative representa-
tions are treated as exercises aimed at uncovering the standard decimal represen-
tation of a number.

Although arguing for the importance of attending to representation, we also
acknowledge that for some students attention to representation was a hindrance.
In responding to Question 3, some students claimed that a number given as a product
cannot be prime, ignoring the possibility of a trivial factorization as 1 × p. 

CONCLUSION

In the study reported here, we investigated preservice elementary school teachers’
understanding of the concept of primality of numbers. We have shown that posses-
sion of the knowledge of what prime numbers are often does not result in the imple-
mentation of this knowledge in a problem situation. Furthermore, we have presented
three intertwined ways in which participants understand the concept of prime
number. We have described number representations as transparent or opaque with
respect to a certain property and argued that the lack of transparent representation
for primality is an obstacle in constructing this concept. As Skemp (1986) proposes,
“Making an idea conscious seems to be closely connected with associating it with
a symbol” (p. 83). However, which symbol can we associate with the idea of
primality? As mentioned above, there is no transparent representation for prime

1 The term polysemy refers to the property of words having different but related meanings. The issue
of polysemy is discussed in detail in Zazkis (1998a).
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numbers. However, there is a transparent representation for a number that is not
prime as a product of two natural numbers, neither of which is equal to 1. While
a lack of representation was judged to be an obstacle, the availability of represen-
tation indeed served, for some, as an asset and as a basis for decision making.
Representation is representing something only if there is connections in students’
mind between the notions that are being represented and the notions they are being
represented by. 

We agree with Lamon (2001) in her observation that mathematics education
research is faster in identifying students’ deficiencies than in suggesting alterna-
tives. One pedagogical suggestion that has yet to be tested empirically is to involve
students in the consideration of large numbers. By large we mean numbers that are
beyond the manipulation abilities of a hand-held calculator. A possible variation
of Question 2 would ask students to determine whether, for example, the number
151157 is prime. Our assumption is that the inability to rely on calculations will force
more students to attend to the representation that makes the conclusion transparent. 

Over a decade and a half ago, Kaput (1987) claimed that “We give virtually no
explicit attention at any level in mathematics education to the relation between the
transparency of certain mathematical properties or operations and the representa-
tion in which they are encoded” (p. 21). He further suggested that “naturally, there
is a tight connection between the omissions of the curriculum and the omissions
of the research community” (p. 21). Our research complements the recent work on
representations in an attempt to make up for this omission. 

Research on whole numbers in mathematics education has traditionally focused
on number operations and decimal representations. This implicit tradition is
reflected in a recent National Research Council report Adding It Up (Kilpatrick,
Swafford, & Findell, 2001) that defined its explicit focus on the notion of a number
and attempted to synthesize the rich and diverse research on pre-K–8 mathemat-
ical learning. It is not surprising that this report does not mention concepts related
to the multiplicative structure of whole numbers, such as primality or divisibility.
We consider this to be yet another serious omission of research on the K–8 level
as well as on the teacher education level. 

Acknowledging these omissions, our study makes a contribution in two arenas.
We enrich research on representations by focusing on representation of numbers,
distinguishing between transparent and opaque representations, and provide a
theoretical lens for the consideration of the effects that representation has on math-
ematical learning. Further, we extend the research on preservice teachers’ under-
standing of concepts in elementary number theory by focusing on prime numbers.
We hope that this study raises significant concerns that are worthy of further
research on the understanding of primes in particular and on the understanding of
multiplicative structures and relations of whole numbers in general, as well as on
the role that representations (or lack thereof) play in the learning of specific math-
ematical concepts. 
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