SyncNN: Evaluating and Accelerating Spiking
Neural Networks on FPGASs

Sathish Panchapakesan®*, Zhenman Fang*, Jian Lif
* School of Engineering Science, Simon Fraser University, Canada
 Futurewei Technologies, Inc, USA

{sathishp, zhenman} @sfu.ca

Abstract—In this paper, we propose a novel synchronous
approach for rate encoding based Spiking Neural Networks
(SNNs), which is more hardware friendly than conventional
asynchronous approaches. We also design and implement the
SyncNN framework to accelerate SNNs on Xilinx ARM-FPGA
SoCs in a synchronous fashion. To improve the computation
and memory access efficiency, we first quantize the network
weights to 16-bit, 8-bit, and 4-bit fixed-point values with the
SNN friendly quantization technique. For the encoded neurons
that have dynamic and irregular access patterns, we design
parameterized compute engines to accelerate their performance
on the FPGA, where we explore various parallelization strategies
and memory access optimizations. Our experimental results
on multiple Xilinx ARM-FPGA SoC boards demonstrate that
our SyncNN is scalable to run multiple networks, such as
LeNet, Network in Network, and VGG, on various datasets such
as MNIST, SVHN, and CIFAR-10. SyncNN not only achieves
competitive accuracy (99.6%) but also achieves state-of-the-art
performance (13,086 frames per second) for the MNIST dataset.

I. INTRODUCTION

Spiking Neural Networks (SNNs), often referred to as the
third-generation Neural Networks (NNs), have attracted in-
creasing attention because they are more biologically plausible
and have more potential for hardware acceleration [1]. SNNs
process spikes based on the membrane potential of the neurons
and are modeled in accordance to the actual neural system of
the human brain [2]. Compared to artificial NNs (ANNs)—
such as the widely used convolutional NNs (CNNs)—where
all neurons in each layer are activated and computed, SNNs
only activate those neurons whose membrane potential exceeds
the threshold potential [1]. This event-driven nature greatly
reduces the computation and communication between neurons.

The process of representing neural spikes (i.e., information)
in SNNs is called neural encoding and there are two major
approaches: rate encoding and temporal encoding. Temporal
encoding requires spike based training mechanisms to train the
time interval between spikes along with the network param-
eters [3]-[8]. However, the temporal information processing
capability limits the scope of exploring SNNs only for shallow
networks [9]. On the other hand, rate encoding—where the
number of spikes in an encoding window is proportional to the
numerical value to be encoded—does not need any additional
trained information and allows to directly convert the trained
ANN models to SNN fashion for evaluation [10]-[13]. More
recently, the CNN-to-SNN converted models have achieved

jian.li@futurewei.com

very good accuracy for deep networks such as VGG and
ResNet [9]. In this work, we focus on the conversion based
rate encoding SNNs to explore deeper networks on FPGAs.

In rate encoding SNNs, the input information (e.g., image
pixels) is converted to spikes for an encoding window (i.e.,
multiple timesteps). At each timestep, the spikes carry the
information along the layers in the network. The default
asynchronous execution flow of SNNs enables the hardware
to run all the layers concurrently in a pipeline fashion at
any timestep [14]. However, the asynchronous execution also
poses great challenges for implementing deeper networks on
hardware. First, the network parameters have to be on chip
for all the layers, which makes it not feasible to run deeper
networks on edge devices. Second, the layer with the highest
workload becomes the bottleneck and the resources allocated
to other layers in the network remain idle for most of the time.
Lastly, for deeper networks, the encoding window grows much
larger to achieve the required accuracy, and thus running the
entire network for many timesteps could make the SNN even
slower than the original ANN.

In this paper, we propose a novel synchronous SNN, called
SyncNN, to overcome those challenges. Instead of running
the entire network for multiple timesteps, we only run the
input layer—that converts the inputs to spikes—for multi-
ple timesteps, and encode the number of spikes for each
neuron. After that, we compute the remaining layers of the
network in a synchronous layer-by-layer fashion, for just
one timestep. SyncNN preserves the event-driven feature of
SNNs by only activating those neurons whose aggregated
membrane potential exceeds the threshold; for each spiked
neuron, we also encode the number of effective spikes based
on its aggregated membrane potential. SyncNN achieves the
same accuracy as the asynchronous approach, addresses the
aforementioned challenges, and opens more opportunities for
hardware acceleration.

To achieve real-time SNN inference, especially for deep
SNNs that can achieve better accuracy, we accelerate SyncNN
on Xilinx ARM-FPGA System-on-Chips (SoCs). To reduce
the computing operations and memory accesses, we first
quantize the network weights to 16 bits, 8 bits and 4 bits
using SNN friendly quantization that puts more priority in
weights with higher magnitude. Second, we design config-
urable and scalable neuron encoding and spike aggregation
engines, which addresses the challenge of dynamic and irreg-



ular access patterns due to the event-driven nature of SNNs and
explores different combinations of pipeline and parallelization
techniques, as well as memory access optimizations. Finally,
to support different network and layer sizes on different FPGA
devices, we use a hierarchical on-chip buffering strategy.
Unlike prior FPGA studies [14]-[18] that only evaluated
small networks such as MLP and LeNet, we have eval-
vated SyncNN for various CNN-based networks including
LeNet, Network in Network (NiN) and VGG, for multiple
datasets including MNIST, SVHN and CIFAR-10, on multiple
ARM-FPGA SoCs, including Xilinx ZedBoard, ZCU104 and
ZCU102 boards. Compared to state-of-the-art SNN accelera-
tion work on FPGAs [14], for the same experimental setup—
LeNet for MNIST dataset, on Xilinx ZCU102 board—SyncNN
achieves 13,086 frames per second, which is 6.16x faster than
[14], and 99.3% accuracy, which is higher than 99.2% in [14].
In summary, this paper makes the following contributions:

« A novel synchronous event-driven SNN with quantitative
comparison to CNN and asynchronous SNN approaches.

o The first configurable and scalable FPGA engine of
SNN that supports deep networks on multiple FPGA
devices. The SyncNN framework is also open sourced
at https://github.com/SFU-HiAccel/SyncNN.

o The first 4-bit SNN on FPGAs (for LeNet) that achieves
a very high accuracy of 99.6% for the MNIST dataset.

o State-of-the-art SNN performance of 13,086 frames per
second (FPS) for the MNIST dataset (using LeNet).

II. SNN BACKGROUND
A. SNNs and Their Training

Figure 1 illustrates how SNNs work [1], [2]. When an
input spike comes into a neuron, the membrane potential
of the neuron is either increased or decreased based on
the nature of the spike (excitatory or inhibitory). Once the
membrane potential crosses the threshold value, the neuron
generates spikes to the connected neurons in the next layer,
and its membrane potential is reset. The neurons in SNNs are
activated in a asynchronous fashion. At each timestep, a set
of neurons are activated among different layers. Overall, at
the end of the encoding window, there is a large fraction of
neurons that are not activated and computed.

However, temporal training of SNNs is often more com-
putationally intensive to achieve high accuracy and has been
studied only on shallow networks [4]-[8]. As described in
Section I, in this paper, we focus on rate encoding based SNNs
that allow the direct conversion of trained ANNs to SNNs to
explore deeper CNN networks on FPGAs. In the conversion,
the weights obtained from the trained CNNs are mapped to
a network of spiking units with the same network topology.
And the activation of neurons in CNNs is proportional to the
firing rate of SNNs [10]-[13]. Recently, the conversion based
SNN models has been studied on complex VGG and residual
networks [9] with high accuracy. In this paper, we have applied
the ReLu activation, weight normalization, zero bias and other
optimizations in [9]-[12] during the conversion.

Hidden Layer

Input Layer Output Layer

Produces
Spike

Threshold
potential

embr‘él‘ne potential

Reset

Spikes

=
O Inactivated

Fig. 1. Overview of the SNN working mechanism

Activated at
another timestep

Activated at
one timestep

B. Hardware Acceleration for SNNs

It is often inefficient to execute the event-driven SNNs on
CPUs, especially embedded CPUs on edge devices. Therefore,
there are many studies that try to accelerate SNNs using
specialized hardware. First, several studies have explored GPU
implementations for SNNs and showed significant speedup
over CPUs [13], [19], [20]. Second, lots of efforts have been
made to develop neuromorphic hardware for SNNs where the
communication of spikes is event-driven [9], [21]-[26]. Third,
FPGAs are also a very attractive alternative, especially for the
SNN inference on edge devices, as they are commercially-
available hardware that can be customized for the SNN com-
putation. Several studies have explored the FPGA acceleration
for SNNs [14]-[18], [27]-[31].

The goal of this paper is to accelerate rate encoding SNNs
on FPGAs to achieve real-time inference on edge devices
for deep networks with high accuracy. We will present the
quantitative comparison of our work and prior studies using
GPUs, FPGAs, and neuromorphic hardware in Section V-E.

III. SYNCNN: SYNCHRONOUS SNN APPROACH
A. Rate Encoding based SNN Algorithm

Algorithm 1 presents an overview of the conventional rate
encoding SNN algorithm based on the integrate and fire (IF)
model and Poisson spike generation [10]. For each input
image, it iteratively calls the SPTKING_NET function (lines 1-
4) for a particular encoding window. The number of simulation
steps (Sims), i.e., timesteps, is based on the network model and
the input. As the encoding window increases, more number of
spikes are transmitted in the network. This SPIKING_NET
function calls the following three major functions (lines 5-12):

1. Function POISSON_ENCODING (lines 13-18). The input
nodes in the network are called Poissons as they use Poisson
random variables to convert the input amplitudes to a
random spike train. It takes the image (img*) as input
and generates Poisson spikes (pSp*). These are activated
based on the pixel intensity of the image: a Poisson random
variable is compared with the pixel intensity, and based on
the comparison, the Poisson unit is activated and it spikes.
Let the time taken to complete this function be PE.

2. Function SPIKE_AGGREGATE (lines 19-25). The actual
computation takes place here. Depending on the layer of



Algorithm 1 Pseudo code for conventional rate-based SNN

1: function MAIN

2 for each image do

3 for each simulation step do
4 SPIKING_NET(img*)
5: function SPIKING_NET(img*)
6

7

8

#Encodes input Poisson spikes: pSp*
POISSON_ENCODING(img*,pSp*)
for each layer in network do

9: #Update membrane potential: Vm*

10: SPIKE_AGGREGATE(weights*,pSp*,nSp*,Vm*)
11: #Encodes neuron spikes: nSp*

12: NEURON_ENCODING(Vm*,nSp*)

13: function POISSON_ENCODING(@{img*,pSp*)
14: pSpiked = 0 #Reset counter for Poisson spikes

15: for each image pixel do

16: if pixelValue > PoissonThreshold then

17: pSplpSpiked] = pixellndex

18: pSpiked++

19: function SPIKE_AGGREGATE(weights*,pSp* ,nSp*,Vm*)
20: #Convolutional, Pooling or Dense

21: for each spiked inputs in psp*/nsp* do

22: for each weight w in the kernel do

23: for each number of feature maps o do
24: #Performs the aggregation operation
25: Vm[o] += weights[w]

26: function NEURON_ENCODING(Vm*,nSp*)
27: nSpiked = 0 #Reset counter for neuron spikes
28: for each neuron n do

20: if Vm[n] > VmThreshold then

30: nSp[nSpiked] = n

31: Vm[n] = Vreset

32: nSpiked++

the network (convolutional, pooling or dense), we perform
the aggregation operation of weights to the membrane
potential (Vm*) of the neuron. While ANNs/CNNs perform
operation for all the inputs, SNNs compute only for the
encoded spiked inputs (Poisson Spikes - pSp*, Neuron
Spikes - nSp*) in that simulation step, which is the key
advantage of SNNs. Let the time taken to complete this
function for the I, layer be SA[!].

3. Function NEURON_ENCODING (lines 26-32). It takes the
aggregated membrane potential as inputs (Vm¥*), and gen-
erates neuron spikes (nSp*). As shown in Figure 1, the
membrane potential (Vm*) of the neuron is updated based
on the spikes it receives, and once it reaches the threshold
value, the neuron is activated with a spike and the mem-
brane potential is set back to Vreset. Let the time taken to
complete this function for the l;;, layer be NE[I].

The SPIKE_AGGREGATE function takes the encoded
spiked inputs generated in the NEURON_ENCODING function
as input and calculates the membrane potentials of neurons
for the NEURON_ENCODING function in the next layer. This
process is repeated for all the layers (NL) in the network. When
this algorithm is implemented in a naive synchronous fashion,
the time it takes to classify one image is:

NL
Traive_sync = Sims x (PE + > (NE[] + SA[l])) (1)
=1

B. Asynchronous Approach of SNNs

One of the attractive features for SNNs is their asynchronous
execution flow. If there is enough hardware resource, all the
layers in the network can be computed concurrently in a
pipeline fashion. The pipeline throughput is determined by
the layer that takes the most of the time at that simula-
tion step. Within the three major functions of SNNs, the
SPIKE_AGGREGATE function at any simulation step is the
most time consuming one. Therefore, the time it takes to
classify one image is:

Sims

Tosyne = Y max(SA,[1], SA[2], ..., SAJINL]) ()
s=1

However, the asynchronous approach faces several chal-
lenges when accelerated on edge devices.

1. Network size limitation. To run all the layers in parallel,
the network parameters (inputs, weights, and outputs) have
to be on-chip independently for every layer. Also, comput-
ing resources have to be allocated for all the layers. For
edge devices, which has limited resources, it is difficult to
implement larger networks in the asynchronous fashion.

2. Resource underutilization. The SPIKE_AGGREGATE
function has the highest workload compared to the other
functions. In the asynchronous approach, the overall pro-
cessing time in a simulation step highly depends on the
computation unit of the layer that has the longest latency.
Therefore, all the resources for other functions have to
remain idle until the slowest function finishes. Moreover,
since all the layers are implemented on the hardware, the
optimizations within each layer is also restricted due to
limited resource.

3. Impact of encoding window. For the asynchronous ap-
proach, all the layers in the network still run for multiple
simulation steps. For small networks like LeNet and MLP,
the encoding window is very small to achieve a good
accuracy. However, for larger networks like NiN and VGG,
the encoding window is very large to achieve a good
accuracy as shown in Section V-B. Based on Equation 2,
the large encoding window (Sims) limits the performance.

C. SyncNN: Synchronous Approach of SNN Acceleration

To address the above challenges, we propose a novel
synchronous approach, called SyncNN, to accelerate rate en-
coding SNNs on hardware. Unlike previous approaches, we
do not run the entire network for multiple simulation steps.
Only the input layer, i.e., the POISSON_ENCODING func-
tion, is run for multiple simulation steps. For the remaining
layers, the SPIKE_AGGREGATE and NEURON_ENCODING
functions are run only once for each layer in the network
and all spikes are aggregated (increment to the membrane
potential) together. For example, if the aggregated membrane
potential value of a neuron is twice the value of the threshold,
we consider that the neuron needs to spike twice. The key is
that instead of spiking a neuron at multiple timesteps (e.g.,
timestep 1 and 4), SyncNN only spikes a neuron at the



Conventional CNNs [ Asynchronous SNNs SyncNN based SNNs

2,092,672
Lenet-S
447,933 4,67x Savings

17,255,936

Lenet-L
2,270,424 7.6x Savings

185,463,296

NiN

12,815,912 14.47x Savings

Network-Architecture

228,960,768
VGG

45,610,974 5.02x Savings

100,000 1,000,000 10,000,000 100,000,000

Number of Computations

1,000,000,000

Fig. 2. Comparison of computation operations required in conventional CNNs,
asynchronous SNNs, and our SyncNN based SNNs (savings is over CNNs)

final timestep (and only one timestep) and spikes it with the
equivalent number of times. Due to the synchronous layer-
by-layer execution, this is equivalent to the original SNN
with multiple timesteps. SyncNN still preserves the event-
driven feature of SNN as only those neurons whose membrane
potential exceeds the threshold will be activated and computed.
The time it takes to classify one image is:

NL
Tsynenn = (Sims x PE) + > (NE[l] + SA[l])) (3
=1

When to use SyncNN. From the algorithmic perspective,
based on Equation 2 and 3, if we only consider the most
time consuming term SA[l], SyncNN is faster than the asyn-
chronous approach for any network whose encoding window
(Sims) is greater than the number of layers (N L). From the
hardware perspective, since a network is executed layer by
layer in SyncNN, the computing and memory resources can be
reused between layers through time multiplexing. Hence, any
deep networks can be implemented and the slowest function
will not cause resource underutilization for other functions.
Also, the encoding window only affects the performance of the
input layer, i.e., the POISSON_ENCODING function, where
parallelism can be explored among multiple timesteps.

D. Computational Comparison for SyncNN

Finally, we compare the number of computing operations
required in the conventional CNNs, asynchronous SNNs, and
our SyncNNs in Figure 2. The detailed experimental setup
will be explained in Section V-A. Note that for asynchronous
SNNs, we assumed an ideal case where all layers can execute
in parallel and we only counted the computing operations
in the largest layer. For CNNs and SyncNN based SNNs,
we counted all computing operations in all layers since they
execute layer by layer. Our SyncNN approach has a significant
advantage over asynchronous SNNs, especially for deep net-
works (NiN and VGG) that require a large encoding window,
since SyncNN requires only one timestep for all layers except
the input layer. Compared to conventional CNNs, our SyncNN
based event-driven SNNs can reduce the number of computing
operations by 4.67x to 14.47x.

IV. HARDWARE DESIGN OF SYNCNN FRAMEWORK

The computation and memory access pattern of SNNs is
irregular, because of their event-driven nature. In this section,
we discuss optimization techniques implemented in SyncNN
to address this challenge.

A. Quantization

To improve the computing and memory access efficiency of
SyncNN, we first apply SNN friendly quantization to represent
the weights in low precision fixed-point values. In SNNs, the
weights with higher magnitude have more impact on altering
the membrane potential of the layer. Hence, priority is given
to represent those high magnitude weights for the number of
bits chosen. After analyzing the distribution of the weights in a
layer, we find that very few weights have large magnitudes and
the majority of the weights are small. Therefore, based on the
weight distribution of the layer, we choose the X-th percentile
(e.g., 99-th percentile) of the weight and represent that weight
with the maximum possible fixed point representation for the
number of bits chosen (max_fixed_point). Now, we can decide
the scaling factor (scale) based on the following equation:

Xth_percentile_weight * scale = max_fixed_point  (4)

We then multiply all the weights with the obtained scal-
ing factor (scale) and round it to the nearest fixed point
value. For the values whose magnitude is greater than the
max_fixed_point, we clip it to the max_fixed_point.

B. Computation Optimization

In SyncNN, we design configurable and scalable compute

engines for all major functions with pipeline and paralleliza-
tion techniques, as shown in Figure 3, which can be deployed
on different Xilinx FPGA boards based on the available
memory and computing resources.
SPIKE_AGGREGATE. The topology of the function de-
pends on the layer of the network. In SyncNN, we implement
the widely used CNN computational units such as Convolu-
tional, Pooling, Dense and Global Average Pooling. The major
difference between the conventional CNNs and SyncNN based
SNNss is the inputs presented to every layer. In SyncNNs, only
the spiked neurons (random and event-driven) in the previous
layer are presented as inputs for the current layer. That is,
the output of this function is now dependent on the randomly
spiked inputs, which makes parallelization challenging. We
explain only the convolutional unit implementation and omit
other types of units due to space limitation.

We first design a basic convolutional unit called ConvPE
to process each input feature map. Inside the ConvPE, since
the output feature map loop (OMaps) has no dependency, we
swap it in as the innermost loop and parallelize it by partially
unrolling it with a factor of UOMaps. Then we pipeline the rest
of the loop nests (kernel loops and the event-driven encoded
spikes loop) with II=1. Between the input maps (IMaps),
there is a data dependency on the output membrane potential
array (Vm), since multiple neurons from the previous layer
can generate input spikes to the same neuron in the current



/” POISSON_ENCODING
for ‘i’ in Image Pixel
for 'j’ in Sims/USims

PEncode

if (Pixel Intensity >
Poisson)

Load Image

ConvPE
for s in Encoded Spikes
for kx, ky in Kernel (x,y)

SPIKE_AGGREGATE
for map in IMaps/UIMaps

~

—Pipeline II=1_—> Encode Spike
USims :
d ﬁFopl§§.~- i {  Encoded Spikes |
PEncode | | :{> 5
ncoce ! Spike_index ]

\

NEURON_ENCODING
for map in IMaps/UEMaps

{ Spike_count ]

____________________

UIMaps for map in OMaps/UOMaps
Copies : Lo
P (EConvPE ” ——Pipeline II=1—>
UOMaps
LA A 2 R Copies

Global Merging

NEncode

for (i,j) in each map
—Pipeline lI=1—>
Encode Spike

N L1
N
NEncode

Output

outeut - Mocal i
------------ v
LVm_| Local
. Vm . Accum
Local Vm +=

[ Load Weights

weight * spike_count
Level1/Level2/Level3 ]

Fig. 3. Overview of the hardware architecture for SyncNN

layer. In SyncNN, we allocate duplicate copies (UIMaps) of
output Vm array (local_Vm) for each group of input maps to
enable parallel processing. Finally, we add a global merging
module to aggregate all the local_Vm copies to produce the
final updated output membrane potential array Vm.
POISSON_ENCODING. In SyncNN, all the input nodes (i.e.,
image pixels) in the POISSON_ENCODING function is run for
multiple simulation steps Sims. We partially unroll (parallelize)
the simulation step loop with a factor of USims, and pipeline
the outer loop with pipeline initiation interval as 1 (II=1).
The output of this function is the encoded spikes only for
the activated neurons in the input layer.
NEURON_ENCODING. First, we parallelize the neuron en-
coding for each input feature map of a layer by partially
unrolling the input feature map loop with a factor of EMaps.
Inside each feature map, we pipeline the neural encoding of
each neuron with II=1. The output of this function is the
encoded spikes only for the activated neurons in that layer.
If it is the final layer, it gives the classification output.

For those activated neurons, we encode their original neuron
index and aggregated number of spikes in a pair of arrays
(Spike_index and Spike_count); we also record the total
number of spiked neurons (#Spike_neurons). While such
encoding reduces the total number of computations as only
activated neurons are encoded and computed, it also creates
the dynamic and irregular access pattern challenge.

C. Memory Access Optimization

The aforementioned event-driven nature of SNNs makes the
weight access irregular and it is critical to buffer the weights
on chip. In SyncNN, we use a hierarchical on-chip buffering
technique to buffer as many weights as possible, depending
on the network size and the on-chip memory size available on
the FPGA board. We load the weights in a coalesced (widened
bus) and burst fashion [32], [33] from the off-chip memory to
on-chip memory at different granularity.

1. Level 1: If the FPGA board can load the weights corre-
sponding to all the layers in the neural network, the weights
are prefetched at network level and therefore the entire off-
chip access for the network is done only once. This is the
best case scenario for loading the network weights and is
often possible for smaller networks.

2. Level 2: For bigger networks or smaller FPGA boards,
where we cannot load all the weights on-chip, we load
them layer-wise so that the weights buffer can be reused
for every layer in network.

3. Level 3: For very big networks (like NiN, VGG) or very
small FPGA boards, it is not possible to load even one
layer’s weight on-chip. In this case, we go one step further
in granularity and load the weights for every map of the
layer and perform the computation for that map. For the
next map, we again load the weights from off-chip.

V. EXPERIMENTAL RESULTS
A. Experimental Setup

SyncNN framework implements a wide range of image
classification network architectures (CNN models) including
LeNet, Network in Network (NiN) and VGG-13. The network
configurations for each network is summarized in Table I. nCs
denotes the convolutional layer with kernel size s*s and n is the
number of kernels, Ps denotes the pooling layer with size s*s
and GAP denotes Global Average Pooling Layer, and a pure
number n denotes the dense layer with n neurons. The first
LeNet network Lenet-S is the same network configuration used
in [14]. The second LeNet network Lenet-L is comparatively
larger than Lenet-S, where it is difficult to hold all the network
parameters on-chip, but has better accuracy. Three widely
used image classification datasets are evaluated in SyncNN:
MNIST, SVHN and CIFAR-10.

Our SyncNN framework is built using Xilinx SDSoC 2019.1
that integrates Vivado HLS C++. Three different Xilinx SoC
boards are used to test the SyncNN framework: Xilinx Zynq



Table I. Neural network configurations

Network Configuration

Lenet-S Input-32C3-P2-32C3-P2-256-Output

Lenet-L. | Input-32C5-P2-64C5-P2-2048-Output

NiN Input-(192C5-192C1-192C1-P3)*2
-192C5-192C1-10C1-GAP-Output
Input-(64C3-64C3-P2)-(128C3-128C3-P2)

VGG -(256C3-256C3-P2)-(512C3-512C3-P2)*2
-256-256-Output

_ 100 % Our Results

2 9905 W (SyncNN)

> @ Fang et al 2020

8 9 (8 o °

3 98.5 B Fang et al 2020

< % A Shresta et al 2018

Z 975

Z . X @ Wuetal 2018

(7] 97 t t .
“2:225383383888% € Tavanaei et 2019

Encoding Window (Sims) X Shresta et al 2019

Fig. 4. Impact of encoding window on the accuracy for MNIST dataset

100 A SyncNN (NiN)
g 90 @ SyncNN (VGG-
E 13)
5 80 @ Sengupta et Al -
9 70 2019 (VGG-16)
<
% 60 - ————"F—"—F—"F—"~F+—"1—
S S S . L.O S
S S S S quQ 'bQQ %QQ
Encoding Window (Sims)
Fig. 5. Impact of encoding window on the accuracy for CIFAR-10 dataset

ZedBoard, Zynq UltraScale+ ZCU104 and ZCU102 boards.
The main difference between the boards is the available
resources: ZCU102 > ZCU104 > ZedBoard. Our designs run
at 100MHz on ZedBoard, 150MHz on ZCU104, and 200MHz
on ZCU102.

B. Impact of Encoding Window

As the encoding window increases, the network transmits
more spikes to predict the output correctly. For MNIST dataset
with smaller networks, as shown in Figure 4, the encoding
window required to achieve a good accuracy is relatively
small. Shrestha et al. [35], Tavanaei et al. [36], Wu et al.
[37], Shrestha et al. [38] achieves 97.3%, 97.2%, 98.89%,
99.3% accuracy for 200, 50, 30, 20 Sims respectively. More
recently, Fang et al. [14] achieves 99.01% at 7 Sims with a
peak accuracy of 99.43%. Our work, SyncNN achieves better
accuracy of 99.17% for the same 7 Sims and achieves a peak
accuracy of 99.63% with 100 Sims, which is more accurate
than all prior FPGA implementations.

For CIFAR-10 dataset, with larger networks like NiN and
VGG, as shown in Figure 5, the required encoding window
is very large to transmit the needed spikes in the network.
In our SyncNN approach, the NiN achieves 88.19% accuracy
at 400 Sims. And the VGG-13 network achieves 90.79%
accuracy at 1,800 Sims. The recent study by Sengupta et al. [9]
also confirms the need for a larger encoding window as they

I CNN Accuracy M SNN Accuracy (Full Precision) SNN Accuracy (16 Bits)
I SNN Accuracy (8 Bits) M SNN Accuracy (4 Bits)
100
95
90

S

> 85

8

\a- 80

g 75

70
MNIST MNIST SVHN SVHN  CIFAR-10 CIFAR-10
(Lenet-S) (Lenet-L) (Lenet-S)  (VGG) (NiN) (VGG)
Fig. 6. Inference accuracy comparison of CNN and SyncNN based SNNs

with different data precision

B ZED Board [ ZCU104 ZCU102

MNIST (Lenet-S) =1’370‘86

MNIST (Lenet-L) 1,629
SVHN (Lenet-S) = 3,605
SVHN (VGG) 65
CIFAR-10 (NiN) [
CIFAR-10 (VGG) ; 62
1 10 100 1000 10000

Frames Per Second (FPS)

Fig. 7. Frames per second (FPS) for different networks and datasets running
on different FPGA boards

achieve the peak accuracy at 2,500 Sims with the VGG-16
network.

C. Accuracy of CNN-SNN Conversion and Quantization

In conversion based SNNs, the accuracy of the SNN net-
work is dependent on the underlying CNN accuracy. The
better we train the CNN model, the higher SNN accuracy
is achieved. During the CNN training phase, we use data
normalization, augmentation, regularization and dropout tech-
niques to improve the accuracy of the network. We do not
use batch normalization during training, which is an important
CNN optimization, because it affects the SNN accuracy after
conversion. As summarized in Figure 6, the accuracy loss from
converting CNN to SNN is negligible. When the compute units
are offload to hardware, there is no drop in accuracy with 32
and 16 bits representation. For the LeNet networks there is
negligible drop in accuracy for 8 and 4 bits representations.
For NiN and VGG networks, there is negligible drop for 8
bits, but big drop for 4 bits. Therefore, we use 4 bits for
LeNet networks and 8 bits for NiN and VGG networks in
SyncNN hardware evaluation. We plan to further improve the
4-bit accuracy for deeper networks in future work.

D. Overall Performance

Figure 7 shows the overall performance of each network
with the best configuration on each FPGA board (configuration
parameters are presented in Section IV-B). The ZCU102 board
is about 1.46x to 8.4x faster than the ZCU104 board and 26.7x
to 60.9x faster than the ZED board for various networks.



Table II. Comparison with related work for image classification using SNNs for the MNIST dataset

Training Precision Accuracy FPS/ | FPS per
Work Platform Frequency Method (bits) Network (%) FPS DSP 1k LUTs
Stromatias et al. (2015) [22] | ASIC SpiNNaker 150MHz Spike Based 16 | MLP 95 50 - -
Esser et al. (2015) [34] ASIC True North - Offline Training Binary | - 95 1,000
Darwin (2017) [25] ASIC - 25MHz - 16 | MLP 93.8 6.25 -
Minitaur (2014) [17] FPGA Spartan-6 LX150 75MHz Spike Based 16 | MLP 92 108 1.22
Han et al. (2020) [15] FPGA Xilinx ZC706 200MHz Converted SNNs 16 | MLP 97.06 161 29.92
Ju et al. (2020) [16] FPGA | Xilinx ZCU102 150MHz Converted SNNs 8 giget) 98.94 164 1.52
ASIC Intel Loihi - 671
CPU Tntel 19-9900K 3.7GHz 100
GPU Nvidia RTX 5000 1.62GHz CNN 864
Fang et al. (2020) [14] g%%? Nvidia AGX Xavier | 137GHz | Spike Based 16} (Lenet-s) 9.2 211
FPGA | “ulinx ZCUL02 125MHz 2,124 | 118 13.62
(Simulation)
CNN
99.3 | 13,086 | 19.23 61.2
SyncNN FPGA | Xilinx ZCU102 200MHz | Converted SNNs 4 | (Lenet-S)
(Our Work) CNN
99.6 1,629 2.94 7.25
(Lenet-L)

On the ZCU102 board, the MNIST dataset for the Lenet-
S network achieves a maximum of 13,086 FPS (frames per
second) whereas it can achieve 1,629 FPS for the Lenet-L
network. The SVHN dataset achieves a maximum of 3,695
FPS for the LeNet-S network and 65 FPS for the VGG
network. The CIFAR-10 dataset achieves a maximum of 147
FPS for NiN network and 62 FPS for the VGG network.

E. Comparison with Related Work

Most of the related studies are evaluated on the MNIST
dataset with MLP or smaller CNN networks like LeNet.
Table IT summarizes all the recent related work of SNNs on
FPGAs and neuromorphic hardware for the MNIST dataset.
The FPGA implementations, Minitaur [17], Han et al. [15],
and Ju et al. [16], achieve 92%, 97.06%, and 98.94% accuracy
with 108, 161 and 164 FPS, respectively. The prior neuromor-
phic hardware studies, Darwin [25], Stromatias et al. [22], and
Esser et al. [34], achieve 93.8%, 95%, 95% accuracy with 6.25,
50, and 1,000 FPS respectively. More recently, a temporal
encoding based SNN inference on Xilinx ZCU102 SoC board
for MNIST image clasification achieves an accuracy of 99.2%
and a simulation performance of 2,124 FPS [14] at 125MHz.
Shown in Table II, the same work also demonstrates superior
performance of FPGA-based SNNs over that on CPU, GPU,
Intel Loihi neuromorphic chip [14].

Our SyncNN framework stands out in terms of all
four metrics—accuracy, FPS, FPS per DSP, and FPS per
1K LUTs usage—for the MNIST dataset, compared to
the prior neuromorphic hardware implementations, FPGA
and GPU implementations. SyncNN achieves a maximum of
13,086 FPS at 99.3% accuracy for the same Lenet-S network
and the same FPGA board used in [14]. Also, SyncNN
achieves 99.6% accuracy with 1,629 FPS on a bigger network
Lenet-L. For both networks, the hardware runs at 200MHz.
SyncNN is the first work to explore 4 bits weights precision
for SNNs on FPGAs. It is also the first SNN framework on
FPGAs that supports deep CNN models like VGG and NiN.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a novel synchronous
approach called SyncNN, to accelerate event-driven rate en-
coding SNNs on FPGAs. First, we quantitatively compared
the CNNs, asynchronous SNNs, and SyncNNs, to demonstrate
the advantage of SyncNNs. Second, we applied SNN-friendly
quantization, to reduce the computing operations and memory
accesses. Moreover, we developed configurable and scalable
computing engines on FPGAs to accelerate different network
models of SNNs across various Xilinx ARM-FPGA SoCs.
SyncNN is capable to run any deep networks on a given
Xilinx ARM-FPGA SoC and it is the first work to explore
NiN and VGG networks for SNNs on FPGAs. SyncNN
achieves the state-of-the-art performance for MNIST dataset
with 13,086 FPS, which is 6.16x faster than the previous
state-of-the-art implementation for the same network con-
figuration and same FPGA board. SyncNN reports the best
accuracy of 99.6% for MNIST, which is so far the highest
accuracy recorded for SNNs on any hardware implementation,
to the best of our knowledge. We also open source SyncNN
(https://github.com/SFU-HiAccel/SyncNN) to the community
to stimulate more researches in the area of FPGA-based SNNs
that has a high potential in future deep learning systems. In
future work, we plan to further improve the accuracy and
performance of deeper SNN networks at lower data precision.

ACKNOWLEDGMENTS

We acknowledge the support from Natural Sciences and
Engineering Research Council of Canada (NSERC Discovery
Grant RGPIN-2019-04613 and DGECR-2019-00120, Alliance
Grant ALLRP-552042-2020); Canada Foundation for Inno-
vation John R. Evans Leaders Fund and British Columbia
Knowledge Dev. Fund; Simon Fraser University New Faculty
Start-up Grant; Huawei, Xilinx, and Nvidia. We also thank Dr.
Abhronil Sengupta and his group from Penn State University
for helping us better understand training techniques for SNNs,
and Kunpeng Xie from Nankai University for helping us
collect data on Xilinx ZCU102 FPGA board.




[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

REFERENCES

M. Pfeiffer and T. Pfeil, “Deep learning with spiking neurons: Opportu-
nities and challenges,” Frontiers in Neuroscience, vol. 12, p. 774, 2018.
W. Maass, “Networks of spiking neurons: The third generation of neural
network models,” Neural Networks, vol. 10, no. 9, pp. 1659 — 1671,
1997.

H. Fang, A. Shrestha, Z. Zhao, and Q. Qiu, “Exploiting neuron and
synapse filter dynamics in spatial temporal learning of deep spiking
neural network,” in Proceedings of the Twenty-Ninth International Joint
Conference on Artificial Intelligence (IJCAI-20), 07 2020, pp. 2771-
27178.

S. M. Bohte, J. N. Kok, and H. L. Poutré], “Error-backpropagation
in temporally encoded networks of spiking neurons,” Neurocomputing,
vol. 48, no. 1, pp. 17 — 37, 2002.

S. McKennoch, Dingding Liu, and L. G. Bushnell, “Fast modifications
of the spikeprop algorithm,” in The 2006 IEEE International Joint
Conference on Neural Network Proceedings, 2006, pp. 3970-3977.

F. Ponulak and A. Kasiundefinedski, “Supervised learning in spiking
neural networks with resume: Sequence learning, classification, and
spike shifting,” Neural Comput., vol. 22, no. 2, p. 467-510, Feb. 2010.
A. Taherkhani, A. Belatreche, Y. Li, and L. P. Maguire, “Dl-resume:
A delay learning-based remote supervised method for spiking neurons,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 26,
no. 12, pp. 3137-3149, 2015.

G.-q. Bi and M.-m. Poo, “Synaptic modifications in cultured hip-
pocampal neurons: Dependence on spike timing, synaptic strength, and
postsynaptic cell type,” Journal of Neuroscience, vol. 18, no. 24, pp.
10464-10472, 1998.

A. Sengupta, Y. Ye, R. Wang, C. Liu, and K. Roy, “Going deeper in
spiking neural networks: Vgg and residual architectures,” Frontiers in
Neuroscience, vol. 13, p. 95, 2019.

P. U. Diehl, D. Neil, J. Binas, M. Cook, S. Liu, and M. Pfeiffer, “Fast-
classifying, high-accuracy spiking deep networks through weight and
threshold balancing,” in 2015 International Joint Conference on Neural
Networks (IJCNN), 2015, pp. 1-8.

E. Hunsberger and C. Eliasmith, “Training spiking deep networks for
neuromorphic hardware,” arXiv:1611.05141, 2016.

B. Rueckauer, I.-A. Lungu, Y. Hu, and M. Pfeiffer, “Theory and tools
for the conversion of analog to spiking convolutional neural networks,”
arXiv:1612.04052, 2016.

R. Brette and D. F. Goodman, “Simulating spiking neural networks on
gpu,” Network: Computation in Neural Systems, vol. 23, no. 4, pp. 167—
182, 2012.

H. Fang, Z. Mei, A. Shrestha, Z. Zhao, Y. Li, and Q. Qiu, “Encoding,
model, and architecture: Systematic optimization for spiking neural
network in fpgas,” in 2020 IEEE/ACM International Conference On
Computer Aided Design (ICCAD), 2020, pp. 1-9.

J. Han, Z. Li, W. Zheng, and Y. Zhang, “Hardware implementation of
spiking neural networks on fpga,” Tsinghua Science and Technology,
vol. 25, no. 4, pp. 479-486, 2020.

X. Ju, B. Fang, R. Yan, X. Xu, and H. Tang, “An fpga implementation
of deep spiking neural networks for low-power and fast classification,”
Neural Computation, vol. 32, no. 1, pp. 182-204, 2020.

D. Neil and S. Liu, “Minitaur, an event-driven fpga-based spiking
network accelerator,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 22, no. 12, pp. 2621-2628, 2014.

Morcos, Benjamin, “Nengofpga: an fpga backend for the nengo neural
simulator,” 2019. [Online]. Available: http://hdl.handle.net/10012/14923
J. Moorkanikara Nageswaran, N. Dutt, J. Krichmar, A. Nicolau, and
A. Veidenbaum, “A configurable simulation environment for the efficient
simulation of large-scale spiking neural networks on graphics proces-
sors,” Neural networks : the official journal of the International Neural
Network Society, vol. 22, pp. 791-800, 08 2009.

A. K. Fidjeland and M. P. Shanahan, “Accelerated simulation of spiking
neural networks using gpus,” in The 2010 International Joint Conference
on Neural Networks (IJCNN), 2010, pp. 1-8.

J. Schemmel, D. Briiderle, A. Griibl, M. Hock, K. Meier, and S. Millner,
“A wafer-scale neuromorphic hardware system for large-scale neural
modeling,” in 2010 IEEE International Symposium on Circuits and
Systems (ISCAS), 2010, pp. 1947-1950.

E. Stromatias, D. Neil, F. Galluppi, M. Pfeiffer, S.-C. Liu, and S. Furber,
“Scalable energy-efficient, low-latency implementations of trained spik-

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

[36]

[37]

[38]

ing deep belief networks on spinnaker,” in 2015 International Joint
Conference on Neural Networks (IJCNN), 07 2015.

C. Mayr, S. Hoppner, and S. Furber, “Spinnaker 2: A 10 million
core processor system for brain simulation and machine learning,”
arXiv:1911.02385, 2019.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo,
I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner,
W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron
integrated circuit with a scalable communication network and interface,”
Science, vol. 345, no. 6197, pp. 668-673, 2014.

M. De, S. JunCheng, G. ZongHua, Z. Ming, Z. XiaoLei, X. XiaoQiang,
Q. Xu, S. YangJing, and G. Pan, “Darwin: a neuromorphic hardware
co-processor based on spiking neural networks,” Journal of Systems
Architecture, vol. 77, 01 2017.

S. K. Esser, P. A. Merolla, J. V. Arthur, A. S. Cassidy, R. Appuswamy,
A. Andreopoulos, D. J. Berg, J. L. McKinstry, T. Melano, D. R. Barch,
C. di Nolfo, P. Datta, A. Amir, B. Taba, M. D. Flickner, and D. S.
Modha, “Convolutional networks for fast, energy-efficient neuromorphic
computing,” Proceedings of the National Academy of Sciences, vol. 113,
no. 41, pp. 11441-11 446, 2016.

A. Rosado-Muioz, M. Bataller-Mompean, and J. Guerrero-Martinez,
“Fpga implementation of spiking neural networks,” IFAC Proceedings
Volumes, vol. 45, no. 4, pp. 139 — 144, 2012, 1st IFAC Conference
on Embedded Systems, Computational Intelligence and Telematics in
Control.

K. Cheung, S. R. Schultz, and W. Luk, “Neuroflow: A general purpose
spiking neural network simulation platform using customizable proces-
sors,” Frontiers in Neuroscience, vol. 9, p. 516, 2016.

D. Pani, P. Meloni, G. Tuveri, F. Palumbo, P. Massobrio, and L. Raffo,
“An fpga platform for real-time simulation of spiking neuronal net-
works,” Frontiers in Neuroscience, vol. 11, p. 90, 2017.

R. M. Wang, C. S. Thakur, and A. van Schaik, “An fpga-based massively
parallel neuromorphic cortex simulator,” Frontiers in Neuroscience,
vol. 12, p. 213, 2018.

T. Kawao, M. Neishi, T. Okamoto, A. M. Gharehbaghi, T. Kohno, and
M. Fujita, “Spiking neural network simulation on fpgas with automatic
and intensive pipelining,” in 2016 International Symposium on Nonlinear
Theory and Its Applications, NOLTA2016, 11 2016, pp. 202-205.

A. Lu, Z. Fang, W. Liu, and L. Shannon, “Demystifying the memory
system of modern datacenter fpgas for software programmers through
microbenchmarking,” in The 2021 ACM/SIGDA International Sympo-
sium on Field-Programmable Gate Arrays, ser. FPGA *21. Association
for Computing Machinery, 2021, p. 105-115.

C. Zhang, G. Sun, Z. Fang, P. Zhou, P. Pan, and J. Cong, “Caffeine:
Toward uniformed representation and acceleration for deep convolutional
neural networks,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 38, no. 11, pp. 2072-2085, 2019.
S. K. Esser, R. Appuswamy, P. Merolla, J. V. Arthur, and D. S.
Modha, “Backpropagation for energy-efficient neuromorphic comput-
ing,” in Advances in Neural Information Processing Systems, C. Cortes,
N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, Eds., vol. 28.
Curran Associates, Inc., 2015, pp. 1117-1125.

S. B. Shrestha and G. Orchard, “Slayer: Spike layer error reassignment in
time,” in Advances in Neural Information Processing Systems, S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Gar-
nett, Eds., vol. 31. Curran Associates, Inc., 2018, pp. 1412-1421.

A. Tavanaei and A. Maida, “Bp-stdp: Approximating backpropagation
using spike timing dependent plasticity,” Neurocomputing, vol. 330, pp.
39 — 47, 2019.

Y. Wu, L. Deng, G. Li, J. Zhu, and L. Shi, “Spatio-temporal backpropa-
gation for training high-performance spiking neural networks,” Frontiers
in Neuroscience, vol. 12, p. 331, 2018.

A. Shrestha, H. Fang, Q. Wu, and Q. Qiu, “Approximating back-
propagation for a biologically plausible local learning rule in spiking
neural networks,” in Proceedings of the International Conference on
Neuromorphic Systems, ser. ICONS ’°19. New York, NY, USA:
Association for Computing Machinery, 2019.



