
SQL2FPGA: Automatic Acceleration of SQL Query
Processing on Modern CPU-FPGA Platforms

Alec Lu, Zhenman Fang
School of Engineering Science, Simon Fraser University

{alec lu, zhenman}@sfu.ca

Abstract—Today’s big data query engines are constantly under
pressure to keep up with the rapidly increasing demand for
faster processing of more complex workloads. In the past few
years, FPGA-based database acceleration efforts have demon-
strated promising performance improvement with good energy
efficiency. However, few studies target the programming and
design automation support to leverage the FPGA accelerator
benefits in query processing. Most of them rely on the SQL
query plan generated by CPU query engines and manually map
the query plan onto the FPGA accelerators, which is tedious
and error-prone. Moreover, such CPU-oriented query plans do
not consider the utilization of FPGA accelerators and could lose
more optimization opportunities.

In this paper, we present SQL2FPGA, an FPGA accelerator-
aware compiler to automatically map SQL queries onto the
heterogeneous CPU-FPGA platforms. Our SQL2FPGA front-end
takes an optimized logical plan of a SQL query from a database
query engine and transforms it into a unified operator-level
intermediate representation. To generate an optimized FPGA-
aware physical plan, SQL2FPGA implements a set of compiler
optimization passes to 1) improve operator acceleration coverage
by the FPGA, 2) eliminate redundant computation during phys-
ical execution, and 3) minimize data transfer overhead between
operators on the CPU and FPGA. Finally, SQL2FPGA generates
the associated query acceleration code for heterogeneous CPU-
FPGA system deployment. Compared to the widely used Apache
Spark SQL framework running on the CPU, SQL2FPGA—
using two AMD/Xilinx HBM-based Alveo U280 FPGA boards—
achieves an average performance speedup of 10.1x and 13.9x
across all 22 TPC-H benchmark queries in a scale factor of 1GB
(SF1) and 30GB (SF30), respectively.

I. INTRODUCTION

With today’s ever-growing scale of databases for big data

analytics, query engines are struggling to keep up with the

rapidly increasing demand for faster processing of more

complex workloads, especially for technology companies—

such as Amazon and Facebook—whose business models are

highly driven by customer data. Another trend in current

database systems is that more data are cached in-memory

instead of in storage, allowing one to two orders of magnitude

higher bandwidth between the data and the processor. Such

technology trend brings significant speedup for traditional

transaction processing workloads. However, complex analytics

operations such as join and expression evaluation are becom-

ing computation-bound in the CPU architecture.

Due to the power and utilization walls [1], there is a

significant slowdown in CPU performance scaling in datacen-

ters. High-performance, energy-efficient, and fully customiz-

able FPGA accelerators have attracted increasing attention as

strong candidates for accelerating query processing from both

industry and academia. Several previous works have achieved

decent performance speedup and/or energy efficiency im-

provements by offloading compute-intensive SQL operations

onto FPGAs, where they explore the massive parallelism and

highly customized architectures in their FPGA accelerators.

For example, with nearly 40% of the data analysis work-

load performed using SQL queries, Baidu developed a suite

of software-defined accelerators for SQL operations called

SDA [2] and achieved up to a 55x performance speedup over

a 12-core CPU server when evaluated on query #3 of the TPC-

DS benchmark suite [3]. More recently, to demonstrate FPGA

acceleration in query processing, AMD/Xilinx developed an

open-source library of query acceleration overlays [4], which

achieved an average performance speedup of 26x on TPC-H

queries [5] over PostgreSQL [6] running on the CPU.

However, FPGA acceleration does not come for free and

typically requires substantial manual programming efforts dur-

ing development. For example, even with the pre-designed

query acceleration overlays, the query acceleration demo code

from Xilinx database library [4] takes more than 500 lines

of host code (mainly on the configuration and invocation of

the undocumented query acceleration overlays) to manually

accelerate each of the 22 TPC-H queries on average. This

weak programmability and automation support for FPGAs

has been a prevailing barrier for software programmers to

develop highly efficient FPGA accelerators and/or effectively

integrate them into the existing query processing workflow [7],

[8]. Unfortunately, few studies target the programming and

compilation support to automatically map SQL queries onto

the FPGA accelerators, as will be discussed in Section V-A.

In this paper, we propose SQL2FPGA, an automatic com-

pilation framework that translates and maps SQL queries to

the heterogeneous CPU-FPGA acceleration platform. To avoid

the overwhelming partial reconfiguration overhead on FPGAs

(e.g., our experiments show a ∼4.8s partial reconfiguration

time on Alveo U280, while the average execution time of

our queries is only ∼5.2s), in this paper, we leverage the

AMD/Xilinx open source query acceleration overlays [4] and

automatically map SQL queries onto them. Note that this paper

does not optimize the query accelerators, but focuses on the

compilation support, including query plan optimizations, to

automatically compile SQL queries onto existing well-tuned

hardware accelerators on FPGAs, i.e., AMD/Xilinx open-

source query acceleration overlays.

To ensure the portability of our SQL2FPGA design, we es-

tablish a database-agnostic query plan representation such that

our optimizations can be leveraged and ported across different

database front-ends. To further improve the performance of the

CPU-FPGA hybrid query execution, we implement a set of

FPGA-aware compiler optimization passes. First, we improve

the query operator acceleration coverage on FPGAs by im-

plementing two optimization passes 1) substituting string-type

data with an integer-type row id to overcome the accelerator

design constraint of having a 32-bit integer datapath and

extend more operation offloading to FPGA accelerator; 2)

transforming non-natively supported join operations into accel-

erator supported join operations. Second, to reduce redundant

computation, we implement a compiler optimization to merge

repeating operations. Third, to optimize for more efficient data

transfers, we propose 1) an accelerator fusion optimization

to minimize the expensive data exchange between CPU main

memory and FPGA device memory; and 2) a join reordering

strategy to minimize the intermediate data transfers between

the compute-intensive join operations.

We evaluate our SQL2FPGA on all 22 queries from the

widely used TPC-H benchmark suite [5] with the AMD/X-

ilinx Alveo U280 [9] datacenter FPGA board. Compared to

Apache Spark SQL execution on CPU, under SF1 and SF30,

SQL2FPGA achieves average speedups of 10.1x and 13.8x

across all 22 TPC-H queries. Compared with AMD/Xilinx

well-optimized manual host code, on average, SQL2FPGA in-

curs around 7% overhead for SF1 dataset and is nearly

1% faster for SF30 dataset for accelerating the 22 TPC-H

benchmark queries.

In summary, our paper makes the following contributions:

1. A general framework called SQL2FPGA that enables auto-

matic compilation of SQL queries to be accelerated on the

heterogeneous CPU-FPGA platform.

2. A set of hardware-aware compiler optimization passes to

further improve the performance of the hybrid CPU-FPGA

query acceleration.

3. A quantitative evaluation and analysis of the experimental

results on all 22 TPC-H benchmark queries.

II. BACKGROUND

A. Query Processing

With the ever-increasing scale and workload complex-

ity in today’s database management system (DBMS), high-

performance query processing engines with efficient optimiza-

tions are much required to retrieve and process data from a

database, whether stored on disk or in main memory. For the

interest of this paper, we focus on providing compilation sup-

port for accelerating query processing using the heterogeneous

CPU-FPGA platform for in-memory database systems.

On a high level, query processing consists of three main

stages: 1) high-level query language parsing and translation,

2) query plan optimization, and 3) execution of the generated

query plan. For a better illustration, Figure 1 shows an example

of how a typical user query is interpreted and executed. The

top of Figure 1 shows TPC-H query #3 in SQL commands, and

the bottom presents its corresponding logical execution plan

parsed and populated from a query processing engine. The

plan is executed in a bottom-up approach, starting from scan-

ning table data (i.e., lineitem (l), orders (o), and customer (c)

tables) to retrieve required attributes (e.g., discount, shipdate,

and orderkey for lineitem (l) table). Then they have processed

through a series of relational operations: filter operations are

for o.mktsegment = ’MACHINERY’, c.orderdate < date ’1995-
03-07’, and l.shipdate > date ’1995-03-07’; join operations

reflect o.custkey = c.custkey and l.orderkey = c.orderkey;

expression evaluation operation is for l.extendedprice * (1
- l.discount); group-by aggregation operation is for grouping

attributes: l.orderkey, c.orderdate, and c.shippriority; and sort
operation is applied to both attribute c.orderdate and aggre-

gation result (revenue). For this work, we use Spark SQL,

a query processing module from Apache Spark [10], one of

the most widely used large-scale big data analytics engines, as

our front-end to parse SQL queries and generate the optimized

logical plan.

SELECT l.orderkey, c.orderdate,
c.shippriority,
sum(l.extendedprice*(1-l.discount))
as revenue

FROM orders as o, customer as c,
lineitem as l

WHERE o.mktsegment = 'MACHINERY' and
o.custkey = c.custkey and
l.orderkey = c.orderkey and
c.orderdate < date '1995-03-07'and
l.shipdate > date '1995-03-07'

GROUP BY l.orderkey, c.orderdate,
c.shippriority

ORDER BY revenue, c.orderdate

order customer

SORT

FILTER FILTER

JOIN

JOIN

EVALUATION

GROUP BY

FILTER

lineitem

Fig. 1: An example query processing flow using TPC-H query

#3: the top listing is the SQL query, the bottom is a query

execution plan generated by Apache Spark SQL.

B. Potential of FPGA Acceleration for Query Processing

Due to the inherent high parallelism, reconfigurability, and

low power consumption characteristics, FPGA has shown great

potential to speed up database systems. Previous research

efforts have proposed FPGA accelerator designs for database

CPU FPGA

Host memory Device memory

PCIe bus

Fig. 2: An overview of heterogeneous CPU-FPGA platform

used in SQL2FPGA.

operators [11], [12], [13], [14], [15], [16] to accelerate the

entire or part of a query with FPGA [17], [18], [19], [20],

[21], [22], [23], and worked on system integration of FPGA

accelerators in database systems [24], [25], [26], [27]. Regard-

ing hardware capability, the latest generation of Xilinx Alveo

U280 [9] datacenter FPGA board supports HBM2 within the

same package, providing close to half TB/s off-chip memory

bandwidth, which makes it highly applicable to data-intensive

analytical query processing workloads.

Nonetheless, one key factor preventing the wide adoption

of FPGA acceleration is the lack of automation support to

translate SQL queries to be efficiently accelerated on an

FPGA accelerator [8]. In our work, we aim to bridge this

gap by providing an automatic compilation framework to

accelerate in-memory query processing, specifically for the

heterogeneous CPU-FPGA platform as shown in Figure 2,

where devices communicate via the PICe interface.

We envision SQL2FPGA to be an FPGA extension plug-in,

portable to accelerate different databases in the future. When

choosing the FPGA accelerator design, we leverage a set of

open-source FPGA accelerator overlay designs from AMD/X-

ilinx Vitis database library [4]. Even without FPGA reconfig-

uration, these overlay designs support flexible acceleration for

different database operators through runtime parameterization.

Although overlay designs have a fixed datapath, Xilinx overlay

designs include bypassing logic and SQL2FPGA includes

query plan optimizations to extend overlay utilization during

query processing as discussed in section III-E. The dynamic

partial reconfiguration approach offers another alternative to

support more flexible query operators on the FPGA. However,

it comes with reoccurring and overwhelming reconfiguration

overheads and is not commonly used nor well supported on

datacenter FPGAs.

III. SQL2FPGA SYSTEM DESIGN

In this section, we present the system design of SQL2FPGA,

a general framework to enable automatic compilation of SQL

queries to be accelerated on the heterogeneous CPU-FPGA

acceleration platform. Section III-A first gives the compilation

flow overview of the framework. Next, Section III-B presents

details on the vendor-agnostic query plan representation used

in our framework. Then, design features of the Xilinx database

accelerator overlay designs are presented in Section III-C

whereas the CPU operators used in SQL2FPGA are described

in Section III-D. Last but not least, in Section III-E, we

describe the query optimizer of SQL2FPGA, which mainly

Parser:
Unified Query Plan

Representation

Optimizer:
FPGA-aware query
plan optimizations

Code Generator:
CPU-FPGA Hybrid
Acceleration Code

.SQL

.CPP

Front-end

Back-end

Overlay Coverage
Optimizations

Cmpt. Elimination
Optimizations

Data Transfer
Optimizations

Fig. 3: Overview of SQL2FPGA compilation flow.

CPU FPGA

Host
memory

Device
memory

PCIe bus

J

FF

E

J

G

S TPC-H query #3

lineitem customerorder

F

Fig. 4: Physical execution plan of TPC-H query #3 on hetero-

geneous CPU-FPGA platform.

consists of compiler optimizations to further improve the

processing performance of the physical query execution.

A. Compilation Overview

To illustrate the compilation flow of SQL2FPGA, Figure 3

shows our compiler in a three-stage structure.

To ease the development effort, SQL2FPGA is designed to

leverage the front-end from different query processing engines.

In this work, we leverage the front-end from Spark SQL [28]

to first parse user-provided SQL queries; then construct an

abstract syntax tree (AST) of database logical operators and

expressions; and lastly, to generate an optimized query plan ap-

plied with a series of generic static logical plan optimizations

such as predicate (e.g., filter and pre-aggregation) pushdown

and expression simplification.

On the back-end side, for better design portability and

reusability for different query processing engines, our frame-

work first parses the optimized query plan from Spark SQL

into a unified query plan representation called SQL2FPGA-
QPlan to record all necessary information and relations be-

tween different logic operators. It is vendor-agnostic and native

to SQL2FPGA. Next, our optimizer examines the parsed

query plan. It applies a series of compiler optimizations to

1) improve operator acceleration coverage by the FPGA, 2)

eliminate redundant computation during physical execution,

and 3) minimize data transfer overhead between operators on

the CPU and FPGA. Lastly, the code generator outputs the

final acceleration code in C++ with Xilinx OpenCL APIs to

interface with the accelerator overlay designs.

Figure 4 presents the corresponding physical execution

plan for TPC-H query #3 (depicted in Figure 1) on our

heterogeneous CPU-FPGA platform. Data from each table first

pass through a filter operation on the CPU before handing over

the computation to FPGA, where orders and customer tables

are first joined, then subsequently joined with table lineitem.

Next, the results from the second join operation pass through

an expression evaluation followed by a group-by aggregation

operation. Finally, aggregation output is transferred back to

the CPU main memory and then sorted on the host CPU.

Regarding the device scheduling of operator execution, our

current approach is mostly based on empirical experiments.

We first determine the operators that can be functionally of-

floaded to the FPGA overlays. Then, we individually evaluate

their CPU and FPGA performance and the required data

transfer overhead to decide the platform for the final execution.

We plan to build a performance model to guide a proper device

selection for operators in future work.

B. Vendor-Agnostic Query Plan Representation

Most of today’s query processing engines or database sys-

tems, such as Spark SQL [28], PostgreSQL [6], and Mon-

etDB [29], store and represent their query plans in a tree

structure. However, their naming conventions and implementa-

tion details are all uniquely different. Furthermore, no unified

query plan representation is compatible with all these systems.

In general, a query plan can be represented as a tree structure,

where each node represents a logical operation while the edges

indicate the data flow of the query. In SQL2FPGA, we define a

vendor-agnostic query plan representation called SQL2FPGA-
QPlan to facilitate the compiler optimizations from our query

optimizer. SQL2FPGA-QPlan is a tree-based data structure

where each query plan node contains the following informa-

tion:

1. A list of operation expressions (e.g., projection expression,

aggregation expressions, and keys and payload used for join

and group-by operations)

2. A list of input relation tables (column and type of data)

3. A list of output relation tables (column and type of data)

4. A list of children operator nodes

5. A list of parent operator nodes

In this work, we write a parser for interpreting and converting

the optimized query plan from Spark SQL since it is one of

the most commonly used big data processing engines. When

porting SQL2FPGA to work with other query processing

engines or database systems, the only required design change

is the query plan parser to generate our SQL2FPGA-QPlan.

We plan to add query plan parsers for other database engines

(e.g., PostgreSQL, MongoDB, and MonetDB) in future work.

C. FPGA Accelerator Overlay Design

To support flexible acceleration for different database op-

erators without FPGA reconfiguration, accelerator overlay

design meets the requirement to be dynamically and effi-

ciently configured through runtime parameterization and is

commonly used and well-supported on datacenter FPGAs. In

this work, we leverage a set of open-source streaming-based

FPGA accelerator overlay designs from Xilinx Vitis database

library [4]. Moreover, Xilinx also provides manually optimized

TB
L

SC
AN

FI
LT

ER

JO
IN

EV
AL

U
AT

IO
N

EV
AL

U
AT

IO
N

AG
G

R
EG

AT
IO

NLeft Table

Right Table

Result Table

BYPASS PATH BYPASS PATH

W
R

IT
E

O
U

T

(a) gqeJoin FPGA accelerator overlay design

TB
L

SC
AN

FI
LT

ER

EV
AL

U
AT

IO
N

EV
AL

U
AT

IO
N

AG
G

R
EG

AT
IO

N

Input Table Result Table

BYPASS PATH

W
R

IT
E

O
U

T

G
R

O
U

P
BY

(b) gqeAggr FPGA accelerator overlay design

TB
L

SC
AN

Input Table

FI
LT

ER

H
AS

H
PA

R
TI

TI
O

N

W
R

IT
E

O
U

T

Result Table

(c) gqePart FPGA accelerator overlay design

Fig. 5: Overview of overlay designs from Xilinx Vitis database

library: top (gqeJoin) mainly focuses on different join opera-

tions, middle (gqeAggr) mainly targets group by aggregation

operations, and bottom (gqePart) performs hash partition.

left table filter configuration bits
evaluation-1 configuration bits (1x512-bit)

right table filter configuration bits (3x512-bit)

evaluation-0 configuration bits (1x512-bit)

shuffle

[511-192]
output table

col id

[191-184]
right table

col id

[183-120]
left table

col id

[119-56]
join
type

[3-5] [2]
dual
key

aggr
on

[1]
join
on

[0]

left table filter configuration bits (3x512-bit)

Fig. 6: Configuration register specification of gqeJoin overlay

design: each register row is 512-bit wide.

implementations of acceleration designs for TPC-H queries,

which we use as evaluation benchmarks.

As shown in Figure 5, the Vitis database library consists

of two core overlay designs: one focuses on join operations

called gqeJoin and the other design called gqeAggr targets

group-by aggregation operations. Each overlay design also

contains a separate small prefix accelerator module called

gqePart, used to perform hash partition when scaling the input

table size. Regarding the overall overlay architecture designs,

both gqeJoin and gqeAggr are composed of several accelerator

modules constructed in a dataflow fashion. To dynamically

gather and redirect column data during the execution of

the overlay design, shuffle units are inserted between the

adjacent accelerator modules to allow table attributes to switch

channel lanes as they flow through the overlay design. All

accelerator modules, including their associated shuffle units,

are parameterized, meaning they can be configured through a

set of user-provided configuration registers.

Figure 6 shows an example of the configuration bit file for

the gqeJoin overlay design. The configuration file contains a

total of nine 512-bit registers. The first 512-bit register records

configuration for accelerator modules such as table scan, join,

aggregation, write out, and shuffle units. The second and

third registers record configuration bit for the two aggregation
module. Lastly, the remaining configuration registers are used

for the filter operators. For the interested audience, please refer

to [4] for details on the overlay design configuration register

file format. Regarding each of the accelerator module designs,

we summarize their main features as below:

1. Join: a hash-based multi-join operator supporting join op-

erations: inner, anti, and semi-join, on up to two keys.

2. Group-by aggregation: a hash-based operator supporting

group-by operation with up to eight unique keys and pro-

ducing six possible aggregate results: MIN, MAX, SUM,

AVERAGE, COUNT, and COUNT-NONZERO.

3. Filter: a parallel filter design supporting up to four concur-

rent boolean-type condition columns.

4. Evaluation: a tree-based design with evaluation operation

cells in each node, which can be configured to support

four kinds of computations for expression evaluations:

comparison, boolean algebra, multiplexing, and arithmetic.

5. Aggregation: a processing unit that performs calculation of

min, max, sum, and count for each input column.

6. Hash partition: an operator to distribute a large table into

multiple smaller tables based on partition key(s).

7. Table scan and write out: primitive modules used to fa-

cilitate data exchange between device DRAM and FPGA

on-chip memories.

We summarize the design constraints imposed by the Xil-

inx accelerator overlay designs as follows. First, the over-

lay designs only support 32-bit integer datapaths, preventing

floating-point and variable-length string data types from being

accelerated on the overlay designs. For this reason, we conduct

floating-point calculations by scaling the floating-point value

by a factor of 100, then proportionally scale down and apply

type cast for the results after the computation. For handling

column data of string type, we propose an optimization to

extend the acceleration coverage of the overlay design (de-

scribed in Section III-E). The second design constraint worth

mentioning is that the maximum number of input columns

supported by both overlay designs is eight. In contrast, the

maximum number of output columns is eight for gqeJoin and

16 for gqeAggr.

D. CPU C++ Operator Design

In addition to leveraging FPGA overlay designs, we also im-

plement a complete set of CPU C++ query operators, including

filter, hash-join, group-by aggregation, expression evaluation,

and sort, based on the C++ operator implementations from

PostgreSQL [6]. The reason for this is two folds. One is

due to the FPGA hardware design constraints summarized in

Section III-C: some operators still have to run on CPU. The

other is for verification of the correctness of our framework.

E. Compiler Optimizations for Query Plan

As Section III-A mentions, SQL2FPGA optimizer consists

of several compiler optimizations targeting different perfor-

mance aspects in accelerating query processing. Firstly, we

propose two optimizations to extend operator acceleration

coverage by the overlay design: StringRowIDSubstitution and

SpecialJoinTransformation. Next, we eliminate and merge

repeated operations in the OperatorPruning optimization pass

by traversing the entire query plan. Then, to minimize the data

transfer overhead between CPU and FPGA, the FPGAOver-

layFusion transformation fuses multiple overlay calls into a

single overlay execution. Lastly, to minimize the intermediate

data transfer between inner join operations, we apply the

CascadedInnerJoinReordering optimization.

1) Acceleration Coverage Extension on FPGA Overlay:
Opt 1 – StringRowIDSubstitution: due to the limited 32-bit

integer datapath support as described in Section III-C, table

columns of variable-length data types such as string cannot

be processed using the FPGA overlay design, even though the

relation operation does not directly depend on the string-type

data. The reason is that Xilinx overlay designs do not support

dynamic memory storage for the variable-length attribute data.

This design limitation prevents certain operations from being

offloaded and accelerated on the FPGA. To overcome this

design limitation, in this optimization, we first substitute the

string-type attributes with its table row ID for operations that

do not require the actual string content. Next, we perform

back-substitution to materialize the actual string data by

traversing upward of the query plan until it reaches the end of

the query plan or the operation requires the string-type data.

Opt 2 – SpecialJoinTransformation: as summarized in sec-

tion III-C, the join accelerator module supports three types

of join (inner, anti, and semi) on up to two keys (using “=”

condition, e.g., left table.key1 = right table.key1). Outer

join operation is not natively supported. Nevertheless, through

relational algebra, outer join is equivalent to the summation

of separately conducting an inner join and an anti join.

Moreover, by carefully going through the HLS design of the

gqeJoin overlay design, we have found a specially supported

join condition for semi and anti joins when joining on two

keys such that left table.key1 = right table.key1 and

left table.key2 != right table.key2. In this optimization, we

traverse the query plans to incorporate these transformations.

2) Redundant Computing Elimination in Query Plan:
Opt 3 – OperatorPrunning: this optimization is inspired by

a series of observations from examining the optimized log-

ical query plan from Spark SQL. First, the same operation

expression using the same input columns and producing the

output columns are repeatedly called at multiple locations of

the query plan. Sometimes, this could also be two query plan

nodes sharing the same operation expression while the list

of input columns of one plan node is a subset of that from

the other plan node. Either way, we could prevent redundant

computation by merging the two operations. Secondly, the

optimized logical query plan from Spark SQL sometimes con-

tains projection operation performing only attribute aliasing,

which can be avoided during actual physical execution.

3) Minimizing Data Transfer between Operators:
Opt 4 – FPGAOveralyFusion: in reducing the expensive PCIe

data transfer to exchange input/output data between different

FPGA overlay tasks, the objective of this optimization is to

minimize the number of overlay tasks invoked throughout the

query plan by fusing them based on the pipeline sequence

of the overlay designs. The reduced number of overlay tasks

issued also lowers the Xilinx API invocation overhead.
Opt 5 – CascadedInnerJoinReordering: join operations are

compute-intensive tasks whose execution time could dramat-

ically increase depending on the scale and statistics such

as distribution and cardinality of the input data. While it

requires extensive effort and in-depth analysis to optimize join

operations, based on the details of these input data charac-

teristics, we implement a query plan optimization that could

potentially lower the intermediate data transfer between inner

join operations and, thus, improves processing performance.

This optimization uses a reordering strategy to compute inner

join operations on smaller input table sizes first.

IV. RESULTS AND ANALYSIS

In this section, first, we present the experimental setup for

our design evaluations. Secondly, we evaluate and analyze

the overall performance of SQL2FPGA under different design

configurations and compare performance results to Spark SQL.

Thirdly, we investigate the performance impact of our opti-

mization passes and discuss how they can efficiently accelerate

query processing on the hybrid CPU-FPGA platform.

A. Experimental Setup
Benchmark queries. We evaluate SQL2FPGA on all 22

queries in TPC-H Version 2 [5], the de facto industry stan-

dard for online analytical processing (OLAP) performance

benchmarking. The TPC-H dataset sizes we populate are in

scale factors of 1GB (SF1) and 30GB (SF30), demonstrating

that SQL2FPGA supports different dataset scales while con-

sistently achieving performance improvements.
Hardware platform and software tool. For our system evalu-

ation, we deploy SQL2FPGA on a CPU-FPGA heterogeneous

platform with the 14nm 12-core (24-thread) Intel Xeon Silver

4214 CPU and 128GB DRAM as the host platform, while the

FPGA accelerator overlay designs are deployed on two of the

16nm Xilinx Alveo U280 (with 32 HBM2 banks and Gen3x16

PCIe interface) [9] datacenter FPGA boards as described in

Section II-B. For correctness verification and performance

validation purposes, we use the FPGA overlay designs from

Xilinx Vitis database library 2020.1 [4], the latest version that

provides the manually optimized designs for accelerating the

TPC-H queries. We build the two FPGA accelerator overlay

designs: gqeJoin and gqeAggr using Xilinx Vitis 2020.1, and

they operate at 175MHz and 200MHz, respectively. As for the

evaluation of TPC-H benchmarks using real-world, large-scale

data analytics framework, we use Apache Spark 3.1.1 with

Scala 2.12. For a fair comparison, the entire TPC-H datasets

are loaded in the host main memory before the Spark SQL

execution to emulate an in-memory database system.

B. Overall Performance Improvement
Figure 7 summarizes the overall performance speedup of

SQL2FPGA under different design configurations over the

Spark SQL execution across all 22 TPC-H queries in SF1

and SF30. The baseline Spark SQL design is executed on a

24-thread CPU. To demonstrate the performance improvement

between different system configurations in SQL2FPGA, we

show three design versions: 1) CPU C++ version implementing

all operators used in the query plan using our C++ operator

functions implemented based on PostgreSQL [6] optimized

C++ operators and execute them entirely on CPU; 2) CPU-

FPGA hybrid execution utilizing both CPU and FPGA de-

vices and directly applying the complete set of optimizations,

without considering whether an aggressive optimization may

lead to performance degradation or not; and 3) best optimized

hybrid CPU-FPGA execution plan that exhaustively searches

through all optimization combinations to achieve the fastest

processing.

Due to the benefits of ahead-of-time compilation, the CPU

C++ version designs compiled using the g++ compiler typi-

cally perform better than Apache Spark execution with Java

virtual machine (JVM). Across all TPC-H queries, the CPU

C++ version designs achieve an average of 4.8x and 4.4x

performance speedup for SF1 and SF30.

For the hybrid CPU-FPGA execution versions, the

exhaustive-search optimized version explores all optimization

combinations to obtain the final query execution plan and

thus achieves the highest speedups of 11.3x and 14.6x for

SF1 and SF30, whereas for designs optimized with the full

set of compiler optimizations (described in section III-E) still

consistently achieves 10.1x and 13.9x average speedups over

the Spark SQL baseline designs.

Comparing the CPU C++ implementation and our hybrid

execution design enabled with all optimizations, the latter

achieves an average speedup of 2.1x and 3.2x over the CPU

C++ design for SF1 and SF30, demonstrating the benefit of

hybrid CPU-FPGA acceleration in query processing.

Finally, to further verify the quality of our SQL2FPGA

automatic acceleration solution, we also evaluate and compare

it with the Xilinx provided hand-tuned query acceleration

designs. The results show that our hybrid execution designs

achieve similar performance with a marginal 7% performance

degradation and around 1% improvement over the Xilinx

provided designs for SF1 and SF30.

C. Speedup for Different Optimization Passes

To quantitatively evaluate the performance impact of the

optimization passes, Figure 8 shows performance improve-

ments when incrementally applying the optimization passes

as described in section III-E. For better visualization, Figure 9

shows the exact number of TPC-H queries that benefit from

each optimization. Note that the presented performance results

are normalized based on the SQL2FPGA CPU C++ version

as the baseline design to demonstrate the performance impact

of integrating FPGA to accelerate query processing.

no opt – direct offload: Across all TPC-H queries, only nearly

half of queries achieve a performance improvement, while the

remaining queries show either performance degradation or no

performance change, as shown in Figure 9. The performance

���������	
�����

���������	
�������

�
�
��
��
��
��
��

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

�	

�

	�

��
��
��

��
��
�

��������	
������ ��������	���	��� ��������	������	
���	����	������
��������	������	
 �!�"��#	"����� $���� 	%&�	
����	'������

�
��
��
��
��
��
��
��

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

�	

�

	�

��
��
��

��
��
�

���������� 	���� ���
� 	��
� �
��� 	����

����������� ����������
�

Fig. 7: Comparison of overall speedup results over Spark SQL across all TPC-H queries and their geometric means.

�

�

�

�

�

�

��
�

��
�

��
�

��
�

��
�

��
	

��

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
	

��

��
�

��
�

��
�

��
�

��
�

�
��

��
�

��
��
��

��
��
�

���(����	���	�)) ���(����	��			
�� ���(����	�	
�	*		����	��%����
���(����	�	
�	(�	��������	��� ���(����	�	
�	+		�
�������� ���(����	�	
�	,			����� ����	��
���(����	�	
�	-		������	����	�!���

�

�

�

�

�

�

	

��
�

��
�

��
�

��
�

��
�

��
	

��

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
	

��

��
�

��
�

��
�

��
�

��
�

�
��

��
�

��
��
��

��
��
�

���������	
�����

���������	
�������

�
���

���� ���� ����

����� ��	�
��� ����

Fig. 8: Performance breakdown of all optimization passes included in SQL2FPGA evaluated across all TPC-H queries and

their geometric means: each optimization is incrementally added based on the prior optimizations.

�����������������

�
�
��
��
��
��

��
���
����
���
���
���
���
	�

��
���
����
��

��
��
��

��
��
����
���
��	
���
���

��
��!
����

��
���

���

��
��"
����
#�
��	
$��

���
�

��
��%
����
��
���
���

�
���
��

��
	

��
��

��
�

"������ ���	��	
 ��	��
��

������������������

�
�
��
��
��
��

��
���
����
���
	��
��

��
	�

��
���
����
���
��
��
��

��
��
����
���
��	
��

���

��
��!
����

��
���

���

��
��"
����
#	
��	
$��

���
�

��
��%
���
��
	��
���
�	
���
	�

��
	

��
��

��
�

Fig. 9: Statistics for number of TPC-H queries impacted

by SQL2FPGA’s optimization passes.

degradation is mainly due to the lack of consideration for the

acceleration strength of FPGA operators and the performance

trade-offs between FPGA acceleration and data transfer over-

heads. Using the optimized logical query plan directly from

Spark SQL without applying any query plan optimizations

from SQL2FPGA, no opt designs offload every operation

supported by the overlay designs to the FPGA device when

possible. The no performance change is mainly because these

queries do not utilize FPGA overlay designs. This observation

also motivates our compiler optimizations. Nevertheless, con-

sidering the overall performance impact across all queries, the

acceleration benefit still outweighs the performance slowdown,

and it achieves around 1.2x performance speedup over the

CPU C++ designs.

opt 1 – strRowIDSub: After enabling the string datatype to

row ID substitution optimization pass to extend acceleration

coverage on the FPGA overlay designs while reducing the

memory footprint between operations, 11 queries from both

scale factor datasets improve performance. Especially for

queries that were not previously able to offload any operation

to the FPGA overlay design, like query #10, could offload

three operators to FPGA overlay and thus achieve up to 1.42x

and 1.88x speedup for SF1 and SF30, respectively. Only one

query (query #15) experience performance slowdown (∼7%

for SF1 and ∼13% for SF30), mainly because of the data

transfer overhead between CPU host memory and FPGA

DRAM, which outweighs the overall FPGA acceleration ben-

efit. Nevertheless, on average, this optimization effectively

accelerates query processing by offloading more operators to

accelerate on the FPGA overlay designs and lowering the

datatype complexity used in operations. It achieves 1.09x and

1.2x speedups over the no opt designs for SF1 and SF30 across

all affected queries.

opt 2 – joinTransfrom: Also, to extend acceleration coverage

on the FPGA overlay designs, the special join transforma-

tion improves the processing performance of two queries:

#13 and #21, by 3.02x and 1.33x for SF1, and 2.50x and

1.47x for SF30. For query #13, the optimization transforms

and implements the left outer join using two separate join

operations: a left anti join and an inner join. For query #21,

the optimization detects two special-case dual-key left anti join
and left semi join operations and offloads them to accelerate

on FPGA. In summary, this optimization extends the FPGA

overlay acceleration coverage. Its incremental improvement

is around 2.18x and 1.99x better over the previous opt 1 -
strRowIDSub designs for SF1 and SF30 across the two affected

queries.

opt 3 – opPruning: In eliminating redundant computations,

the operator pruning optimization removes redundant opera-

tions and merges repeating operations in the query plan, thus

improving processing performance. Experimental results show

that it is effective for five queries.

Namely, for query #11, two branches in the query plan

carry the same operations, which perform two consecutive

join operations: first, join based on the suppkey key between

partsupp and supplier tables, then join with the nation table

on nationkey. By merging these two branches and executing

the corresponding join operations only once, the performance

improves by 1.97x and 2.72x for SF1 and SF30.

For query #15, the same filter operation is called at two

separate execution branches in the query plan. Thus, to reduce

the execution time, the compiler optimization eliminates one

of the function calls and gains 1.20x and 1.13x speedups for

SF1 and SF30, respectively.

For query #17, the performance improvement is 6.36x

and 33.93x for SF1 and SF30, respectively. The significant

performance gain comes from two folds. First, it removes the

group-by aggregation operation on the largest table in the TPC-

H dataset, lineitem table, which takes around 88% processing

time on the SF1 dataset. Second, through the commutative

property of join, we merge the previous group-by aggregation

operation with the join operation on the same partkey key

between lineitem and part tables.

For query #18, the performance speedup is 1.79x and 1.72x

for SF1 and SF30, respectively. This improvement is due to

the removal of a duplicated group-by aggregation operation

(taking about 36% processing time on SF1 dataset) on the

orderkey key of lineitem table.

Lastly, for query #21, the performance speedup is 1.43x and

1.54x for SF1 and SF30, respectively. To reduce processing

time, the optimization removes three redundant column alias

renaming and a duplicated filter operation restricting rows

where the receiptdate attribute column is less than or equal

to the commitdate attribute column on the lineitem table.

In summary, across the five queries affected by this opti-

mization, the average performance speedup is 2.07x and 3.08x

over the opt 2 - joinTransfrom designs of the affected queries

for SF1 and SF30, respectively.

opt 4 – overlayFusion: In reducing the expensive PCIe

data transfer to exchange input and output data between

different FPGA overlay tasks, the overlay fusion optimization

maximizes the number of operations carried out within a

single overlay design while minimizing the number of overlay

acceleration API calls. Experimental results show that it is

effective for six queries.

For query #1, the number of overlay calls is reduced from

2 to 1, achieving 1.53x and 2.12x speedup for SF1 and SF30,

respectively. For query #3, the number of overlay calls is

reduced from 5 to 3, and achieve 1.34x and 3.14x speedup

for SF1 and SF30, respectively. For query #4, the number

of overlay calls is reduced from 3 to 1, achieving 1.20x and

1.20x speedup for SF1 and SF30, respectively. For query #5,

the number of overlay calls is reduced from 6 to 5, achieving

1.07x and 1.14x speedup for SF1 and SF30, respectively. For

query #6, the number of overlay calls is reduced from 2 to

1, achieving 1.09x and 1.09x speedup for SF1 and SF30,

respectively. For query #10, the number of overlay calls is

reduced from 5 to 3, achieving 1.29x and 1.85x speedup for

SF1 and SF30, respectively.

In summary, the performance results show an average

speedup of 1.25x for the SF1 dataset and an average speedup

of 1.48x for the SF30 dataset over the opt 3 - opPruning
designs of the affected queries.

opt 5 – innerJoinReorder: Join operations are intensive in

compute and memory, typically occupying a significant chunk

of processing time. By reducing the intermediate table data

generated based on statistics of the number of input table

rows, the inner join reorder optimization aims to reduce data

transfer size and compute intensity to improve processing.

Our evaluation results show that this optimization is effective

for four queries to achieve performance speedup for SF1 and

SF30.

This optimization is particularly effective for query #2,

achieving 18.87x and 28.76x speedup for SF1 and SF30,

respectively. This is because, in query #2, the original query

plan from Spark SQL schedules the most time-consuming join

path in an order such that it first joins tables partsupp (800,000

rows) and supplier (10,000 rows), then table nation (25 rows),

and lastly, table region (5 rows). As a result, the intermediate

number of rows generated (for the SF1 dataset) between

these join operators are 80,000, 800,000, and 162,880. In

contrast, our compiler optimization reorders the join operators

to prioritize joining tables with the least number of rows,

so we first join between tables nation (25 rows) and region
(5 rows), then supplier (10,000 rows), and lastly supplier
(800,000 rows). The intermediate rows are lowered to 5, 2036,

and 162880. As for the SF30 dataset, although the intermediate

number of rows is proportionally reduced, the performance

increases beyond linear scaling.

For query #7, the optimization swaps the join order be-

tween tables order (1,500,000 rows) and nation (25 rows),

and this achieves 2.47x and 2.17x speedups for SF1 and

SF30, respectively. For query #11, the optimization swaps join

order between tables partsupp (800,000 rows) and nation (25

rows), achieving 8.53x and 2.80x speedups for SF1 and SF30,

respectively. For query #15, the optimization treats the number

of rows as one from a column aggregation operator and swaps

join order with table supplier (10,000 rows); this achieves

1.06x and 1.98x speedup for SF1 and SF30.

The performance results show an average speedup of 3.22x

and 3.58x for the SF1 and SF30 datasets, respectively.

V. RELATED WORK

A. Query Processing Acceleration on FPGA

Previous efforts have proposed FPGA accelerator designs

for database operators. Some require reconfiguring the entire

FPGA to support different acceleration designs [17], [14], [24].

At the same time, others support a more flexible acceleration

of different operators through runtime parameterization [19],

[13], [20], [22] or partial dynamic reconfiguration [11], [12],

[18], [15], which is more commonly used for the embedded

FPGA platforms. However, most of these works target near-

storage acceleration using ”bump-in-a-wire” FPGA acceler-

ators to help reduce data exchange between CPU and disk

storage. This differs from our work, where we target to

accelerate query processing for in-memory database systems

where workloads are mostly computation-bound, which opens

new opportunities for FPGA acceleration.

Other works have also developed mechanisms to integrate

FPGA acceleration with an existing database system [24], [25],

[26], [27]. However, their designs are either not applicable

to general database systems or do not provide an automatic

compilation to translate queries to FPGA accelerators.

FPGA accelerator for database operations. To accelerate

restriction and aggregate operators, Dennl et al. introduced a

flexible method to compose the datapath of their accelerator

design at runtime through partial dynamic reconfiguration

on the FPGA [12]. In [13], Sukhwani et al. implemented a

tournament tree algorithm-based FPGA accelerator for sort

operation. In [14], Casper et al. proposed efficient hardware

designs for selection, merge join, and sort operations and

improved memory bandwidth utilization compared to a soft-

ware version. To dynamically adjust the FPGA accelerator

design to match different workload sizes for filter and boolean

evaluation, Manev et al. developed a dynamic stream process-

ing accelerator with scalable processing primitives and partial

reconfiguration on the FPGA [15].

FPGA acceleration for query processing. In supporting

flexible FPGA acceleration for operations, Dennl et al. ex-

plored partial reconfiguration on FPGA to compose query-

specific data paths from pre-compiled components at runtime

to accelerate query processing [11], [12], [18]. While dynamic

partial reconfiguration supports flexible switching from one

query to the following query using RTL, most datacenter

FPGA boards either do not have good dynamic partial recon-

figuration tool support or have a high reconfiguration overhead

compared to the embedded FPGAs. SQL2FPGA uses FPGA

overlay designs that could fit entirely onto one FPGA, and

we use runtime parameterization for runtime reconfigurations.

A similar approach to ours is used in [19], [20], where

Sukhwani et al. propose a hardware/software co-design with

selection, projection, and sort operations offloaded to an FPGA

accelerator, demonstrating the benefits for coupling FPGA-

based hardware acceleration with CPU software.

To address the IO bottleneck and relieve the CPU com-

putational pressure, Ibex[22] and IBM Netezza [21] are near

storage query processing engines on FPGA performing decom-

pression, restriction, and aggregation operations. [23] further

extends [11] and [12] with additional merge-join, sort, and

reorder units in the partial reconfiguration module suite. It also

developed an energy-aware processing platform that utilizes

AXI interfaces for communication with ARM cores.

For integrating FPGA acceleration with real-world database

systems, [24] accelerated OpenCL kernel operators on FPGA

in a GPU-based database system called OmniDB. [25], [26]

modified the in-memory DBMS MonetDB software stack to

integrate FPGA accelerators by treating them as user-defined

functions (UDF). And [27] integrated an FPGA accelerator

with their prototype DBMS system called FCAccel to speed

up data extraction from SSDs for SQL processing.

While the research efforts mentioned above show great

potential in FPGA-accelerated database operators and queries,

they are orthogonal to this paper, where we focus on the auto-

matic compilation of SQL queries onto the CPU-FPGA plat-

form along with the FPGA-aware query plan optimizations.

Glacier [17], one of the few (outdated) query-to-hardware

compilers, supports direct translation from SQL queries to

RTL code for FPGA. However, to accelerate dynamic an-

alytical processing queries, the repetitive, lengthy hardware

synthesis time for every new query makes the tool impractical.

B. Query Processing Acceleration on GPU

Previous research has also explored query acceleration on

GPU. In [30], He et al. presented GDB, a CPU-GPU co-

processing framework for accelerating in-memory relational

database systems. Similar to our work, they implemented

query plan optimizations to partition operators and data be-

tween the CPU and GPU platforms. However, only basic

operators such as split and sort are offloaded to the GPU,

whereas the FPGA overlay designs used in SQL2FPGA sup-

port most query operators except sort. To fill the programming

gap between SQL and GPU, Bakkum et al. implemented

a subset of the SQLite command processors directly on

GPU [31]. In [32], a SQL to GPU compiler called Red Fox

is presented and demonstrates an average speedup of 6.48x

over an optimized CPU implementation. However, the focus of

query plan optimizations targets GPU-only execution instead

of a hybrid CPU-FPGA execution model. To improve the GPU

resource underutilization issue with the kernel-based execution

in CPU-GPU co-processing frameworks, Paul et al. proposed

GPL [33], a pipelined execution engine that could achieve

up to 48% performance improvement over the kernel-based

execution. It mainly focuses on configuration parameter tuning

to improve hardware execution, which is orthogonal to our

work.

C. Query Processing Acceleration on ASIC

While ASIC designs almost always guarantee superior

performance and energy efficiency for acceleration, they are

inferior to FPGAs concerning the development cost, especially

with the rapid changes in today’s computing demands. In [34],

Wu et al. developed a comprehensive set of ASIC-based

operators, defined a domain-specific ISA, and demonstrated

a 70x speedup using simulation results over native MonetDB

execution on CPU. It devised a programmable spatial-array

architecture to support all the basic operators but lacks the con-

sideration of system integration and evaluates only on small

dataset size (i.e., 0.01GB). To support scaling for large dataset

size, in [35], Xu et al. presented an in-storage query processing

engine to enable near SSD processing. It is orthogonal to our

work since we target in-memory databases. Also, we propose

additional FPGA accelerator-aware compiler optimizations to

accelerate query processing.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an automatic compilation

framework called SQL2FPGA for translating SQL queries

to be processed on the heterogeneous CPU-FPGA acceler-

ation platform. To accelerate compute-intensive in-memory

query processing workloads, we first adopted overlay-based

accelerator designs from AMD/Xilinx database library [4]

that provide flexible operator acceleration through runtime

parameterization and are well supported on datacenter FP-

GAs. To further improve the processing performance of the

physical query plan execution, we have implemented a query

plan optimizer to 1) extend operator acceleration coverage,

2) eliminate redundant computation, and 3) minimize data

transfer overhead. Finally, we evaluated our framework by

accelerating all 22 TPC-H queries. Experimental results show

that SQL2FPGA on average achieves 10.1x and 13.9x perfor-

mance speedup under SF1 and SF30, respectively, compared to

Spark SQL execution on a 24-thread CPU server. Additionally,

compared with Xilinx hand-written optimized acceleration

code, SQL2FPGA also achieves similar performance. For

future work, we plan to improve SQL2FPGA by first adding

configuration support to leverage the latest overlay designs

from the Xilinx database library and extending SQL2FPGA to

support more FPGA platforms and query benchmarks. Second,

we plan to leverage machine learning techniques to guide

the efficient selection of the CPU or FPGA for operator

execution. Lastly, to promote wider impact, we will explore

the integration with an actual database engine by exploring

just-in-time compilation and optimizing the data transfer be-

tween CPU and FPGA. This work will be open-sourced at:

https://github.com/SFU-HiAccel/SQL2FPGA.

ACKNOWLEDGEMENTS

This work is partly supported by NSERC Discovery Grant

RGPIN-2019-04613, DGECR-2019-00120, Alliance Grant

ALLRP-552042-2020; CFI John R. Evans Leaders Fund;

Huawei Canada and AMD-Xilinx. We thank AMD-Xilinx

Vitis DB team, Prof. Jiannan Wang and Dr. Jinglin Peng from

Simon Fraser University, for their insightful discussion and

technical support. We also thank the anonymous reviewers for

their valuable feedback.

REFERENCES

[1] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in Pro-
ceedings of the 38th Annual International Symposium on Computer
Architecture, ser. ISCA ’11. Association for Computing Machinery,
2011, p. 365–376.

[2] J. Ouyang, W. Qi, Y. Wang, YichenTu, J. Wang, and B. Jia, “Sda:
Software-defined accelerator for general-purpose big data analysis sys-
tem,” in 2016 IEEE Hot Chips 28 Symposium (HCS), 2016, pp. 1–23.

[3] TPC, “Tpc-ds is a decision support benchmark,” 2022, last accessed
December 20, 2022. [Online]. Available: https://www.tpc.org/tpcds/

[4] Xilinx, “Vitis database library,” 2022, last accessed December 20, 2022.
[Online]. Available: https://www.xilinx.com/products/design-tools/vitis/
vitis-libraries/vitis-database.html

[5] TPC, “Tpc-h is a decision support benchmark,” 2022, last accessed
December 20, 2022. [Online]. Available: https://www.tpc.org/tpch/

[6] PostgreSQL, “Postgresql: The world’s most advanced open source
relational database,” 2022, last accessed December 20, 2022. [Online].
Available: https://www.postgresql.org/

[7] D. Bacon, R. Rabbah, and S. Shukla, “Fpga programming for the masses:
The programmability of fpgas must improve if they are to be part of
mainstream computing.” Queue, vol. 11, no. 2, p. 40–52, feb 2013.

[8] J. Fang, Y. T. B. Mulder, J. Hidders, J. Lee, and H. P. Hofstee, “In-
memory database acceleration on fpgas: A survey,” The VLDB Journal,
vol. 29, no. 1, p. 33–59, oct 2019.

[9] Xilinx, “Alveo u280 data center accelerator card data sheet (ds963),”
2022, last accessed December 20, 2022. [Online]. Available: https:
//docs.xilinx.com/r/en-US/ds963-u280/Summary

[10] A. Spark, “Unified engine for large-scale data analytics,” 2022, last
accessed December 20, 2022. [Online]. Available: https://spark.apache.
org/

[11] C. Dennl, D. Ziener, and J. Teich, “On-the-fly composition of fpga-based
sql query accelerators using a partially reconfigurable module library,”
in 2012 IEEE 20th International Symposium on Field-Programmable
Custom Computing Machines, 2012, pp. 45–52.

[12] ——, “Acceleration of sql restrictions and aggregations through fpga-
based dynamic partial reconfiguration,” in 2013 IEEE 21st Annual
International Symposium on Field-Programmable Custom Computing
Machines, 2013, pp. 25–28.

[13] B. Sukhwani, M. Thoennes, H. Min, P. Dube, B. Brezzo, S. Asaad,
and D. Dillenberger, “Large payload streaming database sort and pro-
jection on fpgas,” in 2013 25th International Symposium on Computer
Architecture and High Performance Computing, 2013, pp. 25–32.

[14] J. Casper and K. Olukotun, “Hardware acceleration of database opera-
tions,” in Proceedings of the 2014 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, ser. FPGA ’14. Association for
Computing Machinery, 2014, p. 151–160.

[15] K. Manev, A. Vaishnav, C. Kritikakis, and D. Koch, “Scalable filtering
modules for database acceleration on fpgas,” in Proceedings of the 10th
International Symposium on Highly-Efficient Accelerators and Recon-
figurable Technologies, ser. HEART 2019. Association for Computing
Machinery, 2019.

[16] T. Zhang, J. Wang, X. Cheng, H. Xu, N. Yu, G. Huang, T. Zhang, D. He,
F. Li, W. Cao, Z. Huang, and J. Sun, “Fpga-accelerated compactions
for lsm-based key-value store,” in Proceedings of the 18th USENIX
Conference on File and Storage Technologies, ser. FAST’20. USENIX
Association, 2020, p. 225–238.

[17] R. Mueller, J. Teubner, and G. Alonso, “Glacier: A query-to-hardware
compiler,” in Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’10. Association
for Computing Machinery, 2010, p. 1159–1162.

[18] D. Ziener, F. Bauer, A. Becher, C. Dennl, K. Meyer-Wegener,
U. Schürfeld, J. Teich, J.-S. Vogt, and H. Weber, “Fpga-based dynami-
cally reconfigurable sql query processing,” ACM Trans. Reconfigurable
Technol. Syst., vol. 9, no. 4, aug 2016.

[19] B. Sukhwani, H. Min, M. Thoennes, P. Dube, B. Iyer, B. Brezzo,
D. Dillenberger, and S. Asaad, “Database analytics acceleration using
fpgas,” in Proceedings of the 21st International Conference on Parallel
Architectures and Compilation Techniques, ser. PACT ’12. Association
for Computing Machinery, 2012, p. 411–420.

[20] B. Sukhwani, M. Thoennes, H. Min, P. Dube, B. Brezzo, S. Asaad,
and D. Dillenberger, “A hardware/software approach for database query
acceleration with fpgas,” Int. J. Parallel Program., vol. 43, no. 6, p.
1129–1159, 2015.

[21] P. Francisco et al., “The netezza data appliance architecture: A platform
for high performance data warehousing and analytics,” 2011.

[22] L. Woods, Z. István, and G. Alonso, “Ibex: An intelligent storage engine
with support for advanced sql offloading,” Proc. VLDB Endow., vol. 7,
no. 11, p. 963–974, 2014.

[23] A. Becher, F. Bauer, D. Ziener, and J. Teich, “Energy-aware sql query
acceleration through fpga-based dynamic partial reconfiguration,” in
2014 24th International Conference on Field Programmable Logic and
Applications (FPL), 2014, pp. 1–8.

[24] Z. Wang, J. Paul, H. Y. Cheah, B. He, and W. Zhang, “Relational
query processing on opencl-based fpgas,” in 2016 26th International
Conference on Field Programmable Logic and Applications (FPL),
2016, pp. 1–10.

[25] M. Owaida, D. Sidler, K. Kara, and G. Alonso, “Centaur: A framework
for hybrid cpu-fpga databases,” in 2017 IEEE 25th Annual Interna-
tional Symposium on Field-Programmable Custom Computing Machines
(FCCM), 2017, pp. 211–218.

[26] D. Sidler, M. Owaida, Z. István, K. Kara, and G. Alonso, “doppiodb: A
hardware accelerated database,” in 2017 27th International Conference
on Field Programmable Logic and Applications (FPL), 2017, pp. 1–1.

[27] S. Watanabe, K. Fujimoto, Y. Saeki, Y. Fujikawa, and H. Yoshino,
“Column-oriented database acceleration using fpgas,” in 2019 IEEE 35th
International Conference on Data Engineering (ICDE), 2019, pp. 686–
697.

[28] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi, and M. Zaharia,
“Spark sql: Relational data processing in spark,” in Proceedings of the
2015 ACM SIGMOD International Conference on Management of Data,
ser. SIGMOD ’15. Association for Computing Machinery, 2015, p.
1383–1394.

[29] MonetDB, “Monetdb: The database system to speed up your analytical
jobs,” 2022, last accessed December 20, 2022. [Online]. Available:
https://www.monetdb.org/

[30] B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju, Q. Luo, and P. V.
Sander, “Relational query coprocessing on graphics processors,” ACM
Trans. Database Syst., vol. 34, no. 4, 2009.

[31] P. Bakkum and K. Skadron, “Accelerating sql database operations on a
gpu with cuda,” in Proceedings of the 3rd Workshop on General-Purpose
Computation on Graphics Processing Units, ser. GPGPU-3. Association
for Computing Machinery, 2010, p. 94–103.

[32] H. Wu, G. Diamos, T. Sheard, M. Aref, S. Baxter, M. Garland, and
S. Yalamanchili, “Red fox: An execution environment for relational
query processing on gpus,” in Proceedings of Annual IEEE/ACM Inter-
national Symposium on Code Generation and Optimization, ser. CGO
’14. Association for Computing Machinery, 2014, p. 44–54.

[33] J. Paul, J. He, and B. He, “Gpl: A gpu-based pipelined query process-
ing engine,” in Proceedings of the 2016 International Conference on
Management of Data, ser. SIGMOD ’16. Association for Computing
Machinery, 2016, p. 1935–1950.

[34] L. Wu, A. Lottarini, T. K. Paine, M. A. Kim, and K. A. Ross, “Q100: The
architecture and design of a database processing unit,” in Proceedings
of the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’14.
Association for Computing Machinery, 2014, p. 255–268.

[35] S. Xu, T. Bourgeat, T. Huang, H. Kim, S. Lee, and A. Arvind,
“Aquoman: An analytic-query offloading machine,” in 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2020, pp. 386–399.

