
ESRU: Extremely Low-Bit and Hardware-Efficient
Stochastic Rounding Unit Design for Low-Bit DNN Training

Sung-En Chang1∗, Geng Yuan1∗, Alec Lu2∗, Mengshu Sun1, Yanyu Li1, Xiaolong Ma1, Zhengang Li1,
Yanyue Xie1, Minghai Qin, Xue Lin1, Zhenman Fang2 and Yanzhi Wang1

1Northeastern University, 2Simon Fraser University
Boston, USA, Burnaby, Canada

{chang.sun, yuan.geng, sun.meng, li.yanyu, ma.xiaol, li.zhen, xie.yany, xue.lin, yanz.wang}@notheastern.edu
{alec lu,zhenman}@sfu.ca

Abstract—Stochastic rounding is crucial in the low-bit (e.g., 8-
bit) training of deep neural networks (DNNs) to achieve high
accuracy. One of the drawbacks of prior studies is that they
require a large number of high-precision stochastic rounding
units (SRUs) to guarantee low-bit DNN accuracy, which involves
considerable hardware overhead. In this paper, we use extremely
low-bit SRUs (ESRUs) to save a large number of hardware
resources during low-bit DNN training. However, a naively de-
signed ESRU introduces a biased distribution of random numbers,
causing accuracy degradation. To address this issue, we further
propose an ESRU design with a plateau-shape distribution. The
plateau-shape distribution in our ESRU design is implemented
with the combination of an LFSR (linear-feedback shift register)
and an inverted LFSR, which avoids LFSR packing and turns an
inherent LFSR drawback into an advantage in our efficient ESRU
design. Experimental results using state-of-the-art DNN models
demonstrate that, compared to the prior 24-bit SRU with 24-bit
pseudo-random number generators (PRNG), our 8-bit ESRU with
3-bit PRNG reduces the SRU hardware resource usage by 9.75×
while achieving slightly higher accuracy.

Index Terms—DNNs, low-bit training, stochastic rounding

I. INTRODUCTION

DNNs have achieved extraordinary performance in various
application domains, such as computer vision, speech recogni-
tion, and natural language processing. However, training DNNs
needs a large number of computational resources, training time,
and power consumption, which is challenging their extensive
applications in the industry. To reduce the training cost for
DNNs, recent studies [6], [20], [22]–[25] have tried to use
low bit-width representation during DNN training, which is
known as low-bit training. Low-bit training needs to quantize
the weights, activations, and gradients to the low-bit fixed-point
representations for both the forward and backward propagation
passes during the training. Specifically, for the most challenging
gradient quantization, all of these aforementioned studies have
asserted that it is necessary to use stochastic rounding instead
of nearest rounding during training to maintain accuracy. How-
ever, these prior studies require a large number of high bit-
width random number generators in the stochastic rounding
units (SRUs), which involves considerable hardware overhead.
For example, as will be presented in Section V-C, even if the
24-bit SRU with the lightweight 24-bit LFSR-based PRNG is

∗Equal contribution.

used during training, it would add an extra 23.5% LUTs usage
compared to the training accelerator itself [12].

To reduce such high hardware resource overhead, we pro-
pose to use extremely low-bit (e.g., 3-bit) random numbers
to approximate those high-precision random numbers in our
ESRU. The intuition is that stochastic rounding in DNN training
itself is a form of statistical approximation and does not
necessarily need precise random numbers. However, there are
two major challenges. First, naively mapping the high-precision
random numbers onto the extremely low-bit ones would cause
a biased distribution and thus degrade the DNN accuracy
(Section III-B). While such mapping bias is hard to notice with
the 8-bit approximation, it gets more significant when there are
fewer bits to represent the random number in the SRU. This
phenomenon is often overlooked by prior studies, as none of
them has considered using extremely low-bit representations in
the SRUs. Second, to efficiently generate those extremely low-
bit random numbers in the ESRU on hardware, we consider
using the lightweight linear feedback shift register (LFSR) [10],
which is widely used as a hardware-friendly PRNG. However,
using vanilla low-bit LFSR would lead to accuracy degradation
because low-bit LFSR would generate the random numbers
with a biased distribution (cannot generate number zero) [10].

To address these challenges, we propose an accurate and effi-
cient ESRU design alternative with the plateau-shaped random
number distribution. In the plateau-shape design, we combine
an LFSR and an inverted LFSR to generate a plateau-shape
distribution; the inverted LFSR is efficiently implemented by
adding an inverted signal to the original LFSR instead of
adding another LFSR. The such design turns the inherent LFSR
limitation into an advantage in our efficient ESRU design. The
detailed explanation is in Section IV.

Experimental results using state-of-the-art DNN models in
image classification, super-resolution, image segmentation, and
natural language processing, demonstrate that our 8-bit ESRU
design with 3-bit PRNG can achieve a negligible accuracy
drop in the DNN training compared to the floating-point based
models. Compared to prior SRU designs with 8-bit, 16-bit,
and 24-bit LFSR-based PRNG, our designs reduce the SRU
hardware resource usage by 3.75× to 9.75×, while achieving
a slightly higher model accuracy.

In summary, this paper makes the following contributions:

1) The first work explores the extremely low-bit (i.e., 3-bit)
representation in the SRUs for the low-bit (i.e., 8-bit)
DNN training.

2) An in-depth analysis of limitations in existing SRU
designs.

3) An accurate and hardware-efficient ESRU design for low-
bit DNN training, which approximates high-precision
random numbers using extremely low-bit (3-bit) random
numbers in the plateau-shape distribution.

4) Experiments to demonstrate the significant hardware re-
source savings (3.75× to 9.75×) and superior accuracy
of our 8-bit training with ESRU over state-of-the-art low-
bit training frameworks.

II. BACKGROUND AND RELATED WORK

A. Nearest Rounding vs. Stochastic Rounding

Nearest rounding [9] is the most common rounding scheme
for quantization in low-bit training. Take a fixed-pointed quan-
tization (FQ) as an example, the equation of the FQ is:

FQ(x,m) = 21−m × roundingn(x/2
1−m), (1)

where x is the floating-point input, m is the quantization bit-
width, and 21−m is the distance between each quantization
level. The nearest rounding scheme roundingn[.] would always
round the floating-point input to the nearest quantization level.

Another scheme is stochastic rounding [8], [6]. Rather than
always rounding the floating-point input to the nearest quanti-
zation level, stochastic rounding rounds the input as follows:

roundings(x) =

{
⌊x⌋, w.p. 1− (x− ⌊x⌋)
⌈x⌉, w.p. x− ⌊x⌋

, (2)

where “w.p.” stands for “with probability”.

B. Implementation of Stochastic Rounding

In order to apply the stochastic rounding during the low-bit
training, DoReFa-Net [24] proposed that an efficient way is to
add a random number r ∈ Uniform(−0.5, 0.5) to the inputs
x before each rounding step, i.e.,

roundings(x) = roundingn(x+ r),

r ∈ Uniform(−0.5, 0.5).
(3)

However, in Equation (3), the control logic is still needed
to compare the fraction value with 0.5 in the rounding step
(e.g., X.49 will be rounded to X because 0.49 < 0.5), which
introduces extra overhead. To eliminate this control logic, [13]
found that the stochastic rounding can be implemented by
adding x with a random number r ∈ Uniform(0, 1) and
then dropping the fraction bits. As a result, the carry-over to
the integer bits automatically completes the rounding. Figure 1
shows an example to implement stochastic rounding (from 16-
bit to 8-bit) in this more efficient way.

1 0 1 1 0 0 1 1 0 1 0 0 0 0 0 1.

Integer bits Fraction bits

x (16 bits)

1 1 0 1 1 0 1 0
+

Carry over?
Yes: auto round up

Remove the
fraction part

r (8 bits) ∈ (0,1)

xs (8 bits)
No: auto round down

Fig. 1. The implementation of stochastic rounding. x: the gradient, r: random
number, xs: the gradient after the stochastic rounding process.

C. Stochastic Rounding in Low-Bit Training

In low-bit DNN training, there are three main components
that need to be quantized: weight, activation, and gradient. For
the weight and the activation quantization, applying nearest
rounding works very well. However, for the gradient quan-
tization, Höhfeld and Fahlman [8] found that most of the
gradients would be rounded to zero if they simply used the
nearest rounding scheme, because the magnitudes of most of
the gradients are relatively small.

Thus, using stochastic rounding for gradient quantization in
low-bit training has been explored in the past few years. First,
Gupta et al. [6] introduced stochastic rounding on the gradient
quantization of the DNNs in low-bit training. Further, DoReFa-
Net [24] applied the stochastic rounding on the low preci-
sion gradient with the large-scale dataset (ImageNet). Then,
WAGE [20] and WAGEUBN [22] used stochastic rounding
to quantize the gradient to an 8-bit integer. However, both
WAGE and WAGEUBN suffer from non-negligible accuracy
degradation. Recently, FP8 [18], Uint8 [25], and ADint8 [23]
quantized the gradient to an 8-bit integer with stochastic round-
ing and achieved comparable accuracy to the 32-bit floating-
point training.

All of these works only mention that they used stochastic
rounding during the low-bit training process. However, they
overlooked that the stochastic rounding needs to use a large
amount of high-precision random numbers (r in Equation (3)),
which introduces considerable hardware resource overhead in
the low-bit DNN training.

D. Low-Bit Training on Hardware Accelerators

While 32-bit floating-point precision is desirable during
DNN training to achieve high prediction accuracy, it leads to
high resource usage in hardware accelerator designs. Previous
studies have explored various approaches to lower the resource
demand in order to bring higher computation parallelism for
training speedups while maintaining a similar accuracy as the
32-bit floating-point models [3], [6], [14], [15], [18]. Initially,
in [3], a hardware accelerator for DNN training was imple-
mented with 32-bit fixed-point to bring significant resource
saving. Later on, more works were able to effectively reduce
the bit-width of the training data without a significant accuracy
loss, so long as stochastic rounding was applied. For example,
an ASIC implementation of low-bit RNN training with 24-bit
fixed-point numbers was proposed in [14], which employed
a 48-bit input SRU design with a 24-bit LFSR to realize

stochastic rounding. In [6], low-bit training with 16-bit fixed-
point numbers was implemented while achieving a similar
accuracy as the 32-bit floating-point training. Their design used
a 48-bit input SRU with a 16-bit LFSR PRNG. Some recent
studies even explored 12-bit and 8-bit floating-point numbers
with stochastic rounding in their hardware training accelerators
and have achieved decent accuracy [16], [18].

However, in these previous designs, the resource utilization
of the stochastic rounding units with their random number
generator designs typically scales with the precision of the
training data. We overcome this resource scaling constraint in
our proposed ESRU design to bring further resource saving by
exploring a hardware-efficient low-bit random number genera-
tor during stochastic rounding.

III. LIMITATIONS OF EXISTING SRU DESIGNS

A. Issue with Default High Bit-Width SRUs

In order to apply stochastic rounding in low-bit DNN train-
ing, DoReFa-Net [24] and [13] proposed that an efficient way
is to add the random numbers on the gradients before each
rounding step. However, the number of gradients is relatively
large in state-of-the-art DNN models. For example, there are
around 107 weights in the widely used ResNet-50. So in the
backpropagation process, there are around 107 gradients to
update the corresponding weights. In each iteration, it needs to
use around 103 high bit-width SRUs (assuming there are 103

parallel computations in the hardware), which introduce a large
amount of extra resource usage for the hardware accelerators.

B. Distribution Bias with Extremely Low Bit-Width SRUs

To reduce the extra resource usage during the DNNs training,
an intuitive way is to use low-bit representations for the random
numbers in the SRUs. Suppose we have a 32-bit floating-point
random number r and we need to map it to the m-bit random
number r′, where m is extremely small (e.g., m = 3). The basic
idea is to divide all the 32-bit random number distributions
into n = 2m levels and use nearest rounding to round those
numbers into each level li, the m-bit representation of the i-th
level random number.

In a straightforward mapping, one may set a uniform distance
between every two consecutive levels (i.e., ϵ = li+1−li = 1/n)
and set l0 = 0. As a result, the floating-point random number
r is approximated as a m-bit r′ using the following equation:

r′ =

l0 if r ∈ [l0, l0 +

ϵ
2)

l1 if r ∈ [l1 − ϵ
2 , l1 +

ϵ
2)

...

ln−1 if r ∈ [ln−1 − ϵ
2 , ln−1 +

ϵ
2)

(4)

Unfortunately, such a naive mapping leads to a biased
distribution of the random numbers. To better demonstrate this,
we have mapped the 32-bit random numbers onto 8 levels using
3-bit representations based on Equation (4) and visualized such
random number distribution in Figure 3. The x-axis shows the
values of l0 to l7 and their corresponding binary representation
in the fraction part; the y-axis shows the number of 32-
bit random numbers distributed in each range. As shown in

Figure 3, the range of the first level (i.e., the green part) is
only half of the other levels. Moreover, the last range (i.e., the
orange part) does not belong to any levels.

Moreover, Figure 2 visualizes such bias when mapping to
8-bit, 4-bit, and 3-bit representations. While it is hard to notice
such bias using 8-bit representations in the SRUs, the bias is
much more significant when we use fewer bits (e.g., 3-bit)
to represent the random numbers in the SRUs. As will be
presented in Section V-B1, such a biased distribution would
lead to about 2% DNN accuracy loss when the random numbers
are approximated with 3-bit representations. This bias is often
overlooked in the existing studies, as none of them has used
extremely low-bit representations in the SRUs.

C. Lightweight LFSR and Its Limitations

A lightweight SRU alternative is to use the linear feedback
shift register (LFSR) [10], which is widely used as pseudo-
random number generators (PRNG), due to its small logic
resource footprint and low latency design [1], [10].

For every iteration, an LFSR updates its random sequence by
propagating the shift register values and feeding the XOR’ed
value from certain shift registers of the LFSR based on a pre-
defined mask to its first shift register. As such, a m-bit LFSR-
based PRNG will generate all 2m−1 patterns (without zero) in
a random sequence before repeating the same random sequence.
However, simply using vanilla LFSRs to generate the random
numbers in the lightweight SRUs comes up with a shortcoming:
Roth et al. [10] found that a vanilla LFSR cannot have 0 as
its seed (starting point) and cannot generate 0 in its output.
Thus, its output distribution is biased and would cause accuracy
degradation in low-bit DNN training.

IV. OUR PROPOSED ESRU DESIGN

To design an accurate and hardware-efficient SRU for low-
bit DNN training, we consider using extremely low-bit repre-
sentations (e.g., 3-bit) for the random numbers in the SRU and
generate such random numbers using our optimized lightweight
LFSR variants. To address the issue of biased distribution and
LFSR limitations presented in Section III, we propose an ESRU
design with the plateau-shape distribution.

A. Idea of Plateau-shape Distribution

The key idea to solve the biased distribution from the naive
mapping is to keep l0 = 0 and adjust ϵ = li+1 − li = 1/(n −
1) = 1/(2m − 1), where li is the m-bit representation of the
i-th level random number and ϵ is the distance between every
two consecutive levels. As a result, we can cover the whole
distribution from 0 to 1 without missing any value.

Figure 4(b) shows an example with 3-bit representation (i.e.,
m = 3), by slightly increasing ϵ from 1/8 (in the naive
mapping, shown in Figure 4(a)) to 1/7 to cover the whole
distribution from 0 to 1. This mapping will lead to a non-
uniform plateau-shape distribution as will be explained below.

8bit 4bit 3bit

32-bit
8-bit

32-bit
4-bit

32-bit
3-bit

Gradient (fraction part)

bias biasbias

0 0.2 0.4 0.6 0.8 1

Gradient (fraction part) Gradient (fraction part)

1.0

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1Pr

ob
ab

ili
ty

 o
f r

ou
nd

 u
p

Fig. 2. Biased distribution of the naive mapping from floating-point random numbers to low-bit ones in the SRU. The blue lines are the low-bit SRU design
and the blue lines are always ”below” the green line (32-bit baseline), which introduce the bias.

000 001 010 011 100 101 110 111

0

50

100

150

200

250

R

an
do

m
 n

um
be

rs

0 1/8 2/8 3/8 4/8 5/8 6/8 7/8

Map 32-bit random numbers to 3-bit (8 levels)

ε/2 ε/2εεεεεεε

Fig. 3. The naive mapping from 32-bit random numbers onto 3-bit ones with
the biased distribution.

Specifically, in this mapping where l0 = 0 and ϵ = 1/(2m−
1), the 32-bit floating point random number r can be mapped to
the m-bit (e.g., m = 3) number r′ using the following equation:

r′ =

l0 if r ∈ [l0, l0 +

ϵ
2)

l1 if r ∈ [l1 − ϵ
2 , l1 +

ϵ
2)

...

ln−1 if r ∈ [ln−1 − ϵ
2 , ln−1)

(5)

Based on Equation (5), we can have the mapping range in
the first level l0 and the last level ln−1 as ϵ

2 , which is only
half of the range in the middle levels l1, l2..., ln−1. Take
a 3-bit (i.e., m = 3) representation of the low-bit random
numbers as an example, we need to map the 32-bit random
numbers to 23 = 8 levels. Figure 4(b) shows that when we
divide the 32-bit random number distributions Uniform(0, 1)
into 8 levels, the mapping range in the first and the last
levels (i.e. the green part) is only half of that for the middle
levels. Therefore, the plateau-shape distribution of 3-bit random
numbers is observed in Figure 4(c), which requires special
consideration when designing its hardware architecture.

B. Hardware Design of Plateau-shape based ESRU

We propose a hardware-aware technique to generate the
random numbers in the SRU by considering both the limi-
tations of LFSR and matching the plateau-shape distribution.
Figure 5(a) shows the overall design architecture of our ESRU.
It applies stochastic rounding to an intermediate MAC (multi-
ply–accumulate) data from backpropagation calculation by first
adding a random number, generated by an LFSR-based PRNG,

to the fraction bits. Then it crops the addition result to derive
the final gradient result. For a training model with error data
and model parameters, both represented in 8-bit fixed-point,
the intermediate MAC data during gradient calculation is then
represented in 16-bit fixed-point representation, for such, we
show a 16-bit adder used in our ESRU design.
Optimization 1: lookup table-based mapping vs. shift-based
mapping. Although random number generation logic is rather
simple, we find that implementing a resource-efficient design is
nontrivial and could lead to a 3.75x resource (in terms of LUTs
on an FPGA) usage difference as we observe between two
LFSR design alternatives. Both design variants include a 3-bit
LFSR as shown in figure 5(a), which will populate 23 − 1 = 7
patterns (without zero) in a random sequence before repeating
the same sequence as explained in Section III-C. However, for
mapping our low-bit LFSR number to a higher bit-width, the
first design variant uses a look-up table, implemented with
LUTs, to keep a record of the corresponding high bit-width
mapping value (i.e., li in Equation (5)) of our 3-bit random
number. Our optimized approach, shown in figure 5(b) uses
a simple shift operator to align the 3-bit random number with
the most significant bit in the fraction bits of the high bit-width
number to proportionally scale the random number.
Optimization2: LFSR + inverted LFSR to generate the
plateau distribution. To generate the plateau distribution of
random numbers in low-bit representations described in Sec-
tion IV-A, we also add an inverted signal to select the bit-wise
inverted random number. This feature effectively addresses two
key issues. First, it allows our PRNG to populate zero during
its sequence generation by setting the invert signal to high
when the LFSR generates the random number with all ones.
Second, when sequentially used with the non-inverted PRNG
sequence (i.e., random sequence repeats after enumerating all
non-inverted and inverted sequences), this produces random
numbers in the correct random number distribution as shown
in Figure 5(c). By using this technique, we successfully take
advantage of the characteristic of the LFSR variant in ESRU
to generate the plateau-shape distribution.

V. EXPERIMENT RESULTS

A. Experiments Setup
We evaluate the low-bit DNN training with 8-bit integers for

activations/weights/gradients and our hardware-efficient ESRU
design for a wide range of applications, including image clas-
sification, super resolution, segmentation, and natural language

0

50

100

150

200

250

0 1/8 2/8 3/8 4/8 5/8 6/8 7/8

Naive Uniform (Biased) Plateau

0 1/7 2/7 3/7 4/7 5/7 6/7 1
Value Value

1/8 1/7
ε/2 ε/2 ε/2ε/2ε ε ε ε ε ε ε ε ε ε ε ε ε

L0 L1 L2 L3 L4 L5 L6 L7

1500

1250

1000

750

500

250

0

Level

Plateau 3-bit(a) (b) (c)

Fig. 4. Comparison between the naive mapping and our Plateau-shape distribution.

(a)

(c)

Basic LFSR Inverted LFSR

Basic LFSR

Our LFSR Design

Invert or not?

0 7

0 7

16-bit
Adder

Intermediate
MAC Data 8

8

16
3-bit

LFSR

Efficient Stochastic Rounding Unit
(ESRU)

Rounded
Gradient Data

0
1

1

Invert
Signal

No
0 7

Yes

(b)

Fig. 5. Hardware architecture of our plateau-shape based ESRU.

processing (NLP). We describe the detailed setup of each
application in Section V-B. All the models with the baseline
32-bit floating-point training and the 8-bit training with our
ESRU design are conducted on NVIDIA TITAN RTX GPUs,
with CUDA 11.2 and PyTorch 1.8 frameworks running on the
Ubuntu 18.04 OS. The 8-bit training with our ESRU design
utilizes the same data augmentation techniques as those used
in the baseline 32-bit floating-point training.

B. Accuracy Results

1) Accuracy Results for Image Classification: For image
classification tasks, the evaluated models include ResNet-18
and ResNet-50 [7] on ImageNet [11] dataset.

2) Accuracy Results for Image Segmentation: For im-
age segmentation tasks, we evaluate the DeeplabV3 and
DeeplabV3plus [2] models on the Pascal VOC2012 dataset [5].
The initial learning is 0.1 and the models are trained for 100
epochs. Our plateau-shape based ESRU has similar accuracy
(i.e., −0.0070 ∼ +0.0021 mIoU) to the floating point training.

3) Accuracy Results for NLP: For NLP tasks with the
BERT [4] model, we evaluate on a variety of datasets from
the General Language Understanding Evaluation (GLUE) [17]
benchmark. The pre-trained BERT models are from Hugging-
Face Transformer [19]. Quantization and finetuning are simulta-
neously performed for 3 epochs with the initial learning rate of

TABLE I
ACCURACY COMPARISON WITH EXISTING WORKS USING RESNET-18 AND

RESNET-50 MODELS ON IMAGENET. W: WEIGHT, A: ACTIVATION, G:
GRADIENT.

Model Method Precision Low-bit Accuracy(W/A/G) LFSR?

ResNet-18

FP 32bit - 71.10
WAGEUBN [22] 8bit × 67.40

FP8 [18] 8bit × 67.34
Uint8 [25] 8bit × 69.67

ADint8 [23] 8bit × 70.21
Naive Mapping 8bit ✓ 69.07
Ours(Plateau) 8bit ✓ 70.91

ResNet-50

FP 32bit - 77.59
WAGEUBN [22] 8bit × 69.07

FP8 [18] 8bit × 76.20
Uint8 [25] 8bit × 76.34

ADint8 [23] 8bit × 76.59
Naive Mapping 8bit ✓ 76.03
Ours(Plateau) 8bit ✓ 77.56

TABLE II
COMPARISON OF OUR LOW-BIT TRAINING WITH ESRUS AND

FLOATING-POINT TRAINING FOR IMAGE SEGMENTATION ON THE VOC2012
DATASET. MIOU: MEAN INTERSECTION OVER UNION, THE HIGHER IS

BETTER.

Model Backbone Method precision mIoU(W/A/G/R)

DeepLabV3 ResNet-50
FP 32/32/32/- 0.7604

Ours(Plateau) 8/8/8/3 0.7619

DeepLabV3Plus MobileNetV2
FP 32/32/32/- 0.7110

Ours(Plateau) 8/8/8/3 0.7040

DeepLabV3Plus ResNet-50
FP 32/32/32/- 0.7649

Ours(Plateau) 8/8/8/3 0.7670

2×10−5. Table III shows that our 8-bit training with plateau-
shape based ESRU only has 0.38 average point degradation
across different evaluation metrics on the corresponding tasks.

C. Hardware Results

To gain a better perspective of the hardware resource and
latency impact from the SRUs, we use the FPGA training
accelerator design (called DarkFPGA) proposed in [12] as
a reference design. In DarkFPGA, batch-level parallelism of
TB = 32 and an image-level parallelism of TI = 128 are
employed and it computes 4096 parallel gradients on a single
Xilinx Ultrascale+ VU9P FPGA. Thus, to enable stochastic
rounding in DarkFPGA, we instantiate 4096 stochastic round-
ing units and compare the resource usage when using our ESRU
designs with 3-bit and 8-bit plateau-shape distribution-based
LFSRs, as well as previous state-of-the-art SRU designs that
use the basic 24-bit, 16-bit, and 8-bit LFSRs. We use Xilinx

TABLE III
COMPARISON OF OUR LOW-BIT TRAINING AND FLOATING-POINT TRAINING FOR NATURAL LANGUAGE PROCESSING WITH BERT. THE EVALUATION

METRICS INCLUDE F1, PEARSON, ACCURACY, AND MATTHEWS CORRELATION, THE HIGHER VALUE IS BETTER.

Method Precision(W/A/G/R) MRPC STS-B RTE COLA MNLI QQP SST2 QNLI Avg.
FP 32/32/32/- 89.66 89.19 66.43 57.27 84.37 91.18 92.66 91.40 82.77

Ours(Plateau) 8/8/8/3 88.81 88.80 65.70 57.04 84.35 90.66 92.65 91.14 82.39

TABLE IV
COMPARISON OF RESOURCE UTILIZATION FOR DIFFERENT LFSR DESIGNS IN OUR ESRU ON XILINX VU9P FPGA AND DARKFPGA [12] DESIGN.

DARKFPGA [12] DESIGN IS THE 8-BIT FPGA TRAINING FRAMEWORK. BASIC: THE CONVENTIONAL LFSR DESIGN.

Method LFSR ESRU ESRU Total LUTs ESRU LUTs LUTs Usage ESRU LUTs /
Bit-width LUTs FF in VU9P / VU9P LUTs in DarkFPGA [12] DarkFPGA [12] LUTs

Naive Mapping 32bit 217,088 270,336 1,182,240 18.4% 678,716 32.0%
Naive Mapping 24bit 159,744 204,800 1,182,240 13.5% 678,716 23.5%
Naive Mapping 16bit 110,592 139,264 1,182,240 9.4% 678,716 16.3%
Naive Mapping 8bit 61,440 73,728 1,182,240 5.2% 678,716 9.0%
Ours(Plateau) 8bit 61,440 73,728 1,182,240 5.2% 678,716 9.0%

Ours(Plateau) 3bit 16,384 32,768 1,182,240 1.4% 678,716 2.4%

Vitis 2020.1 [21] to evaluate the post place-and-route resource
utilization, frequency, and latency of the designs. Note that
LFSR only consumes LUT and FF resources on an FPGA.
As shown in Table IV, in terms of resource usage for SRU
designs, compared with SRU designs with 24-bit, 16-bit, and
8-bit LFSRs, our ERSU design with 3-bit LFSR brings 9.7×,
6.75×, and 3.75× LUT savings. With respect to the entire
hardware training accelerator in [12], our ERSU with 3-bit
LFSR only needs 2.4% extra LUT usage, while a naive design
may introduce up to 32.0% LUT overhead.

VI. CONCLUSION

In this paper, we are the first to investigate hardware-efficient
stochastic rounding unit (ESRU) designs by using extremely
low-bit (i.e., 3-bit) random number generation for low-bit
(i.e., 8-bit) DNN training. We observed that naively using
low-bit representations to approximate high-precision random
numbers leads to a biased distribution, causing accuracy degra-
dation. Thus, we proposed a new method to approximate the
random numbers using low-bit representation in a plateau-
shape distribution. Based on the plateau-shape distributions, we
designed a hardware-efficient ESRU with the optimized LFSR
variants to generate these low-bit (i.e., 3-bit) random numbers.
Experimental results using a wide range of DNN applications
demonstrated that our 8-bit DNN training with the optimized
ESRU achieved superior accuracy than state-of-the-art 8-bit
training frameworks, with a negligible accuracy drop compared
to the floating-point baseline training. Moreover, compared to
the prior 24-bit SRU with 24-bit PRNG and 16-bit SRU with
16-bit PRNG, our 8-bit ESRU with 3-bit PRNG reduced the
SRU resource usage by 9.75× and 6.75×, respectively.

ACKNOWLEDGMENT

This work was partly supported by NSF CCF-1901378,
NSF CCF-1919117 and CCF-1937500; NSERC Discov-
ery Grant RGPIN-2019-04613, DGECR-2019-00120, Alliance
Grant ALLRP-552042-2020; CFI John R. Evans Leaders Fund.

REFERENCES

[1] François Arnault et al. Revisiting lfsrs for cryptographic applications.
IEEE Transactions on Information Theory, 57(12):8095–8113, 2011.

[2] Liang-Chieh Chen et al. Encoder-decoder with atrous separable convolu-
tion for semantic image segmentation. In ECCV, pages 801–818, 2018.

[3] Yunji Chen et al. Dadiannao: A machine-learning supercomputer. In 2014
IEEE/ACM Int’l. Symp. on Microarchitecture, pages 609–622, 2014.

[4] Jacob Devlin et al. BERT: Pre-training of deep bidirectional transformers
for language understanding. In NAACL, pages 4171–4186, June 2019.

[5] M. Everingham et al. The pascal visual object classes (voc) challenge.
International Journal of Computer Vision, 88(2):303–338, June 2010.

[6] Suyog Gupta et al. Deep learning with limited numerical precision. In
Int’l. conf. on machine learning, pages 1737–1746. PMLR, 2015.

[7] Kaiming He et al. Deep residual learning for image recognition. In
Proceedings of CVPR, pages 770–778, 2016.

[8] Markus Höhfeld et al. Probabilistic rounding in neural network learning
with limited precision. Neurocomputing, 4(6):291–299, 1992.

[9] IEEE. Ieee standard for floating-point arithmetic. IEEE Std 754-2019
(Revision of IEEE 754-2008), pages 1–84, 2019.

[10] Roth Jr et al. Digital systems design using VHDL. Cengage Learning,
2016.

[11] Alex Krizhevsky et al. Imagenet classification with deep convolutional
neural networks. NIPS, 25, 2012.

[12] Cheng Luo et al. Towards efficient deep neural network training by fpga-
based batch-level parallelism. Journal of Semiconductors, 41(2):022403,
2020.

[13] Mantas Mikaitis. Stochastic rounding: Algorithms and hardware acceler-
ator. In IJCNN, pages 1–6. IEEE, 2021.

[14] Taesik Na et al. On-chip training of recurrent neural networks with limited
numerical precision. In IJCNN, pages 3716–3723. IEEE, 2017.

[15] Marc Ortiz et al. Low-precision floating-point schemes for neural network
training. arXiv preprint arXiv:1804.05267, 2018.

[16] Marc Ortiz et al. Low-precision floating-point schemes for neural network
training. CoRR, abs/1804.05267, 2018.

[17] Alex Wang et al. Glue: A multi-task benchmark and analysis platform
for natural language understanding. In EMNLP Workshop, 2018.

[18] Naigang Wang et al. Training deep neural networks with 8-bit floating
point numbers. NIPS, 31, 2018.

[19] Thomas Wolf et al. Huggingface’s transformers: State-of-the-art natural
language processing. arXiv preprint arXiv:1910.03771, 2019.

[20] Shuang Wu et al. Training and inference with integers in deep neural
networks. arXiv preprint arXiv:1802.04680, 2018.

[21] Xilinx. Vitis unified software platform. https://docs.xilinx.com/v/u/2020.
1-English/ug1393-vitis-application-acceleration, 2021. Last accessed
November 17, 2021.

[22] Yukuan Yang et al. Training high-performance and large-scale deep neural
networks with full 8-bit integers. Neural Networks, 125:70–82, 2020.

[23] Kang Zhao et al. Distribution adaptive int8 quantization for training cnns.
In Proceedings of AAAI, 2021.

[24] Shuchang Zhou et al. Dorefa-net: Training low bitwidth convolu-
tional neural networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160, 2016.

[25] Feng Zhu et al. Towards unified int8 training for convolutional neural
network. In Proceedings of CVPR, pages 1969–1979, 2020.

