
1

TopSort: A High-Performance Two-Phase Sorting
Accelerator Optimized on HBM-based FPGAs

Weikang Qiao, Student Member, IEEE, Licheng Guo, Zhenman Fang, Member, IEEE,
Mau-Chung Frank Chang, Life Fellow, IEEE and Jason Cong, Fellow, IEEE

Abstract—The emergence of high-bandwidth memory (HBM) brings new opportunities to boost the performance of sorting
acceleration on FPGAs, which was conventionally bounded by the available off-chip memory bandwidth. However, it is nontrivial for
designers to fully utilize this immense bandwidth. First, the existing sorter designs cannot be directly scaled at the increasing rate of
available off-chip bandwidth, as the required on-chip resource usage grows at a much faster rate and would bound the sorting
performance in turn. Second, designers need an in-depth understanding of HBM’s characteristics to effectively utilize the HBM
bandwidth. To tackle these challenges, we present TopSort, a novel two-phase sorting solution optimized for HBM-based FPGAs. In
the first phase, 16 merge trees work in parallel to fully utilize 32 HBM channels’ bandwidth. In the second phase, TopSort reuses the
logic from phase one to form a wider merge tree to merge the partially sorted results from phase one. TopSort also adopts
HBM-specific optimizations to reduce resource overhead and improve bandwidth utilization. TopSort can sort up to 4 GB data using all
32 HBM channels, with an overall sorting performance of 15.6 GB/s. TopSort is 6.7× and 2.7× faster than state-of-the-art CPU and
FPGA sorters.

Index Terms—Sorting, merge sort, hardware acceleration, high-bandwidth memory, memory-centric design, FPGA, floorplan.

✦

1 INTRODUCTION

Sorting is one of the fundamental computation kernels in
many big data applications and there have been continuous
efforts on designing high-performance sorting accelerators
on FPGAs [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14], [15]. Most of these sorting accelerators are based
on the multi-way merge tree sort algorithm [1], [2], [3], [4],
[5], [6], [7], [8], [9], due to its massive data parallelism and
regular memory access patterns. Before the maturing of the
high-bandwidth memory (HBM) technology, these sorters
were usually implemented on DRAM-based FPGAs and
bounded by the off-chip memory bandwidth [7], [8]. For
example, Bonsai [7] presented the state-of-the-art merge tree
based sorter on the AWS F1 datacenter FPGA and achieved
an overall sorting performance of 5.8 GB/s with a merge
tree’s throughput of 32 GB/s;1 it could sufficiently scale
up the number of parallel merge units until the memory
bandwidth becomes the bottleneck.

The emergence of HBM-based FPGAs has brought the
potential to further boost the performance of the sorting
accelerators by offering a much higher off-chip memory
bandwidth. For example, the recent HBM-based datacenter
FPGAs report a peak memory bandwidth of about 420

• Weikang Qiao and Mau-Chung Frank Chang are with the Department
of Electrical and Computer Engineering, University of California, Los
Angeles, CA, 90025.
E-mail: wkqiao2015@ucla.edu, mfchang@ee.ucla.edu

• Licheng Guo and Jason Cong are with the Department of Computer
Science, University of California, Los Angeles, CA, 90025.
E-mail: {lcguo,cong}@cs.ucla.edu

• Zhenman Fang is with the School of Engineering Science, Simon Fraser
University, Burnaby, BC V5A 1S6, Canada.
E-mail: zhenman@sfu.ca

1. The definitions of a merge tree’s throughput and the overall sorting
performance are presented in Section 2 and Section 3.

GB/s, which is roughly 6× of that on a similar DRAM-
based datacenter FPGA [16], [17]. A natural question is:
if we simply port and scale the state-of-the-art merge tree
designs onto an HBM-based FPGA, can we get 6× higher
merge tree throughput? Unfortunately, the answer is no due
to two nontrivial challenges.

On the one hand, with the tremendous off-chip band-
width increase, the bottleneck of sorting acceleration would
shift from off-chip memory to the available on-chip re-
sources. As will be analyzed in Section 3, for a merge
tree-based sorter that can output p elements per cycle, the
required off-chip bandwidth increases linearly with p, while
the required on-chip resources increase much faster at the
rate of θ(plog3(p)). Unfortunately, for an HBM-based FPGA
(e.g., Xilinx Alveo U280 FPGA [18]) that provides roughly
6× more bandwidth than a similar DRAM-based FPGA
(e.g., AWS F1 FPGA), it only provides merely 1.2× more
on-chip resources. Indeed, our analysis shows that a single
merge tree accelerator can not be scaled to use more than
1/4 of the available HBM bandwidth.

On the other hand, it is nontrivial to fully utilize the
HBM bandwidth in an accelerator design. Typically, the
HBM is composed of 32 small channels. The accelerator has
to rely on multiple memory controllers to access those HBM
channels in parallel to maximize the memory bandwidth,
at the expense of on-chip resources. Moreover, there could
easily be contention between multiple channel accesses due
to HBM’s internal channel switching, which would degrade
the effective bandwidth. Therefore, it requires delicate mem-
ory access control to improve the bandwidth utilization and
reduce resource overhead. Finally, the HBM stacks are phys-
ically connected to a huge multi-die FPGA’s bottom die only,
making it difficult to spread the resource utilization across
multiple FPGA dies to achieve desirable timing closure. To
the best of our knowledge, none of the published HBM-

2

based accelerator designs [19], [20], [21], [22], [23] is able to
fully utilize the entire bandwidth of the 32 HBM channels.

In this work, we present TopSort, a high-performance
two-phase sorting accelerator specialized for HBM-based
FPGAs. TopSort avoids the excessive resource consumption
of directly scaling a single giant sorter’s throughput by nov-
elly splitting the complete sorting process into two separate
merge phases with smaller sorters and reusing the resources
between the two phases. In the first phase, TopSort employs
16 parallel small merge tree kernels, each of which sorts a
portion of the input sequence with two HBM channels (one
for reading unsorted inputs and the other for writing sorted
outputs). In this phase, the effective merge tree throughput
is equal to the bandwidth of 16 HBM channels. In the
second phase, TopSort merges the sorted results from all
HBM channels into one final sorted sequence. To reduce
the resource consumption, this phase reuses 4 merge tree
kernels from phase one to form a wider merge tree with
a 4× higher throughput, since merge trees with different
throughput share a similar operation pattern.

To improve the effective HBM bandwidth utilization,
we profile the corresponding HBM channel characteristics
and carefully optimize the merge tree’s memory access
pattern for each phase, including optimizing its data layout
and burst access, as well as reducing the usage of HBM
controllers. Besides, the novel merge tree reuse architecture
allows us to easily improve the design frequency through
coarse-grained floorplanning of each separate merge tree
kernel. We floorplan TopSort by evenly distributing the
design across the entire FPGA logic regions, based on an
efficient resource model that considers the accelerator’s
design complexity, the available resources of each FPGA die,
the limitation of cross-die signals, and the overhead of HBM
controllers.

When implemented on the Xilinx Alveo U280 FPGA,
TopSort runs at 214 MHz and achieves an overall perfor-
mance of 15.6 GB/s, which is 6.7× and 2.7× faster than
state-of-the-art CPU and FPGA sorters [7], [24]. TopSort can
sort up to 4 GB data at a time, which is half of the total HBM
capacity. Although this work includes a number of device-
specific optimization for the HBM-based U280 FPGAs from
Xilinx, the general two-phase reused-based merge sort ar-
chitecture is applicable to all HBM-based FPGAs across
different vendors.

We summarize the contributions of TopSort as below:

1. A novel two-phase merge tree based sorter optimized
on HBM-based FPGAs, which fully utilizes the HBM
bandwidth and alleviates the on-chip resource bottleneck
by intelligently reusing multiple merge trees between
two phases.

2. Techniques and insights for HBM-specific optimizations,
including the data layout, burst access, and HBM con-
troller optimizations, as well as the floorplanning strat-
egy.

3. Experimental results that demonstrate the superior 15.6
GB/s sorting performance and show TopSort is 6.7× and
2.7× faster than state-of-the-art CPU and FPGA sorters.

H
BM

H
BM

H
BM

H
BM

AX
I C

vt

[]
4 X 4 Crossbar

H
BM

H
BM

H
BM

H
BM

[]
4 X 4 Crossbar

…………

AX
I C

vt

AX
I C

vt

AX
I C

vt

AX
I C

vt

AX
I C

vt

AX
I C

vt

AX
I C

vt

HBM die

FPGA die

User logic

Fig. 1: Connections from user logic to HBM channels. AXI
Cvt is short for AXI Rate Converter. Lateral connections be-
tween nearby crossbars enable AXI to access HBM channels
that are not located in the same group.

2 BACKGROUND REVIEW

The merge tree sorting algorithm is favored for FPGA-based
sorters due to its massive data parallelism, less control
overhead and regular memory access patterns [1], [2], [3],
[4], [5], [6], [7], [8], [9]. In this section, we first introduce
the HBM-based FPGAs. Then we give an overview of the
hardware merge units and the existing DRAM-based merge
tree sorting accelerators.

2.1 HBM-Based FPGAs
HBM achieves higher bandwidth than DDR4 DRAMs by
stacking multiple small DRAM dies together and is one
of the most promising candidates enabling memory-centric
designs [25]. Taking Xilinx U280 board as an example,
the board is equipped with 2 HBM stacks and each stack
contains 16 pseudo channels [18]. Figure 1 exhibits the
connections between the user logic and the HBM channels.
Each HBM channel can be accessed through a 256-bit wide
AXI interface running at 450 MHz. The vendor tool will by
default implement AXI rate converters in the HBM Memory
Subsystem (HMSS) to adapt the original 256-bit AXI inter-
faces to 512-bit AXI interfaces running at 225 MHz to the
user logic. In the case of routing congestion which happens
if the on-chip resources are over-utilized or the design is not
well pipelined, both the HBM-side AXI frequency and the
user-side design frequency will be reduced and the available
HBM bandwidth will be degraded.

There is no global crossbar to allow 32 AXI interfaces to
access the 32 HBM channels at the same time. Instead, the
32 HBM channels are physically bundled into 8 groups and
each group contains 4 adjacent channels joined by a built-in
4×4 crossbar, as is shown in Figure 1. The crossbar provides
full connectivity within the group. Meanwhile, each AXI
interface at the user side can still access any HBM chan-
nels outside its group. The data will sequentially traverse
through each of the lateral connections until it reaches the
crossbar connecting to the target channel.

2.2 Hardware Merge Unit
A hardware merge unit takes two sorted sequences of
elements as its inputs and then merges them into one sorted
sequence. Specifically, an E-rate hardware merge unit takes
E input elements from its two E-element wide inputs and

3

a0

a1

a2

a3

b0
b1

b2

b3

1

3

5

7

2

4

6

8

1

3

4

2

7

5

6

8

1

2

4

3

6

5

7

8

1

2

3

4

5

6

7

8

c0

c1

c2

c3

c4
c5

c6

c7

Bitonic Merger

Fig. 2: An example of 4-rate bitonic merge unit: each vertical
line that connects two dots is a compare-swap cell and the
compare-swap cells in the same box are processed in the
same cycle. c0−3 will be the outputs after 3 cycles.

ai < bj?

Bitonic
Merge
Unit
(L)

ai
ai+1

Mux

Bitonic
Merge
Unit
(S)

Mux

FIFOa

FIFOb

c4
c5
c6
c7

ai+2
ai+3

bj
bj+1
bj+2
bj+3

Output

Fig. 3: The topology of a 4-rate MMS merge unit. Registers
in the datapath are omitted for simplicity.

outputs E sorted elements every cycle. The compare-swap cell
is the basic building block for hardware merge unit, which
compares two elements’ values and swaps them into the
correct ordering [1]. A compare-swap cell usually contains
a comparator and a 2-input multiplexer, which is suitable
to be implemented using the Look-Up Tables (LUTs) on the
FPGAs. Using a pipeline of multiple compare-swap cells,
designers can develop the hardware merge unit. The bitonic
merge unit shown in Figure 2 is one of the most widely used
hardware merge units.

If the two sorted input sequences are longer than E, the
E-rate merge unit has to be time multiplexed (i.e., executed
multiple rounds) with extra control signals to ensure the
outputs are in order. For example, in Figure 2, c4−7 represent
the largest four elements of a0−3 and b0−3. In the next cycle,
c4−7 need to be sent back to the input side of the same
bitonic merge unit and merged with either a4−7 or b4−7 to
create the second 4-element sorted outputs. The feedback
paths from the output side of the bitonic merge unit to its
input side mean the merge unit has to wait for extra cycles
before it can do the next merge operation. In other words,
the initial interval (II) is equal to the number of pipeline
stages in the bitonic merge unit.

To improve the merging performance with an II equal to
1, several optimization techniques have been proposed [11],
[12], [13], [14]. [12] proposes an E-rate streaming merge unit
called MMS that outputs E elements every cycle using two
bitonic merge units, as shown in Figure 3. The intuition is

Input
Buffers

!-M

1-M1-M

2-M

1-M1-M

2-M

!/2-M

•••••• ••••••

Output
Buffer

1-M1-M

2-M

1-M1-M

2-M

!/2-M

•••••• ••••••

AXI write to the memory

AXI read from the memory

$ = 16

Fig. 4: An example of the merge tree (p = 16, l = 16), where
an E-M box denotes an E-rate hardware merge unit. Note
that l can be larger than p, e.g., to make a merge tree (p = 16,
l = 32), one can have another layer of 32 1-M merge units
on top of the current leaf layer.

that the larger half outputs of the original bitonic merge unit
can be first calculated through the bitonic merge unit (L) and
are later fed into the bitonic merge unit (s) with delayed
inputs from either sequence a or b. In this work, we use
the same topology of MMS to construct the hardware merge
unit, as it is free of feedback paths and thus helps alleviate
the design routing congestion. However, we may use other
efficient merge units as well, such as FLiMSj from [26].

2.3 DRAM-based Merge Tree Sorting Accelerator
Using a combination of various hardware merge units with
different rates, we can build a complete binary tree that
consumes l unsorted input sequences concurrently at its
leaves and outputs p sorted elements at its root every
cycle [4], [6], [7], [8]. Figure 4 shows the architecture of a
merge tree [7]. Such a merge tree can be uniquely denoted
by (p, l), where p refers to the merge tree’s throughput and
l is the number of leaves.

In one sorting pass, the input elements are streamed from
the off-chip memory into the leaf buffers and then through
the merge tree, and the output elements are streamed back
into the off-chip memory. Assume there are N unsorted
elements initially stored in the off-chip memory, these N
elements need to be streamed into the merge tree for multi-
ple passes and after each pass, the size of the partially sorted
sequence grows exactly by l times. During the first pass, the
merge tree reads these N sub sequences (each containing
one element) from the off-chip memory, merges them into
N/l sorted sub sequences, each containing l sorted elements,
and writes them back to the off-chip memory. In the next
pass, the l-element sorted sub sequences are fed into the
merge tree again to get N/l2 sorted sequences of length l2.
These steps are repeated until the last pass, where l sorted
sequences of length N/l are processed by the merge tree to
form a complete N -element sorted sequence. One can easily
derive that the total number of passes is ⌈logℓ N⌉.

3 SCALABILITY ANALYSIS OF A SINGLE MERGE
TREE

In this section, we explain why the single merge tree em-
ployed on existing DRAM-based FPGAs cannot be directly
scaled to efficiently work on HBM-based FPGAs.

4

The throughput of a single merge tree can be derived us-
ing the analytical model from [7]. First, the merge tree with l
leaves takes ⌈logℓ N⌉ passes. Second, the merge tree outputs
p elements every cycle to the off-chip memory, where p is di-
rectly reflected by the off-chip memory bandwidth βmemory

allocated to the writing operations. Generally, half of the
system bandwidth is allocated for writing and the other half
is for reading. We define the overall sorting performance
as the number of bytes of unsorted elements divided by
the time it takes to get the completely sorted elements.
Assuming there are unlimited on-chip resources, we have
the overall sorting performance βoverall in Equation 1.

βoverall =
βmemory

⌈logℓ N⌉
(1)

Clearly, the on-chip resources are finite. Next, we analyze
the on-chip resource requirement in scaling the merge tree-
based sorter. The merge tree in Figure 4 can be viewed as
two sub merge trees whose root rates are p/2 each, plus a
merge unit whose rate is p. Since a merge unit is a variation
of a parallel sorting network, such as bitonic or even-odd
sorting network, and such a p-rate merge unit consumes
plog2(p) number of comparison operators [11], [12], the
number of comparators, L(p), required when scaling p can
be summarized in Equation 2.

L(p) = 2L(p/2) + θ(plog2(p)) (2)

Based on this equation, we can derive that the total num-
ber of logic elements (i.e., comparators) for the complete
binary tree is θ(plog3(p)) [27]. Considering that migrating
from 4 DRAM channels in [7] to 32 HBM channels increases
the available off-chip bandwidth by nearly 8×, it is not
possible to directly scale a single merge tree’s throughput
to catch up with the increase of the HBM bandwidth.

In fact, we find that the root throughput of a single
merge tree can only be scaled to match 4 HBM channels
(for write operations) on the Xilinx Alveo U280 board, due
to the on-chip resource limitation and the routing congestion
issue shown in Section 6.7. Since the read operations of the
tree also occupies the same amount of HBM bandwidth, the
bandwidth utilized in such a merge tree is at most equal to 8
HBM channels. In other words, such a merge tree only uses
25% of the HBM bandwidth in each pass.

4 TOPSORT METHODOLOGY & ARCHITECTURE

In this section, we present the methodology of TopSort. First,
we illustrate the idea of the two-phase sorting. Second, we
show how TopSort reuses the logic between two phases to
alleviate the resource contention and improve the perfor-
mance.

4.1 Two Phases in TopSort

Since the required resources grow super-linearly when di-
rectly scaling a single merge tree, TopSort chooses to split
the N unsorted elements evenly into k parts and have k
smaller merge trees work in parallel. Each merge tree sorts
N/k elements and is configured to have a throughput that
saturates the bandwidth of a single HBM channel. This
method has better scalability as its resource consumption

grows linearly with the number of trees k. However, the k
sorted sequences still need to be merged into the final sorted
sequence. This can be done by streaming the k sequences
into another merge tree for the final merge. We refer to
the process during which k merge trees work in parallel
as phase 1, and the subsequent final merge as phase 2.

If each merge tree in phase 1 has lphase1 number of
leaves and a single HBM channel’s bandwidth is βchannel,
the average performance in phase 1 is given in Equation 3.
The fraction part is a single merge tree’s performance when
sorting N/k elements, and there are k such merge trees in
parallel.

βphase1 = k · βchannel

⌈loglphase1
(N/k)⌉

(3)

Let pphase2 denote the merge tree’s throughput in phase
2. As long as the merge tree has k or more leaves, phase 2
will require only one pass, e.g., if phase 2’s merge tree has
k leaves, then each of the k sorted sequences from phase
1 will be fed into one of the corresponding k leaves once.
According to the analysis in Section 3, the merge tree of
phase 2 only exploits a portion of the HBM bandwidth due
to on-chip resource constraints. Therefore, the performance
βphase2 of phase 2 is proportional to pphase2.

The overall sorting performance is in Equation 4.

βoverall =
1

1
βphase1

+ 1
βphase2

(4)

This highlights that the resource balance between the paral-
lel merge trees of phase 1 and the final merge tree of phase 2
plays an important role in the overall sorting performance.
For example, we may have 16 merge trees in the first phase
to fully utilize all 32 HBM channels and achieve the best
performance. But if the remaining resources only allow us
to build a final merge tree whose throughput is equal to
the bandwidth of a single channel, then the overall sorting
performance will be limited by the final merge, no matter
how much better the memory bandwidth utilization we
achieve in phase 1. One may wonder if we can reprogram
the FPGA in phase 2 to have a wider tree for final merging,
but the reprogramming overhead takes several seconds [9]
and thus is not practical in this case.

4.2 Merge Tree Reuse in TopSort

To resolve the resource contention between phases 1 & 2,
TopSort proposes to reuse the merge units in phase 1 to
build the final merge tree. This is based on the observation
that a merge tree can be decomposed as sub merge trees plus
some extra levels of merge units. For example, a merge tree
whose throughput is p in Figure 4 consists of four merge
trees of throughput p/4, plus two p/2-rate merge units and
one p-rate merge unit, as shown in Figure 5. In other words,
if we want to build a merge tree whose throughput is equal
to 4 HBM channels’ bandwidth in phase 2, we only need
extra resources to build the 3 more merge units. The rest
of the resources including the input buffers can be reused
from four of the merge trees in phase 1. Figure 6 illustrates
the detailed dataflow of the merge tree reuse mechanism in the
proposed two-phase approach, which starts with four p/4-rate
merge trees. If the current phase is phase 1, then the four output

5

1-M1-M

2-M

1-M1-M

2-M

!/4-M

Input
Buffers

!-M

•••••• ••••••

! /2-M ! /2-M

Output
Buffer

Fig. 5: Merge tree decomposition: four p/4-rate merge trees
can be combined to build a larger p-rate merge trees.

streams from the roots of the four trees will be directed by the
four de-multiplexers into the output buffers on the left side
before they are written into the corresponding HBM channels.
If the current phase is phase 2, then the four output streams
from the four p/4-rate merge trees will be switched to flow into
the two p/2-rate merge units. Later on, the outputs of the two
p/2-rate merge units are fed into the final p-rate merge unit,
thus forming a p-rate merge tree. In this way, the p-rate merge
tree in phase 2 is built by reusing the four p/4-rate merge trees
in phase 1 plus two p/2-rate merge units and one p-rate merge
unit. The memory write operations in phase 2 will be discussed
in detail in Section 4.6.

With this novel merge tree reuse scheme, conceptually,
TopSort is able to integrate 16 merge trees to saturate all 32
HBM channels’ bandwidth in phase 1 and another merge
tree whose throughput saturates 4 HBM channels’ band-
width in phase 2 onto one FPGA. Please note this merge tree
reuse approach shows a general architecture that could be
easily scaled with different hardware configurations. Given
the available off-chip bandwidth (e.g., the number of HBM
channels) and on-chip resources (e.g., available BRAMs and
LUTs), we can easily adapt (either scale up or down) the
number of the parallel merge trees in phase 1, the size (i.e.,
number of tree leaves l) of each merge tree in phase 1 and
the final merge tree in phase 2. The reason for TopSort to select
the current configuration will be explained in Section 4.4.

4.3 Architecture to Support Logic Reuse
The overall architecture of TopSort is shown in Figure 7.
There are 32 HBM channels available, so TopSort uses 16
merge tree kernels in phase 1. Given a total of N unsorted
elements, we split them into 16 sequences, each of which
contains N/16 elements and is stored in one HBM channel.
Then each of the 16 trees will stream the unsorted sequence
from one HBM channel and stream the merged (sorted) se-
quence to another HBM channel, as described in Section 2.3.
We configure each tree to have 16 leaves and output 64
bytes per cycle at its root to saturate the bandwidth of a
single HBM channel. The leaf number for each merge tree
is chosen to be 16 is because the leaf buffers cannot exceed

1-M1-M

2-M

1-M1-M

2-M

(/4-M

Input
Buffers

(-M

•••••• ••••••

(/2-M (/2-M

sel sel sel sel

Output Buffer
In Phase 2

Output Buffers
In Phase 1

Fig. 6: Detailed dataflow of the merge tree reuse in the pro-
posed two-phase approach: the four demuxes (trapezoids in
the figure) are controlled by the same sel signal, which indicates
whether the current phase is phase one or phase two.

Merge
Tree i

Ch. 2i Ch. 2i+1

HBM HBM

Phase 1

HBM
HBM

HBM

H
BM

HBM
HBM

Phase 2

…

…

…

16 Groups

Reuse Tree 4i
Extra Merge

Unit

H
BM

H
BM

H
BM H

BM

H
BM

H
BM

H
BM

4 Groups 4 Groups

4 AXIs write4 AXIs read

AXI
read

AXI
write

D
em

ux

Fig. 7: The overall architecture of the two phases in TopSort.
The merge trees rely on AXI interfaces to access HBM
channels. The role of demux is covered in Section 4.6.

the available on-chip BRAM limit. Assuming each element
is 64-bit, the merge tree will output 8 elements every cycle.

In phase 2, TopSort reuses 4 merge trees from phase 1
and adds two levels of merge units to form a wider merge
tree. This merge tree has 64 leaves and outputs 256-byte
elements per cycle. Since there are 16 sequences sitting in
16 HBM channels after phase 1, we split each sequence
into 4 segmented sub sequences. Then each of the 64 sub
sequences is fed into one of the 64 leaves for one pass to get
the final sorted results.

In phase 2, the input buffers and each merge unit of the
four reused merge trees stay exactly the same as phase 1. We
only need to change the memory addresses and the length of
the sequences that the AXI interfaces read from each channel
for each of the 64 leaves. The change of the write behavior
of phase 2 is discussed in Section 4.6.

4.4 Optimization of The Design Choices

As mentioned in Section 4.3, there can be multiple design
choices when we select the appropriate TopSort configurations,
given a specific HBM-based FPGA board. Now we follow the

6

TABLE 1: Parameters associated with TopSort models

Symbol Definition

Input Param. N Number of records in array
r Record width in bytes

Hardware Param.
βchan Bandwidth of a single HBM channel
CBRAM On-chip memory capacity in bytes
CLUT Number of on-chip logic units

Merge Tree Param.

f Design frequency
p1 Throughput of the merge tree in phase 1
l1. Leaf number of the merge tree in phase 1
k Number of the merge trees in phase 1
β1 Aggregate performance of phase 1
p2 Throughput of the merge tree in phase 2
l2. Leaf number of the merge tree in phase 2
β2 Performance of phase 2
β Overall performance of the two-phase sort
b Size of HBM read/write bursts in bytes

same methodology in [7], [9] and illustrate how to select the
best configuration by performing a comprehensive analysis on
the performance and resource utilization of TopSort.

4.4.1 Performance Model

Table 1 lists the associated parameters with TopSort. If there
are k parallel merge trees in phase 1 and each merge tree
has a throughput of p1 and leaf number of l1, the average
performance of phase 1 can be derived from Equation 3 and is
rewritten in Equation 5. Note that the merge tree throughput
only needs to saturate the off-chip memory bandwidth and
further scaling the merge tree throughput does not improve
the effective throughput, we use p1fr to represent the actual
throughput of each merge tree in phase 1 and make sure p1 is
selected so that p1fr is not larger than the available off-chip
memory bandwidth to each merge tree.

β1 = k · p1fr

⌈logl1(N/k)⌉ (5)

In the second phase, the final merge tree merges the k sorted
sequences into the final result. Since the merge tree in this phase
is built on top of the k merge trees in phase 1 and there are
k × l1 leaves available from the merge trees in phase 1, the
leaf number of the merge tree in phase 2 is guaranteed to be
large than k. As a result, it will require only one pass for this
merge tree to merge the k sorted sequences together. Besides,
according to the scalability analysis in the previous section,
the single merge tree in this phase only exploits a portion of
the HBM bandwidth due to the on-chip resource constraints.
Therefore, the performance of phase 2 is directly reflected by
the tree throughput in phase 2, as shown in Equation 6:

β2 = p2fr. (6)

The overall performance of TopSort is thus calculated by
dividing the problem size by the overall time spent in both
phases in Equation 7:

β =
Nr

Nr
β1

+ Nr
β2

=
fr

⌈logl1 (N/k)⌉
k·p1

+ 1
p2

(7)

4.4.2 Resource Model

Equation 8 lists the on-chip LUT utilization of the merge
trees in the whole design. We use m2n to represent the number
of LUTs consumed by a 2n-rate merge unit, which can be
derived by synthesizing the standalone module. At depth n

of a merge tree, there are 2n merge units in total. Thus, the first
item on the right hand side in Equation 8 represents the LUTs
utilization of k merge trees, each of which has a configuration
of (p1, l1). Since the final merge tree in phase 2 is built on top of
the merge trees in phase 1, we only need to add log p2

p1
+1 extra

levels of merge units, which correspond to the second item on
the right hand side in Equation 8.

LUT = k ·
log ℓ1∑
n=0

2n(m⌈p1/2n⌉) +

log
p2
p1∑

n=0

2n(m⌈p2/2n⌉). (8)

On the other hand, we need to access the HBM channels in
burst mode to make sure the HBM channels operating at their
peak bandwidth. As each of the l1 input leaves of the merge
trees in phase 1 corresponds to separate segments on the HBM
channels, each leaf requires a separate input FIFO for storing
the burst reads. Therefore the on-chip memory usage is at least
k × b × l1. Please also note that the merge tree in phase 2 can
fully reuse the input FIFOs of phase 1’s trees for its own leaves,
the on-chip memory usage is thus given as follows:

SRAM = k · b · ℓ1 (9)

4.4.3 Design Space Exploration on the Xilinx U280 Board
There are various combinations of k, (p1, l1), (p2, l2); each

of which has a different performance and requires different
amount of on-chip resources. To get the configuration that
delivers the best performance, we apply the constraints of the
available resources to the performance and resource utilization
models derived above. Figure 8 lists the performance and
resource utilization of various configurations when sorting (32-
bit key, 32-bit value) pairs on the Xilinx U280 board. Note that
there are roughly 1 million LUTs available on the Xilinx U280
board and it is recommended that the maximum LUT usage is
no more than 70%, otherwise the design may not be routable.
The configuration we adopt in TopSort is marked by the red
circle in Figure 8, which sets k to be 16, (p1, l1) to be (8, 16),
and (p2, l2) to be (32, 64). There is one more point next to our
current configuration point, which consumes nearly the same

7

0

5

10

15

20

25

30

0 200 400 600 800 1000 1200

Pe
rfo

rm
an

ce
: G

B/
s

LUTs: K

Search Space

Fig. 8: Search space of different configurations when sorting
(32-bit key, 32-bit value) pairs on the Xilinx U280 board. Each
dot represents a possible configuration of k, (p1, l1), (p2, l2). The
X-axis indicates the LUT utilization and the Y-axis indicates the
theoretical performance of each configuration. The dot marked
by a red circle is the actual configuration we choose in TopSort.

amount of LUTs while achieving higher performance. That
configuration sets k to be 2, (p1, l1) to be (32, 128), and (p2, l2) to
be (64, 256). However, the design of this configuration is hard to
be evenly distributed across the FPGA dies to achieve routable
solutions, which is in contrast to our current configuration that
allows for coarse-grained floorplanning (see Section 5.4).

4.5 Tuning Sorted Sequence Size from Phase 1

One hidden requirement for a merge tree to output p ele-
ments per cycle is that, on average, it has p leaves out of
its total l leaves providing elements every cycle. Section 4.3
mentions that each of the 16 sequences in 16 HBM channels
after phase 1 needs to be divided into 4 segmented sub
sequences so that there are 64 sub sequences fed into the
64 leaves of the tree in phase 2. If each sequence is entirely
sorted after phase 1, then the 4 sub sequences have the
relation that elements in sub sequence 0 are always smaller
than elements in sub sequence 1, and so on. When such 4
sub sequences are fed into 4 leaves, only 1 of the 4 leaves
will feed the element to the merge tree at any cycle. For each
of the reused merge trees that has 16 leaves, this means only
4 leaves are providing elements into the tree per cycle, as
shown in Figure 9. As a result, each merge tree is idle half
of the time. Although each tree can output 8 elements per
cycle, the average throughput of the tree is 4 elements per
cycle, which is below our expectation.

To solve this issue, we need to tune the sorted sequence
size from phase 1 so that at least 8 leaves of the merge tree
are always actively feeding data in phase 2. This is done by
directing each of the merge tree in phase 1 to sort either N/32 or
N/64 elements at a time. For instance, instead of completely
sorting the N/16-element sequence in each channel, we
can get 4 N/64-element sorted sub sequences from phase
1 This is done by controlling the number of elements that
go into the leaves in the last pass of phase 1. Since the
sorted sequence size always grows by the number of leaves
l, we deliver N/1024 elements into each leaf. At the tree
root side, we get N/64-element sorted sequence. We repeat
this process 4 times for each merge tree in phase 1 to get 4
N/64-element sorted sub sequences.

Input
Buffers

8-M

1-M1-M

2-M

1-M1-M

2-M

4-M

1-M1-M

2-M

1-M1-M

2-M

4-M

Su
b

se
q

0

Su
b

se
q

1

Su
b

se
q

2

Su
b

se
q

3

Su
b

se
q

0

Su
b

se
q

1

Su
b

se
q

2

Su
b

se
q

3

Su
b

se
q

0

Su
b

se
q

1

Su
b

se
q

2

Su
b

se
q

3

Su
b

se
q

0

Su
b

se
q

1

Su
b

se
q

2

Su
b

se
q

3

Channel 0 Channel 2 Channel 4 Channel 6

Fig. 9: The active rate of one reused tree in phase 2, if the
sequence in each channel is completely sorted. Initially, only
the leaves feeding sub sequence 0 from each channel are
active, then are the leaves feeding sub sequences 1, and so
on. Leaves marked as yellow are actively feeding. Merge
units partially marked mean they are idle half of the time.

De-MUX

AXI-0 AXI-4 AXI-8 AXI-12

Output
Buffers

256 byte / cycle

Merge Tree

Fig. 10: TopSort’s write behavior of phase 2. Writes from 4
AXI interfaces are used to match the tree’s throughput.

4.6 Memory Write Pattern in Phase 2

Since the 4× wider merge tree of phase 2 outputs 256-byte
sorted elements per cycle, there are 4 AXI interfaces writing
to the HBM channels in parallel. The choice of the specific
AXI interfaces will be explained in Section 5.2. The on-chip
memory is not big enough to hold all the continuously
sorted elements before they are written back to entirely fill
one HBM channel. Therefore, these continuously sorted ele-
ments have to be split into batches and then written back to
separate HBM channels through 4 AXI interfaces. Figure 10
depicts the details of such behavior. In our implementation,
we choose the batch size to be 4 KB, e.g., we write the first 4
KB sorted elements into the first output buffer, then write
the second 4 KB sorted elements into the second output
buffer, and so on. The elements in the four buffers will then
be written to HBM channels via the four AXI interfaces. As
a result, although the elements are completely sorted, one
needs to pick the 4 KB batches channel by channel to form
the final sorted results.

5 HBM-SPECIFIC OPTIMIZATIONS

In this section, we introduce the design choices in Top-
Sort that are coupled with specific HBM characteristics.
These HBM-related optimizations are necessary to achieve
a full bandwidth usage. First, we minimize the number
of AXI interfaces to reduce the resource overhead. Second,
we propose a dedicated data layout with spatial locality to
prevent bandwidth degradation. In addition, we properly
set different burst sizes for different merge trees to strike
a balance between the area overhead and the bandwidth.

8

Finally, we floorplan and pipeline our design based on the
architecture of the HBM platform for timing optimization.

5.1 Avoiding Unnecessary AXI Interfaces

According to our measurement, an AXI rate converter in
Figure 1 for an HBM channel requires about 5K LUTs and
about 6K Flip-Flops (FFs) on the Xilinx U280 FPGA. As a
result, the naive choice of instantiating one AXI interface
for each of the 32 HBM channels will result in about 320K
LUTs, which is more than 40% of the available LUTs on
the bottom die where the HBM resides. Such high resource
overhead will squeeze the space for user logic and cause
severe routing issues.

To address this issue, we utilize the internal crossbar
among HBM channels. For each merge tree of phase 1,
we only need one AXI module to read from and write to
two adjacent HBM channels. This way halves the AXI area
overhead and effectively reduces the routing congestion in
the bottom die of the FPGA.

5.2 Data Layout Optimization

Although each AXI interface from the user side can access
any of the 32 HBM channels, non-local data accesses could
cause contention over the lateral connections between chan-
nel groups, thus leading to bandwidth decrease. To access
an HBM channel outside the group, the data must occupy
and traverse through each of the lateral connections until it
reaches the destination. Two memory accesses requiring the
same lateral connection will cause a conflict and one will be
blocked.

Therefore, we must carefully arrange for the data place-
ment to minimize out-of-group channel accesses and avoid
conflicts in lateral connections. Table 2 summarizes the
target HBM channels for each AXI interface. In the first
phase, merge tree i uses AXI-i to only read/write a pair
of nearby HBM channels 2i and 2i+1, where i ranges from
0 to 15. In the second phase, the merge tree 4i uses AXI-4i to
read/write between channels 8i+2j and channels 8i+2j+1,
where i & j both range from 0 to 3.

TABLE 2: Correspondence between each user side AXI and
the HBM channels it accesses in TopSort, i=0-3.

AXI NO. HBM Channel NO.
AXI-4i 8i - (8i+7)

AXI-(4i+ 1) (8i+2) - (8i+3)
AXI-(4i+ 2) (8i+4) - (8i+5)
AXI-(4i+ 3) (8i+6) - (8i+7)

Figure 11 illustrates the access pattern of the first four
AXI interfaces in different colors. AXI-1, 2 and 3 will only
access the two channels within its crossbar group. Although
the AXI-4i in the second phase needs to access channels
outside of its local group, our data layout guarantees that
different AXI interfaces will not cause conflicts in lateral
connections.

5.3 Burst Size Optimization

For TopSort, each of the AXI interfaces will always access
the HBM in burst mode. We need to properly choose the

C
h

 0

C
h

1

C
h

2

C
h

3

AX
I C

vt

C
h

4

C
h

5

C
h

6

C
h

7

……

AX
I C

vt

AX
I C

vt

AX
I C

vt

HBM die

FPGA die

AX
I 0

AX
I 1

AX
I 2

AX
I 3

Fig. 11: Usage of the first 4 AXI interfaces. The same behav-
ior is repeated for rest of the 12 AXI interfaces.

burst sizes because a large burst requires excessive buffers
while a small burst may not fully utilize the bandwidth.

In order to select proper burst sizes, we profile the HBM
performance based on the memory access pattern of each
AXI interface. As shown in Fig. 11, In phase one, each AXI
reads from one channel and writes to the adjacent channel;
In phase two, AXI-0 reads from four even/odd channels
in a round-robin way and writes to the other four nearby
odd/even channels.

We define reading from m HBM channels and writing to
their nearby m channels as pattern m×m. The patterns of
phase 1 and phase 2 are thus 1×1 and 4×4 by this definition.
For completeness, we also perform tests for patterns 2×2
and 8×8. Then we measured the achieved bandwidth when
using different AXI burst sizes as seen in Figure 12.

Based on our experiments, any AXI burst size from 512
B to 4 KB can achieve the peak HBM bandwidth for the 1×1
pattern, which is used by merge trees in phase 1. However,
for the 4×4 inter-crossbar memory access pattern used in
phase 2, the AXI burst size needs to be maximized to 4 KB
to achieve the best bandwidth. Therefore, we set the burst
size to be 1 KB for the 12 merge trees that are not reused in
phase 1, and 4 KB for the 4 merge trees that are reused in
phase 2.

Minimizing the burst sizes under the bandwidth con-
straints could significantly save resources because not all
buffers are implemented in BRAM. For each merge tree,
each leaf node requires a 512-bit wide input buffer (see
Figure 4) to hold the read bursts from AXI interfaces. When
implemented using BRAM, each buffer consumes at least 7.5
BRAMs on Xilinx FPGAs. Since we have 16 merge trees and
each tree has 16 leaves, the FPGA does not have enough
BRAMs to implement all the buffers. So, about 3/4 of the
buffers are implemented using LUT-based shift registers.
While BRAM-based buffers are insensitive to the burst size,
the area of a LUT-based buffer is directly proportional to
the buffer depth. A single LUT can implement a 1-bit shift
register with a depth of 32 and 512 LUTs can hold two
AXI bursts of 1 KB. Reducing the bursts size from 4 KB
to 1 KB directly reduces the LUTs consumption by 4×.
Further reducing the burst size from 1 KB to 512 B does not
save more LUTs because 2 bursts of 512 B still require 512
LUTs. The actual sorting results with different burst sizes in
TopSort is further discussed in Section 6.5.

9

2

4

6

8

10

12

14

512 1024 2048 4096

Pe
rfo

rm
an

ce
 (G

B/
s)

AXI Burst Size (Bytes)1x1 2x2 4x4 8x8

Fig. 12: HBM channel performance of inter-crossbar & intra-
crossbar behaviors when varying the AXI burst size. The
number of outstanding bursts is fixed at 32.

Tr
ee

Tr

ee
Tr

ee

HBM

HBM Controller &
Merge Unit in Phase 2SLR 0

SLR 1

SLR 2

Fig. 13: The floorplan of TopSort on the Xilinx U280 FPGA.
Each Super Logic Region (SLR) is a single FPGA die slice in
the Stacked Silicon Interconnect (SSI) FPGA device

5.4 Floorplanning Optimization

Thanks to the parallel sorting in the first phase and merge
tree reuse in the second phase, we are able to separate
each of the merge tree kernels independently and apply a
simple yet efficient resource model to better distribute these
kernels across the three FPGA dies, as shown in Figure 13.
Please note that the merge tree kernels in the first phase only
expose simple AXI interfaces and each of the merge tree has
the same size. This feature allows us to easily implement
a coarse-grained floorplanning with the granularity of the
separate merge tree kernel. In contrast, if we simply scale
the single merge tree and want to make use of all of the
FPGA dies, it would requires significantly more engineering
efforts to manually split the design logics and fit them into
each die.

Considering that the sorted output from the merge tree
of phase 2 will be directly written to the HBM channels,
a natural choice is to place the extra merge units on the
bottom die to minimize the signal crossing. After that, we
will migrate as many merge tree kernels to the mid and top
dies, to save more spaces in the bottom die to alleviate the
routing issues.

We derive a simple resource model to solve this floor-
planning problem. Let L be the resource consumption of
each merge tree, ui be the number of merge trees and ai be
the available resources on the i-th die, w be the width of
an AXI interface, and W be the available signals crossing
two neighbor dies. Then the problem can be formulated as

maximizing (u1 + u2) under the following constrains:
(u1 + u2) · w ≤ W (1)

u1 · L ≤ a1 (2)

u2 · L ≤ a2 (3)

where constraint (1) limits the AXI connections from all
merge trees in both die 1 and 2 to die 0 do not exceed
the available amount of signals crossing die 0 and 1, and
constrains (2) and (3) make sure the merge trees placed on
die 1 and 2 do not exceed each die’s available resource.

By solving the above problem, we place eight merge
trees on the top die and six merge trees on the middle
die. There are another two merge trees remaining on the
bottom die; we select these two merge trees as merge tree
0 and merge tree 8. The detailed layout are presented in
Section 6.3.

Finally, to improve the timing, the signals crossing dies
need to be pipelined with registers [28]. In general, we add
2 stages of pipeline registers when a signal crosses one die
and add 4 stages of pipeline registers when it crosses two
dies.

6 EXPERIMENTAL RESULTS

6.1 Experimental Setup
We perform all of the experiments on the Xilinx U280 FPGA
board. The kernel is developed using System Verilog and
is synthesized and implemented using Xilinx Vitis 2020.2.
We use the pblock method [29] to place the design modules
during the floorplanning. The input data are in a key-value
pair format, each with a 32-bit key and a 32-bit value. The
keys used in the experiments have a uniform distribution.
To ensure the keys are fully randomized, we first generate
N records whose keys are incremented from 1 to N , then we
use the random shuffle() function from the python library
to shuffle the records. The sorted results are validated by
checking whether their keys are from 1 to N .

6.2 TopSort Configuration, Resource Utilization &
Power Consumption
We implement 16 merge trees in total, each with 16 leaves
and outputs 8 elements (each 8 bytes) per cycle. In phase 1,
TopSort uses all 16 merge trees. In phase 2, TopSort reuses 4
of the merge trees to form a wider merge tree that can sort
32 elements (each 8 bytes) per cycle.

The resources utilization of the dynamic region2 is listed
in Table 3, including our TopSort kernel and HBM con-
trollers. TopSort consumes 54.6% LUTs, 35.5% FFs and 56%
BRAMs.

Table 4 shows the resource breakdown of each type of
the merge trees. For those trees that are not reused (e.g.,
merge tree 1), each of them takes less than 3% of the avail-
able resources. This is consistent with the observation in
Section 3 that it takes significantly less resources for a single
merge tree to saturate one HBM channel than multiple
HBM channels. Meanwhile, a reused tree (e.g., merge tree
4) requires more LUTs because its input buffers need to

2. The FPGA is partitioned into two regions, with the dynamic region
reserved for user logic and the static region used for infrastructure IPs.

10

0

1

2

3

4

5
6

7

8

9

10 11

12

13

1415

Phase 2
Logic

SLR 0

SLR 1

SLR 2

Fig. 14: Layout of TopSort implemented on the Xilinx U280
FPGA board. Number 0-15 label the 16 merge trees of phase
1. The orange part in the bottom die represents the extra
logic used to form the wider merge tree of phase 2.

accommodate larger data bursts. As for the extra 3 merge
units used in phase 2, they takes much more resources
than a single merge tree, which validates the theoretical
analysis that directly scaling the tree throughput requires
the resources to grow superlinearly.

TABLE 3: Resources utilization and percentage of the Top-
Sort kernel and HBM controllers. DSPs are used to calculate
the addresses of AXI read and write.

Components LUTs Flip-Flops BRAMs DSPs
Available 1,066,848 2,144,089 1,487 8,484

TopSort kernel 582,244 750,505 834 84
Percentage 54.6% 35.5% 56.0% 1.0%

HBM Controllers 87,848 113,814 4 0
Percentage 8.2% 5.3% 0.2% 0.0%

TABLE 4: Resources utilization of individual merge trees.
Here we pick one merge tree from each type since they have
slightly different resource consumption.

Components LUTs Flip-Flops BRAMs DSPs
Merge tree 1 28,788 39,905 37.5 2
Percentage 2.7% 1.9% 2.5% 0.02%

Merge tree 4 39,195 39,459 60 10
Percentage 3.7% 1.8% 4.0% 0.1%

Extra logic of phase 2 60,239 102,864 144 20
Percentage 5.6% 4.8% 9.7% 0.2%

Table 5 summarizes the power consumption of TopSort ob-
tained from the Xilinx Power Estimator (XPE) [30]. We expect
that only 51.4 Watt of the total on-chip power is needed to
enable TopSort to deliver the peak performance.

6.3 Design Layout & Frequency

Figure 14 shows the final placements of all merge trees and
the extra phase 2 logic. Our floorplanning and pipelining
effectively reduces local routing congestion, so that Top-
Sort could achieve 214 MHz in user clock and 414 MHz in
the HBM control clock. Without our floorplanning, Vivado
failed in routing even with the highest optimization level.

0

10

20

30

40

32MB 64MB 128MB 256MB 512MB 1GB 2GB 4GB

G
B/

s

Overall Performance Phase 1 Performance Phase 2 Performance

Fig. 15: Sorting performance with different data sizes. The
overall performance is calculated through dividing the data
size by the total sorting execution time.

6.4 Overall Sorting Performance

Figure 15 presents the performance of sorting data ranging
from 32 MB to 4 GB in size. The maximal data size that
we can handle is half of the HBM capacity, which is 4 GB
in the Xilinx U280 FPGA. This is because half of the HBM
channels are used for reading and the other half for writing.
For datasets whose sizes are larger than 4 GB, another layer
of memory with larger capacity such as the host DRAM or
FPGA DRAM must be presented: we may need to divide the
entire dataset into multiple smaller pieces that can fit into the
HBM to get them independently sorted. Then we may merge
these sorted pieces of data through another pass. But this is out
of the scope of this work and we omit the further discussion
here. When sorting 4 GB of data, TopSort achieves an overall
performance of 15.6 GB/s. Please note that 4 GB is half of
the HBM capacity and the maximal size that we are able to
sort. Sorting 4GB data has a performance of 26.5 GB/s in the
first phase and 38 GB/s in the second phase.

Figure 15 also shows a performance drop when the data
size is increased from 256 MB to 512 MB. This is because
sorting 512 MB data takes 6 passes in phase 1 while sorting
256 MB data takes 5 passes. In fact, we choose to direct each of
the merge trees in phase 1 to get two N/32-element sorted sub
sequences, as illustrated in Section 4.5. Since the merge trees
in phase 1 have 16 leaves, each of them can work with at most
2×165 = 221 elements within 5 passes. There are 16 merge trees
working in parallel and each element is 8-byte wide, giving a
total data size to be 221 × 16× 8 = 256 MB. Similarly, data with
a size larger than 256 MB but no more than than 4 GB requires
6 passes in phase 1.

Besides, sorting 512 MB to 4 GB data requires the same
number of passes in phase 1, but the sorting performance
still varies, which is similar for sorting 32 MB to 256 MB
data. This is because some input leaves of the merge trees
may not be fully active in the last pass of phase 1, similar
to what is illustrated in Figure 9. For instance, in the case of
sorting 512 MB data, each merge tree in phase 1 needs to get
two 512/16/2 = 16 MB sorted sub sequences, or equivalently
221-element sorted sub sequences. However, we always get
165 = 220-element sorted chunks after the first 5 passes. That
means the 221-element sub sequence to be sorted contains two
220-element sorted chunks. During the last pass, each of the two
sorted chunks is divided into 8 continuous portions and each
portion is fed into one merge tree leaf. In our design, portion

11

TABLE 5: Power consumption of TopSort.

TopSort kernel:
HBM controller:

Total:

41.6 W
9.8 W
51.4 W

Dynamic:
Static:
Total:

46.8 W
4.6 W
51.4 W

1 of the first sorted chunk goes to leaf 1, portion 2 of the first
sorted chunk goes to leaf 2, and portion 8 of the first sorted
chunk goes to leaf 8. The correspondence of the 8 portions from
the second sorted chunk to leaf 9-16 is the same. In this case,
since the records from leaf 1 are always smaller than the records
from leaf 2 and the records from leaf 2 are always smaller than
the records from leaf 3, etc, only one of the leaf 1-8 is active all
the time: e.g., the merge tree will always fetch the records from
leaf 1 until it fully consumes portion 1, then it always fetches
the records from leaf 2 until portion 2 is fully consumed, so
on and so forth. The same situation happens for leaf 9-16. As a
result, only 2 leaves out of the 16 leaves are active, which cannot
sustain the merge tree to output 8 elements every cycle and
leads to a lower performance. Similarly, if the data size is 1 GB,
then each merge tree in phase 1 gets the sorted sub sequences
with a size of 32 MB, which contains four 220-element sorted
chunks. Each of the sort chunks will be divided into 4 portions,
which will feed 4 leaves. As a result, 4 leaves out of the 16 leaves
are active in the last pass, which gives better performance than
the case of sorting 512 MB data. Likewise, in the cases of sorting
2 GB and 4 GB data, 8 and 16 leaves out of the 16 leaves are
active, since the tree outputs 8 elements per cycle, the merge
trees in both cases are fully active. That’s why sorting 2GB and
4GB data has quite similar overall performance, which is higher
than that of sorting 512MB or 1GB data.

Based on our measurement, we are able to utilize at
least 318 GB/s of HBM bandwidth in the first phase, where
we run 6 passes and each pass reads and writes to HBM
channels simultaneously. Thus the average HBM bandwidth
utilized is at least 26.5× 6× 2 = 318 GB/s. In fact, the used
bandwidth is even higher because we have not account for
the idle time of the merge units, which needs to be reset
after merging two sorted sequences. In the initial pass, the
length of the sorted sequences is 1, so the merge units have
to be reset frequently.

6.5 Sorting Performance with Different Burst Sizes

Figure 16 compares the performance of two burst size
choices. Both tests set the burst size as 1 KB in phase 1. In
the second phase, we set the burst sizes to be 1 KB and 4 KB.
The results show that reading in 4KB bursts in phase 2 gives
better performance, which matches the profiling results in
Section 5.3 that the designers need to use 4KB AXI bursts
to maximize the HBM channels’ bandwidth when they use
one AXI to access multiple HBM channels.

6.6 Comparison with State-of-the-art CPU & FPGA
Sorters

TopSort is an in-memory sorter [31], which stores the entire
input in main memory such as an HBM or a DRAM. An in-
memory sorter has much higher overall sorting performance
than an in-storage sorter, which requires a second-level stor-
age such as SSD to sort a larger dataset and thus is bounded

10
11
12
13
14
15
16
17
18

32MB 64MB 128MB 256MB 512MB 1GB 2GB 4GB

Pe
rfo

rm
an

ce
 (G

B/
s)

data size4KB Burst 1KB Busrt

Fig. 16: Overall sorting performance with the same AXI
burst size in phase one but different AXI burst sizes in phase
two.

TABLE 6: Comparison with existing CPU based in-memory
sorters.

Algorithm Overall Sorting Perf
C++ std::sort [32] Merge sort 0.27 GB/s

VLDB’15 [24] Radix sort 2.3 GB/s
TopSort Merge tree sort 15.6 GB/s

by the slow I/O [5], [9]. In fairness, we compare Top-
Sort against several CPU and FPGA in-memory sorters here.
Table 6 compares TopSort with two existing CPU based in-
memory sorters. We first optimize the standard C++ std::sort()
function on the Intel Xeon E5-2680 CPU by fully utilizing 32
threads and get an overall sorting performance of 0.27 GB/s
when sorting 4GB of data. Compared to it, TopSort achieves
57.7× speedup. The state-of-the-art CPU in-memory sorter
in [24] can sort 4GB of data in 1.7 second, achieving an
overall sorting performance of about 2.3 GB/s. Compared
to it, TopSort achieves 6.7× speedup.

Table 7 lists the existing FPGA in-memory sorters. The
best-performing DRAM-based FPGA sorter in [7] can fully
utilize 4 DDR4 DRAM channels on the AWS F1 datacenter
FPGA. When sorting 4 GB data, it achieves an overall sorting
performance of 5.8 GB/s. Comparing to it, TopSort achieves
2.7× speedup. Besides, we also list the absolute merge tree
throughput, which is the number of elements (p) that the
merge tree can output per cycle multiplied by the design
frequency and the element’s width in bytes, to show the
utilization of the off-chip memory bandwidth of different
merge tree designs. TopSort has an entire tree throughput
of 219 GB/s in phase 1 and saturates the 420 GB/s HBM
bandwidth (HBM is half-duplex so half of its bandwidth is
for reading data and the other half is for writing data). In
phase 2, TopSort still has 1.7× and 14× higher merge tree
throughput than that of [7], [8], respectively.

One may find that the overall sorting performance im-
provement of TopSort over [7] is much less than the 6×
off-chip bandwidth increase. This is because the on-chip
resources of the Xilinx U280 FPGA is merely enriched by
about 20% compared to the AWS F1 FPGA. As analyzed in

12

TABLE 7: Performance comparison with existing FPGA based in-memory sorters.

Algorithm Off-Chip Memory Used Merge Tree Throughput Design Frequency Overall Sorting Perf.
FPGA’20 [15] Sample sort 4 DDR4 channels N/A 250 MHz 4.3 GB/s

FPL’20 [8] Merge tree sort 1 DDR4 channel 4 GB/s 214 MHz 0.2 GB/s 3

ISCA’20 [7] Merge tree sort 4 DDR4 channels 32 GB/s 250 MHz 5.8 GB/s

TopSort Merge tree sort 32 HBM channels 219 GB/s (phase 1)
55 GB/s (phase 2) 214 MHz 15.6 GB/s

Section 2, the on-chip resources become the new bottleneck
to linearly scale the overall sorting performance. While
TopSort could address this issue to some extent, its overall
performance is still bound by the merge tree in phase 2. That
is why only 2.7× speedup is reported.

Table 8 compares the resource utilization of TopSort with
the existing FPGA in-memory sorters. Since the performance
and resource utilization are different among various sorters, we
introduce a more unified metric called the resource efficiency,
which is defined as dividing the overall sorting performance of
a sorter in GB/s by its LUT utilization in the unit of 100K LUTs.
For example, TopSort has an overall sorting performance of 15.6
GB/s and utilizes roughly 5.8×100K LUTs, thus its resource
efficiency is 15.6/5.8 = 2.7 GB/s/100K LUTs. Table 8 shows that
TopSort has the best resource efficiency, due to the two major
design choices. First, TopSort chooses to use multiple smaller
merge trees to independently work with the HBM channels
in the first phase, which provides a linear performance im-
provement while avoiding the super-linear growth of resource
utilization shown in Section 3. Second, the logic reuse in the
second phase further saves the overall resource utilization.
Since the on-chip resource utilization of a design is directly
related to its power consumption, the resource efficiency can
also serve as a metric to indicate the sorter’s power efficiency.
As a result, we believe that TopSort also delivers better power
efficiency than the existing FPGA sorters.

TABLE 8: Comparison of resource utilization for various FPGA
based in-memory sorters. The resource efficiency of the sorter
is defined as the overall sorting performance in GB/s divided
by the LUT utilization in the unit of 100K LUTs.

LUTs Flip-Flops BRAMs Resource Efficiency
FPGA’20 [15] 328,366 391,900 760 1.3

FPL’20 [8] 44,000 61,000 64 0.5
ISCA’20 [7] 287,672 768,906 960 2.0

TopSort 582,244 750,505 834 2.7

6.7 Comparison with Scaled Single Merge Tree
We also compare TopSort to a single giant merge tree,
which is scaled to output 32 elements per cycle and has
a throughput equal to writing 4 HBM channels, i.e., the
same as the merge tree throughput of phase two in TopSort.
Unfortunately, we are not able to route this single merge
tree, as it requires significantly more engineering efforts of
manual placement optimization compared to TopSort. The
reason why it is easier to floorplan TopSort than to floorplan
single merge tree is explained in Section 5.4. Nonetheless,

3. [8] reported 49× speedup over the C++ std::sort() implementation
on an ARM Cortex A53 core when sorting 256 KB data. We re-
implement C++ std::sort() on the same CPU and multiply the
performance when sorting 32 MB data by 49× to estimate the
value as listed.

we can still estimate its performance, assuming it achieved
the same design frequency as TopSort.

The best estimation is that the single merge tree has the
same number of leaves as the sum of the 16 merge tree
leaves in phase one of TopSort, which is 256. This means
sorting 4 GB data still requires 4 passes. Since the through-
put of the merge tree is the same as TopSort’s throughput in
phase 2, which is 38 GB/s, the overall sorting performance
of the single merge tree is thus at most 38/4 = 9.5 GB/s,
much less than the 15.6 GB/s achieved in TopSort.

6.8 Sensitivity to the Input Data
The methodology and architecture of TopSort can be

adopted to sort different datasets with different kinds of keys
or (key, value) pairs. Figure 17 shows the overall sorting per-
formance when sorting two kinds of datasets with uniformly
random distributions. One kind of them is (32-bit key, 32-bit
value) pairs, as mentioned above. The other kind is pure 32-bit
keys. In the case of sorting 32-bit keys, we still use 16 merge
trees in phase 1, each having 16 leaves and output 16 elements
per cycle at its root. At the leaf layer of each merge tree, we
have 8 2-rate merge units. After the first phase, each merge tree
will generate 2 N/32-element sorted sub sequence. In phase 2,
we still reuse 4 merge trees from phase 1 to form a wider tree
that has 64 leaves and outputs 64 elements per cycle. We can see
that both cases report similar overall sorting performance, this
is because they have the same number of passes when sorting
the same amount of data, despite their record width is different.

0
2
4
6
8

10
12
14
16
18

32MB 64MB 128MB 256MB 512MB 1GB 2GB 4GB

P
er

fo
rm

an
ce

 (G
B

/s
)

data size32-bit key + 32-bit value 32-bit key

Fig. 17: Overall sorting performance when sorting (32-bit key,
32-bit value) pairs and 32-bit keys. The performance variation
is due to the difference in the design frequencies.

We also evaluate the performance of TopSort using different
key distributions. In order to generate various key distributions
with different skew, we adopt the benchmark from [33], which
uses the Shannon entropy to measure the key distribution. The
idea is that skewed keys can be generated by performing bitwise
AND operations on the adjacent keys which originally have
a uniformly random distribution. For instance, an entropy of

13

32 bits for 32-bit keys means the keys are uniformly random
distributed. On the other hand, an entropy of 0 bit indicates all
the keys are the same.

Figure 18 shows the overall performance of TopSort when
sorting vastly different skewed data. We observe that TopSort is
insensitive to the data skew. Specifically, TopSort achieves the
highest performance of 16.4 GB/s when sorting data that share
the same key. This is because we design each merge unit so that
it always fetches records in a round-robin fashion from both
input ports if the keys from the two input ports are the same.
In the case of sorting data that have the same key, any E-rate
merge unit at any level of the merge tree is guaranteed to first
consume E records from its left-side input port, then consume
E records from its right-side input port, etc. In this way, the
merge tree is always fully active during the sorting process.

10
11
12
13
14
15
16
17
18

32.00 25.96 17.39 10.79 6.42 3.72 2.11 1.18 0.65 0.00

P
er

fo
rm

an
ce

 (G
B

/s
)

Key entropy (bits)

Fig. 18: Overall sorting performance when sorting 4 GB data of
(32-bit key, 32-bit value) pairs with different key distributions.

7 RELATED WORK

7.1 Sorting Acceleration on FPGAs
Sorting acceleration on FPGAs has been a widely studied topic
in recent years. Table 9 summarizes the features of the existing
FPGA-based sorting designs. [10], [34] proposed two bitonic
sorters that could sort kilobyte-scale elements by designing
huge on-chip bitonic sorting networks, but they could not sort
data whose size is larger than several megabytes. [15] designed
a Sample sort accelerator, which included a CPU to perform
the sampling and an FPGA to do the bucket partition as well
as small-scale sorting for each bucket. [2], [35] focused on
the implementation of the naive merge sort, which involved
only one merge unit and always merged two sequences into
one sequence. Compared with the merge tree sort that merges
multiple sequences at a time, this simpler merge sort based
solution had much lower sorting performance. All the other
related works fell into the category of the merge tree sort.

The existing works related to the merge tree-based accel-
eration are split into two directions. One direction focuses
on optimizing the resource consumption of the merge unit
itself, at the center of which is a variation of parallel sorting
networks such as bitonic or even-odd sorting networks [11],
[12], [13], [14]. TopSort benefits from these works in that
using efficient merge units may always reduce the on-chip
resource consumption of the merge tree. For instance, we
believe that adopting the newly proposed merge unit called
FLiMSj from [26] may further reduce the resource consumption
of TopSort. In this work, we adopt the merge units from [12],

which contains two bitonic mergers, but rewrite the whole
control logic to make the merge unit has the pure streaming
behavior.

The other direction investigates how to design efficient
merge trees that interact with various memory layers such
as DRAM and storage [5], [6], [7], [8], [9]. These works
all used a single tree to sort the entire data, with the best
optimization to be scaling the single merge tree’s throughput
to match the off-chip DRAM bandwidth. Compared with them,
TopSort is the first HBM-based FPGA sorter, which involves a
more challenging problem where the off-chip memory band-
width is improved by at least 6× while the on-chip resources
only increase by 20%. In this case, the previous single merge
tree solution could not be further scaled to improve the band-
width utilization or deliver better performance. In contrast,
TopSort adopts a distinct two-phase solution where multiple
merge trees work in parallel in phase 1 to fully utilize the HBM
bandwidth and phase 2 novelly reuses the merge trees from
phase 1 to form a wide merge tree to further improve the overall
performance under the limited resource constraint.

7.2 HBM-Specific Optimizations

As for HBM-specific optimizations, [22] presents an HLS
design that applies a similar floorplanning strategy and
achieves a design frequency of 237 MHz when using 18
HBM channels. The majority of the recent HBM-based accel-
erators [19], [20], [23] are HLS designs but are not able to get
more than 190 MHz and use more than 28 HBM channels.
[21] implements a hash join accelerator that uses 32 HBM
channels while running at 250 MHz and its random memory
accesses are through 256-bit wide AXI interfaces. However,
using a 256-bit wide AXI interface can only utilize half of
the available HBM bandwidth at most. Compared to it, our
work relies on continuous memory reads and writes, which
requires the AXI interface to be 512-bit wide to maximize
the memory performance and consumes significantly more
on-chip resources for the AXI rate converters as well as the
AXI burst buffers. Besides, we need to carefully optimize the
data layout to avoid access conflicts in the lateral connec-
tions of the built-in AXI crossbars, which is never revealed
in those applications with random memory access patterns.
We believe that our work provides valuable insights on how
to optimize HBM-based accelerator designs, especially HLS-
based designs that are struggling to fully utilize the HBM
bandwidth with a high design frequency.

8 CONCLUSION

In this work, we present TopSort, a high-performance two-
phase sorting accelerator specialized for HBM-based FP-
GAs. Our analysis shows that the sorter performance on
HBM-based FPGAs is bounded by the limited on-chip re-
sources. To achieve better performance, TopSort proposes a
novel two-level sorting solution with smaller merge trees.
In the first phase, TopSort can fully utilize all the HBM
bandwidth. In the second phase, TopSort reuses the logic
from the first phase to avoid the resource contention. More-
over, TopSort adopts several HBM-specific optimizations to
further reduce the resource overhead and improve the band-
width utilization. Finally, it also employs coarse-grained

14

TABLE 9: A summary of the features of the existing FPGA-based sorter/merger designs. A ”Yes” in the Merger column indicates
the corresponding work optimizes the merge unit as the building block for the merge tree sort. A ”Yes” in the Complete sorter
column means the work performs the real experiments to completely sort the data and the Data size column as well as the
Memory type column show the actual size of the data it sorts and the memory it works with, respectively. The Analytical model
column lists whether the work does comprehensive analysis on either the sorting performance or the resource utilization.

Merger Complete sorter Data size Memory type Algorithm Analytical model
DAC’12 [34] N/A Yes KB On-chip SRAM Bitonic sort Yes
FPGA’15 [10] N/A Yes KB On-chip SRAM Bitonic sort Yes
FCCM’16 [4] Yes Yes KB On-chip SRAM Merge tree sort Yes
FPGA’16 [3] No Yes KB On-chip SRAM Multiple No
FPGA’11 [1] Yes Yes MB DRAM Multiple No

MEMOCODE’08 [35] No Yes MB DRAM Merge sort No
FPGA’14 [2] No Yes MB DRAM Merge sort No
FPL’20 [8] No Yes MB DRAM Merge tree sort Yes

FPGA’20 [15] N/A Yes GB DRAM Sample sort No
FPT’18-1 [6] Yes Unknown GB DRAM Merge tree sort Yes
ISCA’20 [7] No Yes GB DRAM Merge tree sort Yes

FCCM’17-1 [5] No Yes TB DRAM & Flash Merge tree sort No
FCCM’21 [9] No Yes TB DRAM & Flash Merge tree sort Yes

FCCM’17-2 [11] Yes No N/A N/A N/A N/A
FCCM’18 [12] Yes No N/A N/A N/A N/A
FPT’18-2 [13] Yes No N/A N/A N/A N/A

MCSoc’19 [14] Yes No N/A N/A N/A N/A
TC’22 [26] Yes No N/A N/A N/A N/A

TopSort No Yes GB HBM Merge tree sort Yes

floorplanning to achieve better time closure. TopSort is the
first HBM-based FPGA accelerator that can fully utilize all
the HBM channel bandwidth and achieves 6.7× and 2.7×
speedup over state-of-the-art CPU sorter and DRAM-based
FPGA sorter.

ACKNOWLEDGMENT

This work is partially supported by CRISP, one of six JUMP
centers and the CDSC industrial partners, including Sam-
sung and Siemens Mentor Graphics. We also thank Zhe
Chen for his invaluable support in measuring the CPU
sorting performance on the ARM Cortex A53 core.

REFERENCES

[1] D. Koch and J. Torresen, “FPGAsort: A high performance sorting
architecture exploiting run-time reconfiguration on FPGAs for
large problem sorting,” in Proceedings of the 19th ACM/SIGDA
international symposium on Field programmable gate arrays (FPGA),
2011.

[2] J. Casper and K. Olukotun, “Hardware Acceleration of Database
Operations,” in Proceedings of the 22th ACM/SIGDA international
symposium on Field Programmable Gate Arrays (FPGA), 2014.

[3] J. Matai, D. Richmond, D. Lee, Z. Blair, Q. Wu, A. Abazari, and
R. Kastner, “Resolve: Generation of High-Performance Sorting
Architectures from High-Level Synthesis,” in Proceedings of the 24th
ACM/SIGDA international symposium on Field-Programmable Gate
Arrays (FPGA), 2016.

[4] W. Song, D. Koch, M. Lujan, and J. Garside, “Parallel Hardware
Merge Sorter,” in Proceedings of the 24th IEEE international sympo-
sium on Field-programmable Custom Cumputing Machines (FCCM),
2016.

[5] S.-W. Jun, S. Xu, and Arvind, “Terabyte Sort on FPGA-Accelerated
Flash Storage,” in Proceedings of the 25th IEEE international sympo-
sium on Field-programmable Custom Cumputing Machines (FCCM),
2017.

[6] K. Manev and D. Koch, “Large Utility Sorting on FPGAs,” in Pro-
ceedings of the 2018 International Conference on Field-Programmable
Technology (FPT), 2018.

[7] N. Samardzic, W. Qiao, V. Aggarwal, M.-C. F. Chang, and J. Cong,
“Bonsai: High-performance adaptive merge tree sorting,” in Pro-
ceedings of the 47th ACM/IEEE international symposium on computer
architecture (ISCA), 2020.

[8] P. Papaphilippou, C. Brooks, and W. Luk, “An Adaptable High-
Throughput FPGA Merge Sorter for Accelerating Database Ana-
lytics,” in Proceedings of the 30th International Conference on Field-
Programmable Logic and Applications (FPL), 2020.

[9] W. Qiao, J. Oh, L. Guo, M.-C. F. Chang, and J. Cong, “Fans: Fpga-
accelerated near-storage sorting,” in Proceedings of the 29th IEEE
international symposium on Field-programmable custom cumputing
machines (FCCM), 2021.

[10] R. Chen, S. Siriyal, and V. Prasanna, “Energy and memory efficient
mapping of bitonic sorting on fpga,” in Proceedings of the 2015
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, 2015, p. 240–249.

[11] S. Mashimo, T. V. Chu, and K. Kise, “High-Performance Hardware
Merge Sorter,” in Proceedings of the 25th IEEE international sympo-
sium on Field-programmable Custom Cumputing Machines (FCCM),
2017.

[12] M. Saitoh, E. A. Elsayed, T. V. Chu, S. Mashimo, and K. Kise,
“A high-performance and cost-effective hardware merge sorter
without feedback datapath,” in Proceedings of the 26th IEEE interna-
tional symposium on Field-programmable custom cumputing machines
(FCCM), 2018.

[13] P. Papaphilippou, C. Brooks, and W. Luk, “FLiMS: Fast
Lightweight Merge Sorter,” in Proceedings of the 2018 International
Conference on Field-Programmable Technology (FPT), 2018.

[14] E. A. Elsayed and K. Kise, “Towards an Efficient Hardware Archi-
tecture for Odd-even Based Merge Sorter,” in Proceedings of the 13th
International Symposium on Embedded Multicore/Many-core Systems-
on-Chip (MCSoC), 2019.

[15] H. Chen, S. Madaminov, M. Ferdman, and P. Milder, “FPGA-
Accelerated Samplesort for Large Data Sets,” in Proceedings of the
28th ACM/SIGDA international symposium on Field Programmable
Gate Arrays (FPGA), 2020.

[16] A. Lu, Z. Fang, W. Liu, and L. Shannon, “Demystifying the mem-
ory system of modern datacenter fpgas for software programmers
through microbenchmarking,” in 2021 International Symposium on
Field-Programmable Gate Arrays, ser. FPGA ’21, 2021, p. 105–115.

[17] Y. Choi, Y. Chi, W. Qiao, N. Samardzic, and J. Cong, “Hbm connect:
high-performance hls interconnect for fpga hbm,” in Proceedings of
the 29th ACM/SIGDA international symposium on Field programmable
gate arrays (FPGA), 2021.

[18] Xilinx. [Online]. Available: https://www.xilinx.com/content/
dam/xilinx/support/documents/data sheets/ds963-u280.pdf

[19] Y. Hu, Y. Du, E. Ustun, and Z. Zhang, “Graphlily: Accelerating
graph linear algebra on hbm-equipped fpgas,” in 2021 IEEE/ACM
International Conference On Computer Aided Design (ICCAD). IEEE,
2021, pp. 1–9.

[20] L. Song, Y. Chi, L. Guo, and J. Cong, “Serpens: A high bandwidth

https://www.xilinx.com/content/dam/xilinx/support/documents/data_sheets/ds963-u280.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/data_sheets/ds963-u280.pdf

15

memory based accelerator for general-purpose sparse matrix-
vector multiplication,” arXiv preprint arXiv:2111.12555, 2021.

[21] J. Wirth, J. A. Hofmann, L. Thostrup, C. Binnig, and A. Koch,
“Scalable and flexible high-performance in-network processing of
hash joins in distributed databases,” in Proceedings of the 2021 In-
ternational Conference on Field-Programmable Technology (FPT), 2021,
pp. 1–9.

[22] Y. Du, Y. Hu, Z. Zhou, and Z. Zhang, “High-performance sparse
linear algebra on hbm-equipped fpgas using hls: A case study
on spmv,” in Proceedings of the 2022 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, 2022.

[23] Y. Chi, L. Guo, and J. Cong, “Accelerating sssp for power-law
graphs,” in Proceedings of the 2022 ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays, 2022.

[24] M. Cho, D. Brand, and R. Bordawekar, “PARADIS: An efficient
parallel algorithm for in-place radix sort,” in Very Large Data Bases
(VLDB), 2015.

[25] M. Gao, G. Ayers, and C. Kozyrakis, “Practical near-data process-
ing for in-memory analytics frameworks,” in 2015 International
Conference on Parallel Architecture and Compilation (PACT), 2015, pp.
113–124.

[26] P. Papaphilippou, W. Luk, and C. Brooks, “Flims: a fast lightweight
2-way merger for sorting,” IEEE Transactions on Computers, pp. 1–1,
2022.

[27] J. L. Bentley, D. Haken, and J. B. Saxe, “A general method for
solving divide-and-conquer recurrences,” ACM SIGACT News,
vol. 12, no. 3, pp. 36–44, 1980.

[28] L. Guo, Y. Chi, J. Wang, J. Lau, W. Qiao, E. Ustun, Z. Zhang, and
J. Cong, “Autobridge: Coupling coarse-grained floorplanning and
pipelining for high-frequency hls design on multi-die fpgas,” in
Proceedings of the 29th ACM/SIGDA international symposium on Field
programmable gate arrays (FPGA), 2021.

[29] Xilinx. [Online]. Available: https://www.xilinx.com/support/
documents/sw manuals/xilinx2020 2/ug938-vivado-design-
analysis-closure-tutorial.pdf

[30] Xilinx. [Online]. Available: https://docs.xilinx.com/
r/en-US/ug440-xilinx-power-estimator/Overview?tocId=
1dgXNCIFAtTUfWCaTUG∼ZA

[31] D. E. Knuth, Art of Computer Programming: Sorting and Searching,
2nd ed. Addison-Wesley Professional, 1998.

[32] C++ Standard Library. [Online]. Available: https://
en.cppreference.com/w/cpp/algorithm/sort

[33] K. Thearling and S. Smith, “An improved supercomputer sort-
ing benchmark,” in Supercomputing ’92:Proceedings of the 1992
ACM/IEEE Conference on Supercomputing, 1992.

[34] M. Zuluaga, P. Milder, and M. Püschel, “Computer generation of
streaming sorting networks,” in DAC Design Automation Conference
2012, 2012, pp. 1241–1249.

[35] K. Fleming, M. King, M. C. Ng, A. Khan, and M. Vijayaraghavan,
“High-throughput pipelined mergesort,” in 2008 6th ACM/IEEE
International Conference on Formal Methods and Models for Co-Design,
2008, pp. 155–158.

Weikang Qiao received his B.S. degree in In-
formation and Communication Engineering from
Zhejiang University and his M.S. degree in Elec-
trical Engineering from UCLA. Currently, he is
a fifth-year Ph.D. student in the Electrical and
Computer Engineering department at UCLA.
His research focuses on customized accelera-
tor architecture designs and performance mod-
eling across various memory hierarchies, such
as DRAM, High-bandwidth Memory (HBM) and
SSDs. He is an IEEE student member.

Licheng Guo received his B.S. degree in Elec-
trical Engineering from Zhejiang University in
2018. Currently he is a 4th-year Ph.D. student in
the UCLA CS department. His research focus on
co-optimizing HLS compilers (from C++ to RTL)
and physical design tools (from RTL to hard-
ware) to improve the circuit maximal frequency
and reduce the compilation time.

Zhenman Fang received his PhD degree in
Computer Science from Fudan University, China
in 2014. He did his postdoc at UCLA from
2014 to 2017, and worked as a Staff Soft-
ware Engineer at Xilinx, San Jose, from 2017 to
2019. Currently, Zhenman is an Assistant Pro-
fessor in School of Engineering Science, Simon
Fraser University, Canada. His recent research
focuses on customizable computing with spe-
cialized hardware acceleration, including emerg-
ing application characterization and accelera-

tion, novel accelerator-rich and near-data computing architecture de-
signs, and corresponding programming, runtime, and tool support. He
is a member of the IEEE and ACM.

Mau-Chung Frank Chang is the Wintek Chair
in Electrical Engineering and Distinguished Pro-
fessor at UCLA. He pioneered the develop-
ment of the world’s first multi-gigabit/sec data
converters in heterojuction bipolar technologies;
first mm-Wave Radio-on-Chip with Digitally Con-
trolled on-chip Artificial Dielectric (DiCAD) for
broadband frequency tuning and on-chip sens-
ing/actuating with cautious feedback control for
achieving self-diagnosis and self-healing capa-
bilities. He realized the first CMOS frequency

synthesizers up to terahertz spectra and demonstrated tri-color and 3-
dimensional CMOS active imagers at the (sub)-mmWave spectra based
on a time-encoded digital architecture. He is a Member of the US
National Academy of Engineering, a Fellow of US National Academy of
Inventors, an Academician of Academia Sinica of Taiwan, and a Lifetime
Fellow of IEEE. He was honored with the IEEE David Sarnoff Award
in 2006 for developing and commercializing GaAs HBT and BiFET
power amplifiers, which dominated smartphones transmitter worldwide
production throughout the past 2.5 decades.

Jason Cong received his B.S. degree in com-
puter science from Peking University in 1985,
his M.S. and Ph. D. degrees in computer sci-
ence from the University of Illinois at Urbana-
Champaign in 1987 and 1990, respectively. Cur-
rently, he is the Volgenau Chair for Engineer-
ing Excellence (and former department chair) at
the UCLA Computer Science Department, with
joint appointment from the Electrical Engineer-
ing Department. Dr. Cong’s research interests
include novel architectures and compilation for

customizable computing and quantum computing. He has over 500
publications in these areas, including 16 best paper awards, three 10-
Year Most Influential Paper Awards, and three papers in the FPGA and
Reconfigurable Computing Hall of Fame. He was elected to an IEEE
Fellow in 2000, an ACM Fellow in 2008, a member of the National
Academy of Engineering in 2017, and a Fellow of the National Academy
of Inventors in 2020.

https://www.xilinx.com/support/documents/sw_manuals/xilinx2020_2/ug938-vivado-design-analysis-closure-tutorial.pdf
https://www.xilinx.com/support/documents/sw_manuals/xilinx2020_2/ug938-vivado-design-analysis-closure-tutorial.pdf
https://www.xilinx.com/support/documents/sw_manuals/xilinx2020_2/ug938-vivado-design-analysis-closure-tutorial.pdf
https://docs.xilinx.com/r/en-US/ug440-xilinx-power-estimator/Overview?tocId=1dgXNCIFAtTUfWCaTUG~ZA
https://docs.xilinx.com/r/en-US/ug440-xilinx-power-estimator/Overview?tocId=1dgXNCIFAtTUfWCaTUG~ZA
https://docs.xilinx.com/r/en-US/ug440-xilinx-power-estimator/Overview?tocId=1dgXNCIFAtTUfWCaTUG~ZA
https://en.cppreference.com/w/cpp/algorithm/sort
https://en.cppreference.com/w/cpp/algorithm/sort

	Introduction
	Background Review
	HBM-Based FPGAs
	Hardware Merge Unit
	DRAM-based Merge Tree Sorting Accelerator

	Scalability Analysis of a Single Merge Tree
	TopSort Methodology & Architecture
	Two Phases in TopSort
	Merge Tree Reuse in TopSort
	Architecture to Support Logic Reuse
	Optimization of The Design Choices
	Performance Model
	Resource Model
	Design Space Exploration on the Xilinx U280 Board

	Tuning Sorted Sequence Size from Phase 1
	Memory Write Pattern in Phase 2

	HBM-Specific Optimizations
	Avoiding Unnecessary AXI Interfaces
	Data Layout Optimization
	Burst Size Optimization
	Floorplanning Optimization

	Experimental Results
	Experimental Setup
	TopSort Configuration, Resource Utilization & Power Consumption
	Design Layout & Frequency
	Overall Sorting Performance
	Sorting Performance with Different Burst Sizes
	Comparison with State-of-the-art CPU & FPGA Sorters
	Comparison with Scaled Single Merge Tree
	Sensitivity to the Input Data

	Related Work
	Sorting Acceleration on FPGAs
	HBM-Specific Optimizations

	Conclusion
	References
	Biographies
	Weikang Qiao
	Licheng Guo
	Zhenman Fang
	Mau-Chung Frank Chang
	Jason Cong

