
Blind Data Adversarial Bit-flip Attack against Deep Neural

Networks

Behnam Ghavami, Mani Sadati, Mohammad Shahidzadeh, Zhenman Fang, Lesley Shannon
Simon Fraser University, Burnaby, BC, Canada

Shahid Bahonar University of Kerman, Iran

Emails: {behnam ghavami, zhenman, lesley shannon}@sfu.ca

Abstract—Because of their high accuracy, deep neural net-
works (DNNs) have achieved amazing success in security-critical
systems such as medical devices. It has recently been demon-
strated that Adversarial Bit Flip Attacks (BFAs) against DNN
hardware by flipping a very small number of bits can result in
catastrophic accuracy loss. The reliance on test data, however,
is a significant drawback of previous state-of-the-art bit-flip
attack methods. This is frequently not possible with applications
containing sensitive or proprietary data. In this paper, we propose
Blind Data Adversarial Bit-flip Attack (BDFA), a novel technique
to enable BFA against DNN hardware without any access to the
training or testing data. This is achieved by optimizing for a
synthetic dataset, which is engineered to match the statistics of
batch normalization across different layers of the network and
the targeted label. Experimental results show that BDFA could
decrease the accuracy of ResNet50 significantly from 75.96% to
13.94% with only 4 bits flips.

I. INTRODUCTION

In recent years, Deep Neural Networks (DNNs) have

achieved tremendous results on different computer vision and

speech recognition tasks such as image classification[1], [2],

object detection[3], and segmentation[4]. As DNNs become

more popular and applicable in real-world scenarios, their

security and safety issues are also becoming crucial. As a

result, it is critical to investigate the vulnerability of DNN-

based systems against various attacks.

Several serious security concerns have recently revealed in

various DNN-related applications. The most popular security

concern with DNNs is perturbed inputs, also known as ”adver-

sarial example” [5], [6], [7], [8], [9], [10], [11]. By introducing

minor changes to the original inputs, this type of attack can

cause a DNN to produce misclassification outputs.

Recently, a new class of attacks has raised further security

concerns on DNNs known as adversarial parameter attacks via

the development of fault injection attacks on the storage of

DNN parameters [12], [13], [14], [15], [16], [17]. This type

of attacks try to perturb DNN’s parameters in the memory

via intentional bit-flipping and cause the DNN to malfunc-

tion. These malicious bit-flips have been realized in DNN

accelerators via well know RowHammer attack on the DRAM

containing the model parameters [15]. RowHammer attack[18]

has been shown to maliciously flip the memory bits in DRAM

in a software manner without being granted any data write

privileges.

In the security analysis of DNN models, adversarial pa-

rameter perturbation is an active area of research. However,

Generating
Distilled

Data
Gradient

based
vulnerable

bits
selection

…
…
…

Perturb
Parameters

Pre-processing

Online Inference

Clean inference Perturbed inference

dog horse

Fig. 1: A general view of proposed blind data bit-flip attack

flow. Synthetic data are generated and used to enable conven-

tional gradient-based bit-flip attack.

deploying adversarial perturbations on DNNs in real-world

applications is difficult because existing work on bit-flip

attacks [12], [13], [14], [15], [16], [17] focuses primarily

on ”whitebox settings” in which the attacker has complete

access to the target model and test/training data. The white box

assumption allows an attacker to gain access to a collection of

network architecture, parameter values, and test data. Although

side-channel model extraction techniques [19], [20], [21], [22],

[23], [24], [25], [26], [27], [28], [29] can be used to extract

information about network architecture and parameters; how-

ever, still, the main difficulty in employing prior adversarial

bit flip attacks (BFAs) is that the perturbing entity, i.e., the

adversary, must have access to network test/validation data.

This is because in BFA, as will be introduced in section III,

the adversary should determine the vulnerable bits deploying

gradient computation and hence, needs to rank the sensitivity

of every attackable bit over all the DNN’s parameters. On

the other hand, training/test data is frequently unavailable in

many real-world scenarios due to privacy concerns, such as

medical and confidential applications (this is known as the

”blind-data” setting.). Health information is an example of

a use case that cannot be uploaded due to various privacy

concerns or regulatory restrictions. As a result, traditional BFA

methods might not be practically deployed in such DNN-based

899

2022 25th Euromicro Conference on Digital System Design (DSD)

2771-2508/22/$31.00 ©2022 IEEE
DOI 10.1109/DSD57027.2022.00126

edge applications.

In this paper, we introduce a new and effective blind data

bit-flip attack that causing the DNN to malfunction completely

just via bit flipping a few of DNN parameters. In this regard,

we generate synthetic data similar to the training dataset using

the knowledge of the DNN architecture and deep learning

datasets in general (Figure 1). The distilled data is only

obtained by inspecting the trained model and would be used

via traditional gradient-based BFA technique to find the most

vulnerable bits. This work is a step closer to achieving a fully

black-box parameter attack. Experimental results show that

the introduced blind data Bit-Flip attack (BDFA) can perform

similar results to the conventional data-dependent Bit-Flip

Attack (BFA) [14]. For example, on ResNet50 architecture

that trained on the CIFAR100 dataset, BDFA can crush the

DNN model down to the accuracy of 11% by just flipping 8

bits in memory.

In summary the main contributions of this paper are as

below:

• We are the first to develop an adversarial parameter bit-

flip attack that does not require any data to attack the

DNN model.

• We demonstrate that traditional data distillation tech-

niques that only consider the statistics of the batch

normalisation layers and do not specify any specific

output label would not work efficiently via DNN attack

purpose. In this regard, we present a novel data distillation

comprised of three distinct sections: batch normalisation

loss, DNN output loss, and input normalisation, in order

to deploy traditional gradient-based bit-flip attacks via

blind-data setting.

• Our bit-flip attack results are comparable to, and even

outperform, white-box DNN attacks in some conditions.

The rest of this paper is as follows: Section II gives an

overview of prior DNN bit-flip attacks. Section III contains

the proposed blind data bit-flip attack. Section IV presents the

experimental results. Finally, Section V concludes the paper.

II. RELATED WORK

Fault injection attacks have been used to change the key

DNN parameters, like weights and biases, in which stored

in memory, reducing overall prediction accuracy to that of

random guesses. Liu et al. [12] began by investigating memory

error injection on DNN hardware in order to achieve misclassi-

fication. Breier et al. [13] experimentally showed what types of

memory fault attacks are achievable in practice. They injected

faults into the activation function of the DNN to missclassify

a predefined input. Rakin et al. [14] demonstrated how to

identify memory error patterns that can significantly reduce

DNN accuracy. Yao et al. [15] attempted to attack the DNN

hardware, which stores network weights in DRAM, using the

well-known row hammer attack [18]. Zhao et al. [16] launched

a DNN classifier bit flipping attack to secretly misclassify

some predefined inputs. Rakin et al. [17] also introduced an

aggressive bit flip attack against the DNN model. Its goal was

to identify the weights that are strongly associated with target

output misclassification. Ghavami et al. [30] recently presented

an stealthy attack on DNNs to circumvent the algorithmic

defenses: via smart bit flipping in DNN weights, they reserved

the classification accuracy for clean inputs but misclassify

crafted inputs even with algorithmic countermeasures.

Limitations of previous works: All previous bit-flip attacks

required access to the original testing dataset in order to locate

the most vulnerable bits of DNN, which may not be applicable

in all application scenarios.

III. PROPOSED ATTACK

In this section, we present the Blind Data Bit-Flip Attack

(BDFA) to maliciously cause a DNN system to malfunc-

tion through flipping extremely small amount of the most

vulnerable weight bits. To identify the most vulnerable bits,

there is a need to compute the gradient of each bit with

respect to the DNN’s loss function and some input data. Since

we assume that the training/testing dataset is not accessible,

we generate a batch of synthetic test data using the trained

network architecture itself. Our main idea is inspired by prior

work in data free DNN quntization [31], [32].

A. Bit-Flip Attack [14]

Conventional BFA [14] aims to degrade the overall accuracy

of a DNN. BFA uses the gradient ranking and a progressive

bit search to find the most vulnerable bits of a network.

1) Problem Formulation: We denote W as a vector of

length n containing all the q-bit quantized and attackable

parameters in DNN and B as the vector of binary values,

representing all of the bits in W [14]. BFA tries to find a set

of parameters B′, which has the closest hamming distance D
to B and causes the network to malfunction. In other words,

it tries to maximize the loss between real parameters B and

perturbed parameters B′ where the distance between them is

smaller than a constant C which is the maximum number of

bit flips that can be performed [14]:

max
B′

L(H(B′;X), Y)− L(H(B;X), Y)

s.t. D(B′, B) < C
(1)

where X is the input batch and Y is the target output of that

batch, and L is loss function on D through adjusting DNN

parameters.

2) Vulnerable bit finding: Using a batch of test data, BFA

finds the most vulnerable bits. It first ranks the bits by their

gradient, and in the next step tries to find the most vulnerable

bits. It ranks all the network’s bits B by absolute value of their

gradient with respect to the loss L. For this purpose, it first

computes the loss function L by providing input data X and

output targets Y computed in the section B. Then, it calculates

the gradients with respect to the loss through back propagation

[14]:

L =
1

N

N∑

i=1

f(H(Xi;B), Yi) (2)

−→∇L = { ∂L
∂b0

, ...,
∂L
∂bN

} (3)

900

For finding the most vulnerable bits, BFA uses progress bit

search that has two main steps: A) Inner-layer search: In this

step, it finds the most vulnerable bits with the use of gradient

ranking in every layer and computes the model loss after

flipping them. B) Cross-layer search: In this step, it chooses

the layer that increased the loss more than other layers and

flips the selected bit in that layer. It performs this process

several times until it causes the network to malfunction with

a small number of bit flips.

B. Generating Attack Oriented Synthetic Data

As shown in the previous section, BFA needs a batch

of input data and the corresponding labels in the form of

{(x1, y1), (x2, y2), ..., (xn, yn)} for computing the loss func-

tion, which is not accessible in all scenarios. To address this

issue, a very naive approach would be to generate random

input data from a Gaussian distribution and feed it into the

model. This method, however, is incapable of capturing the

correct statistics of the training/testing data used for computing

the gradients.

In order to generate proper input data to perform attack,

we use multiple similarity measures to reconstruct statistically

similar data samples to dataset D by starting from randomly

generated samples.

1) Input similarity: Starting from random data, in order to

make them statistically similar to training data, they should

have a close mean and variance to the data samples in D. We

set the mean and variance of the initial random data to 0 and

1, respectively. This is because almost all of the deep learning

systems use a normalized input to get a more standard and

accurate model.

2) Batch normalization layer statistics: Another statistical

information comes from the batch normalization layers. Each

batch normalization layer contains statistical channel-wise

information (mean and variance) of its input neurons during

the training process. As a result, by making the statistics of

hidden neurons close to the pre-stored statistics of training

data, we can have more similarities between the generated

data and the training samples. The formulated batch-norm

similarity can be shown as [31]:

μ̃l(c) = Ex[sum(
1

h ∗ w.featuremapcl (x)] (4)

σ̃2
l (c) = Ex[sum(

1

h ∗ w.(featuremapcl (x)− μ̃(c))2] (5)

where featuremapcl (x) represents the values of cth input

channel in the lth bach normalization layer given input data

x. Note that both μ̃l and σ̃2
l are vectors with length Cl which

is the number of input channels in lth batch normalization

layer. We calculate σ̃l, the standard deviation of each channel

by taking the square root of the elements in the vector σ̃2
l .

The generated batch should have a close μ and σ to the

μ̃ and σ̃ that were computed in the training process. In

order to estimate the similarity of generated data and the

training data, we use the mean squared error as the loss

function. By minimizing this loss function, we decrease the

Euclidean distance of statistical information in batch-norm

layers between the training data and the synthetic data [31]:

min
X

LossBN (X) =

L∑

i=0

||μ̃i − μi||22 + ||σ̃i − σi||22 (6)

3) Label similarity: To get the gradient of each bit in every

parameter, we need to compute the loss function. Based on

Equation 2, in order to compute the loss function, each input

data should have a ground-truth label. So, we need to assign

a label to each generated data sample. Also, every parameter

in the network is trained to minimize the loss function over

training data. Therefore, to have similar distilled data and

training data, we train distilled data in a way that the model’s

loss function is minimized with respect to the given input and

the ground-truth label. However, instead of adjusting DNN

parameters, we adjust the input data to minimize the loss

function. Since the generated data are random at the beginning

and do not have any labels, we can randomly assign labels to

each input and train them to minimise the model loss:

min
Xr

LossDNN (X) =
1

N

N∑

i=1

f(Y
′
i , Yi) (7)

4) Combining together: In the first step of generating the

synthetic inputs, we set the mean and variance of the random

training batch to 0 and 1. Then we define the distillation loss

as a combination of LossDNN and LossBN . In other words,

in the training process we try to minimize the following loss

function:

min
Xr

L(X) = α . LossBN (X) + β . LossDNN (X) (8)

α and β are hyper parameters for the loss function to balance

the effect of each part of the loss function.

The pseudo-code provided for the task is presented in

Algorithm 1. In this algorithm, given model M and knowing

that the data shape is N ∗C ∗H ∗W , we want to generate a

batch of data X (line 2). Note that N is the batch size, and each

input data has a shape of C ∗H ∗W . The algorithm begins by

generating a random batch of data from the normal distribution

with μ = 0 and σ = 1. Line 3 and 4 store computed mean and

standard deviation of each BN layer, which were calculated

and saved in those layers, during the training process. In line 5,

as mentioned in section B.3, we randomly assign each data in

the batch to a ground-truth label, and we will use these labels

to train our distilled data according to equation 6. Line 6 to 12

is the main loop for the generation of data. Like every other

deep learning training process, we start each iteration with a

forward propagation and compute μ and σ and the outputs of

DNN, using our data X (line 7). In lines 8 and 9, we compute

the two parts of the final loss function according to equations

5 and 6. Then we calculate the total loss by combining these

two parts and adding the hyper-parameters to balance the loss

function. Finally, in line 11, we do the back-propagation and

update data X. By doing this for enough iterations (e.g., 500),

we can produce our distilled data and use it to attack the DNN

model.

901

Fig. 2: The Top one accuracy of BDFA and BFA after performing 0 to 30 bit-flips. We repeated the experiment 5 times. The

line indicates the average over these 5 tests. The shadow around each line indicates the error band(the minimum and maximum

of these 5 tests).

Algorithm 1 Synthetic Data Generation

Input: A Deep learning model M with L layers of BN

shape=(N=batch size,C=3,H=32,W=32)

Output:Generated data X

1: procedure GENERATE DATA(M ,Shape)

2:
−→
X ← RandomNormalizedData(Shape)

3: μ̃∀j∈1,2,..,L ← computed mean in the training process

4: σ̃∀j∈1,2,..,L ← computed std in the training process

5: y ← GenerateRandomLabel(N)

6: for iteration = 1, 2, . . . do
7: μj ,σj ,y

′ ← ForwardProp(
−→
X ,M) � ∀j ∈ 1, 2, .., L

8: lossBN ← BNLOSS(μ,σ,μ̃,σ̃) � equation 5

9: lossDNN ← DNNLOSS(y,y
′
) � equation 6

10: loss ← α.lossBN + β.lossDNN

11:
−→
X ← updated

−→
X by BackProp(loss)

12: end for
13: return (

−→
X, y) �

−→
X is the generated artificial input

batch and y is the target output

14: end procedure

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

1) Datasets: We used CIFAR-10, and CIFAR-100 [33],

popular datasets for image classification. We used these

datasets to train our models. Both CIFAR-10 and CIFAR-100

contain 60000 RGB images with a size of 32 ∗ 32.

2) DNN Architectures: We chose VGG16 and ResNet50,

which are two of the conventional CNN architectures. Both of

these architectures use batch normalization layers to achieve

better performance. VGG16 and ResNet50 have, respectively,

13 and 53 batch normalization layers. We implement these

architectures in the Pytorch framework [34] and use 8-bit

quantization [35] for network parameters.

3) Attack Assumptions: In our experiments, we assume

that we have full access to the network’s parameters and

architecture. However, contrary to previous papers, we do not

assume having a batch of input data; Instead, we use generated

distilled data as the inputs for DNN.

B. Attack results and comparing to other methods

In this section, we demonstrate our results on different

networks and datasets and compare our results to previous

work done by Rakin et al. [14]. Table I shows the baseline

accuracy of both networks on CIFAR-10 and CIFAR-100. In

the experiments, we use a batch size of 128, the best batch size

for Bit-Flip Attack [14], to have a fair comparison. However,

we are able to generate data as much as we want.

BDFA was able to successfully attack all of the models and

datasets that were given. Interestingly, BDFA forces a single

output label to be applied to almost all the input images (as

shown in Fig 3). It means that after a few initial bit-flips,

BDFA tries to maximize the output of one class in order to

always make it the selected output.

Network CIFAR-10 Acc(%) CIFAR-100 Acc(%)

Resnet50 94.63 75.96

VGG16 93.05 72.34

TABLE I: The baseline accuracy of 8 bit quantized Resnet50

and VGG16 on cifar10 and cifar100 datasets.

CIFAR100: The top row of Figure 2 shows the obtained

results from attacking ResNet50 and VGG16 on the CIFAR-

100 dataset. In ResNet50, the model accuracy decreases sig-

nificantly from 75.96% to 13.94% with only 4 bits flips, and in

4 of the 5 tests performed, it reaches less than 9%. Also, based

902

Fig. 3: Comparison between the confusion matrix of a clean

ResNet50 model trained on CIFAR-10 with the same model

after flipping 10 bits of its parameters.

on Table II, by continuing bit-flips up to 30 bits, it reaches

an average of 3.6%. For the VGG16 network, the model’s

accuracy after 9 bit-flips drops from 72.34% to less than 30%

in all 5 tests, and the average accuracy in different runs after

30 bits-flips reaches 11.05%, showing the attacks were quick

and successful.

Network CIFAR-100 CIFAR-10
BDFA(%) BFA(%) BDFA(%) BFA(%)

Resnet50 3.6 ± 1.6 3.94 ± 1.5 15.08 ± 16.3 10.1 ± 0.1
VGG16 11.05 ± 6.3 5.8 ± 4.9 24.3 ± 2.9 11.5 ± 2.9

TABLE II: Top one accuracy comparison of BDFA and BFA

after performing 30 bit-flips. These results are the average over

5 tests plus maximum error obtained by the average.

CIFAR10: The bottom row of Figure 2 shows the accuracy

drop comparison between BDFA and BFA [14] on VGG16

and Resnet50 in which trained on CIFAR-10. As shown in

Table II, the accuracy of VGG16 and ResNet50 decreases to

nearly 24.3% and 15.08% with only 30 bit-flips. This shows

that BDFA is able to decrease the model accuracy significantly

by only flipping 30 bits out of more than 500 million ResNet50

parameters (4 billion bits).
Comparision to BFA: As shown in Figure 2, both BDFA

and BFA work well for finding the first few vulnerable bits

and causing DNN to malfunction. In Resnet50 trained on

CIFAR100, we achieve better performance than BFA, and with

only 4 bit-flips, BDFA can decrease the model accuracy to

5-20%. Therefore, it shows that the artificial data has better

statistical similarities than one batch of training data. Although

using distilled data can drastically decrease the accuracy of

the model to 20-10% with just 10-20 bit-flips, it can not

completely destroy the function of DNN and decrease it to

0%. It is also worth noting that, unlike the BFA, the BDFA

has no access to any kind of test data.
Effectiveness Of Distilled Data: Here, we discuss the

importance of generating distilled data as described in sec-

tion III. Fig 4 depicts the attack effectiveness for different

loss functions in case of VGG16 in CIFAR-10. The random

Gaussian data (blue) and the Batch-Norm loss (orange), do

not have ground-truth labels. Therefore, we assign their labels

to a random class. In the case of Gaussian data, the inputs

Fig. 4: Comparison between different part of loss function for

generating distilled data. The blue plot indicates that random

gaussian inputs were used for the attacking purpose, whereas

the orange (DNN loss), green (BNN loss), and red (BDFA)

plots indicate the loss function used for generating the input

data based on equations 7, 6, and 8, respectively.

are just generated from a uniform random distribution. Since

it does not use any statistical similarities for neurons, it does

not affect DNN, and we can not find the vulnerable bits with

random data. The furthest we can get by using this method is

to reach 1.2% accuracy drop. The orange line is showing the

results for using data generated by only the second part of the

loss function (equation 5). It is still unable to crush DNN and

only can cause 1.2% accuracy drop after 30 bit-flips, same as

random data. The green line shows the result of generating

data based on the first part of the loss function (equation 6).

It implies that batch-norm layer similarities have a notable

impact on the generated data. However, this method is not

solely effective and only decrease the accuracy from 93.05%

to 70-39% (average accuracy drop is 43%). The red line shows

our approach to generating distilled data by combining the

two mentioned loss functions (equation 7). As it can be seen,

thr proposed loss function is able to cause a drastic drop in

accuracy, around 70% with 30 bit-flips and causing DNN

to fully malfunction. It implies that both parts of the loss

functions in equation 7 are necessary and useful to have a

successful attack.

V. CONCLUSION

This paper presents a blind data bit-flip attack (DBFA) on

deep neural networks, which exploits synthetic data for attack

usage. We show that BDFA can decrease model accuracy

dramatically to the random point using the distilled data

which is only obtained by inspecting the pee-trained model.

Experimental results show that the BDFA can perform similar

results to traditional Bit-Flip Attack (BFA) which based on

the training/testing data.

As exploiting the DNN architecture and parameters using

side-channel attacks has shown to be possible, BDFA could be

the first attempt to perform adversarial parameter attacks on

DNNs in a black-box setting by eliminating the need for any

903

input data. This poses an important threat to any safety-critical

application that uses deep learning models.

VI. ACKNOWLEDGEMENTS

We acknowledge the support from Government of Canada

Technology Demonstration Program and MDA Systems Ltd;

NSERC Discovery Grant RGPIN341516, RGPIN-2019-04613,

DGECR-2019-00120, Alliance Grant ALLRP-552042-2020,

COHESA (NETGP485577-15), CWSE PDF (470957); CFI

John R. Evans Leaders Fund; Simon Fraser University New

Faculty Start-up Grant.

REFERENCES

[1] Y. Sun, B. Xue, M. Zhang, and G. G. Yen, “Evolving deep convolu-
tional neural networks for image classification,” IEEE Transactions on
Evolutionary Computation, vol. 24, no. 2, pp. 394–407, 2019.

[2] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Tech. Rep., 2009.

[3] S. S. A. Zaidi, M. S. Ansari, A. Aslam, N. Kanwal, M. Asghar, and
B. Lee, “A survey of modern deep learning based object detection
models,” Digital Signal Processing, p. 103514, 2022.

[4] S. Minaee, Y. Y. Boykov, F. Porikli, A. J. Plaza, N. Kehtarnavaz, and
D. Terzopoulos, “Image segmentation using deep learning: A survey,”
IEEE transactions on pattern analysis and machine intelligence, 2021.

[5] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint
arXiv:1312.6199, 2013.

[6] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[7] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple
and accurate method to fool deep neural networks,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2016,
pp. 2574–2582.

[8] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in 2017 ieee symposium on security and privacy (sp). IEEE,
2017, pp. 39–57.

[9] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Univer-
sal adversarial perturbations,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2017, pp. 1765–1773.

[10] J. Hayes and G. Danezis, “Learning universal adversarial perturbations
with generative models,” in 2018 IEEE Security and Privacy Workshops
(SPW). IEEE, 2018, pp. 43–49.

[11] A. Chaubey, N. Agrawal, K. Barnwal, K. K. Guliani, and P. Mehta,
“Universal adversarial perturbations: A survey,” arXiv preprint
arXiv:2005.08087, 2020.

[12] Y. Liu, L. Wei, B. Luo, and Q. Xu, “Fault injection attack on deep neural
network,” in 2017 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). IEEE, 2017, pp. 131–138.

[13] J. Breier, X. Hou, D. Jap, L. Ma, S. Bhasin, and Y. Liu, “Practical
fault attack on deep neural networks,” in Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, 2018,
pp. 2204–2206.

[14] A. S. Rakin, Z. He, and D. Fan, “Bit-flip attack: Crushing neural network
with progressive bit search,” in Proceedings of the IEEE International
Conference on Computer Vision, 2019, pp. 1211–1220.

[15] F. Yao, A. S. Rakin, and D. Fan, “Deephammer: Depleting the intelli-
gence of deep neural networks through targeted chain of bit flips,” arXiv
preprint arXiv:2003.13746, 2020.

[16] P. Zhao, S. Wang, C. Gongye, Y. Wang, Y. Fei, and X. Lin, “Fault
sneaking attack: A stealthy framework for misleading deep neural
networks,” in 2019 56th ACM/IEEE Design Automation Conference
(DAC). IEEE, 2019, pp. 1–6.

[17] A. S. Rakin, Z. He, J. Li, F. Yao, C. Chakrabarti, and D. Fan,
“T-bfa: Targeted bit-flip adversarial weight attack,” arXiv preprint
arXiv:2007.12336, 2020.

[18] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing them:
An experimental study of dram disturbance errors,” ACM SIGARCH
Computer Architecture News, vol. 42, no. 3, pp. 361–372, 2014.

[19] J. Breier, D. Jap, X. Hou, S. Bhasin, and Y. Liu, “Sniff: reverse
engineering of neural networks with fault attacks,” IEEE Transactions
on Reliability, 2021.

[20] H. Chabanne, J.-L. Danger, L. Guiga, and U. Kühne, “Side channel at-
tacks for architecture extraction of neural networks,” CAAI Transactions
on Intelligence Technology, vol. 6, no. 1, pp. 3–16, 2021.

[21] L. Batina, S. Bhasin, D. Jap, and S. Picek, “Sca strikes back: Reverse
engineering neural network architectures using side channels,” IEEE
Design & Test, 2021.

[22] W. Hua, Z. Zhang, and G. E. Suh, “Reverse engineering convolutional
neural networks through side-channel information leaks,” in 2018 55th
ACM/ESDA/IEEE Design Automation Conference (DAC). IEEE, 2018,
pp. 1–6.

[23] S. J. Oh, B. Schiele, and M. Fritz, “Towards reverse-engineering black-
box neural networks,” in Explainable AI: Interpreting, Explaining and
Visualizing Deep Learning. Springer, 2019, pp. 121–144.

[24] C. Gongye, Y. Fei, and T. Wahl, “Reverse-engineering deep neu-
ral networks using floating-point timing side-channels,” in 2020 57th
ACM/IEEE Design Automation Conference (DAC). IEEE, 2020, pp.
1–6.

[25] L. Batina, S. Bhasin, D. Jap, and S. Picek, “{CSI}{NN}: Reverse
engineering of neural network architectures through electromagnetic side
channel,” in 28th {USENIX} Security Symposium ({USENIX} Security
19), 2019, pp. 515–532.

[26] J. Wei, Y. Zhang, Z. Zhou, Z. Li, and M. A. Al Faruque, “Leaky dnn:
Stealing deep-learning model secret with gpu context-switching side-
channel,” in 2020 50th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). IEEE, 2020, pp. 125–137.

[27] N. K. Jha, S. Mittal, B. Kumar, and G. Mattela, “Deeppeep: Exploiting
design ramifications to decipher the architecture of compact dnns,”
ACM Journal on Emerging Technologies in Computing Systems (JETC),
vol. 17, no. 1, pp. 1–25, 2020.

[28] Y. Zhu, Y. Cheng, H. Zhou, and Y. Lu, “Hermes attack: Steal {DNN}
models with lossless inference accuracy,” in 30th {USENIX} Security
Symposium ({USENIX} Security 21), 2021.

[29] A. S. Rakin, M. H. I. Chowdhuryy, F. Yao, and D. Fan, “Deepsteal:
Advanced model extractions leveraging efficient weight stealing in
memories,” arXiv preprint arXiv:2111.04625, 2021.

[30] B. Ghavami, S. Movi, Z. Fang, and L. Shannon, “Stealthy attack
on algorithmic-protected dnns via smart bit flipping,” arXiv preprint
arXiv:2112.13162, 2021.

[31] Y. Cai, Z. Yao, Z. Dong, A. Gholami, M. W. Mahoney, and K. Keutzer,
“Zeroq: A novel zero shot quantization framework,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 13 169–13 178.

[32] Y. Choi, J. Choi, M. El-Khamy, and J. Lee, “Data-free network quanti-
zation with adversarial knowledge distillation,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops, 2020, pp. 710–711.

[33] A. Krizhevsky, V. Nair, and G. Hinton, “Cifar-10 (canadian
institute for advanced research),” 2009. [Online]. Available:
http://www.cs.toronto.edu/ kriz/cifar.html

[34] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” 2019.

[35] R. Krishnamoorthi, “Quantizing deep convolutional networks for effi-
cient inference: A whitepaper,” 2018.

904

