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Abstract— Accurately and timely detecting multiscale small
objects that contain tens of pixels from remote sensing images
(RSI) remains challenging. Most of the existing solutions pri-
marily design complex deep neural networks to learn strong
feature representations for objects separated from the back-
ground, which often results in a heavy computation burden.
In this article, we propose an accurate yet fast object detection
method for RSI, named SuperYOLO, which fuses multimodal
data and performs high-resolution (HR) object detection on
multiscale objects by utilizing the assisted super resolution
(SR) learning and considering both the detection accuracy
and computation cost. First, we utilize a symmetric compact
multimodal fusion (MF) to extract supplementary information
from various data for improving small object detection in RSI.
Furthermore, we design a simple and flexible SR branch to
learn HR feature representations that can discriminate small
objects from vast backgrounds with low-resolution (LR) input,
thus further improving the detection accuracy. Moreover, to avoid
introducing additional computation, the SR branch is discarded
in the inference stage, and the computation of the network
model is reduced due to the LR input. Experimental results
show that, on the widely used VEDAI RS dataset, SuperYOLO
achieves an accuracy of 75.09% (in terms of mAP50), which is
more than 10% higher than the SOTA large models, such as
YOLOv5l, YOLOv5x, and RS designed YOLOrs. Meanwhile,
the parameter size and GFLOPs of SuperYOLO are about 18×
and 3.8× less than YOLOv5x. Our proposed model shows a
favorable accuracy–speed tradeoff compared to the state-of-the-
art models. The code will be open-sourced at https://github.com/
icey-zhang/SuperYOLO.

Index Terms— Feature fusion, multimodal remote sensing
image, object detection, super resolution (SR).

I. INTRODUCTION

OBJECT detection plays an important role in various fields

involving computer-aided diagnosis or autonomous

piloting. Over the past decades, numerous excellent deep
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neural network (DNN)-based object detection frameworks [1],

[2], [3], [4], [5] have been proposed, updated, and optimized

in computer vision. The remarkable accuracy enhancement of

DNN-based object detection frameworks owes to the appli-

cation of large-scale natural datasets with accurate annota-

tions [6], [7], [8].

Compared with natural scenarios, there are several vital

challenges for accurate object detection in remote sensing

images (RSIs). First, the number of labeled samples is rela-

tively small, which limits the training of DNNs to achieve high

detection accuracy. Second, the size of objects in RSI is much

smaller, accounting for merely tens of pixels in relation to the

complicated and broad backgrounds [9], [10]. Moreover, the

scale of those objects is diverse with multiple categories [11].

As shown in Fig. 1(a), the object car is considerably small

within a vast area. As shown in Fig. 1(b), the objects have

large-scale variations, to which the scale of a car is smaller

than that of a camping vehicle.

Currently, most object detection techniques are solely

designed and applied for a single modality, such as red-green-

blue (RGB) and infrared (IR) [12], [13]. Consequently, with

respect to object detection, its capability to recognize objects

on the Earth’s surface remains insufficient due to the deficiency

of complementary information between different modali-

ties [14]. As imaging technology flourishes, RSIs collected

from multimodality become available and provide an oppor-

tunity to improve detection accuracy. For example, as shown

in Fig. 1, the fusion of two different multimodalities (RGB

and IR) can effectively enhance the detection accuracy in

RSI. Sometimes, the resolution of one modality is low, which

requires technique to improve the resolution to enhance infor-

mation. Recently, super resolution (SR) technology has shown

great potential in remote sensing fields [15], [16], [17], [18].

Benefiting from the vigorous development of the convolutional

neuron network (CNN), the resolution of the remote sensing

image has achieved high texture information to be interpreted.

However, due to the high computation cost of the CNN net-

work, the application of the SR network in real-time practical

tasks has become a hot topic in current research.

In this study, our motivation is to propose an on-board
real-time object detection framework for multimodal RSIs to
achieve high detection accuracy and high inference speed
without introducing additional computation overhead. Inspired

by recent advances in real-time compact neural network
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Fig. 1. Visual comparison of RGB image, IR image, and ground truth (GT). The IR image provides vital complementary information for resolving the
challenges in RGB detection. The object car in (a) is considerably small within a vast area. In (b), the objects have large-scale variation, to which the scale
of a car is smaller than that of a camping vehicle. The fusion of RGB and IR modalities effectively enhances detection performance.

models, we choose small-size YOLOv5s [19] structure as

our detection baseline. It can reduce deployment costs and

facilitate rapid deployment of the model. Considering the

high-resolution (HR) retention requirements for small objects,

we remove the Focus module in the baseline YOLOv5s model,

which not only benefits defining the location of small dense

objects but also enhances the detection performance. Consider-

ing the complementary characteristics in different modalities,

we propose a multimodal fusion (MF) scheme to improve the

detection performance for RSI. We evaluate different fusion

alternatives (pixel-level or feature-level) and choose pixel-level

fusion for low computation cost.

Lastly and most importantly, we develop an SR assur-

ance module to guide the network to generate HR fea-

tures that are capable of identifying small objects in vast

backgrounds, thereby reducing false alarms induced by

background-contaminated objects in RSI. Nevertheless, a naive

SR solution can significantly increase the computation cost.

Therefore, we set the auxiliary SR branch engaged in the

training process and remove it in the inference stage, facili-

tating spatial information extraction in HR without increasing

computation cost.

In summary, this article makes the following contributions.
1) We propose a computation-friendly pixel-level fusion

method to combine inner information bidirectionally in a

symmetric and compact manner. It efficiently decreases

the computation cost without sacrificing accuracy com-

pared with feature-level fusion.

2) We introduce an assisted SR branch into multimodal

object detection for the first time. Our approach not

only makes a breakthrough in limited detection per-

formance but also paves a more flexible way to study

outstanding HR feature representations that are capable

of discriminating small objects from vast backgrounds

with low-resolution (LR) input.

3) Considering the demand for high-quality results and

low-computation cost, the SR module functioning as

an auxiliary task is removed during the inference stage

without introducing additional computation. The SR

branch is general and extensible and can be inserted

in the existing fully convolutional network (FCN)

framework.

4) The proposed SuperYOLO markedly improves the per-

formance of object detection, outperforming SOTA

detectors in real-time multimodal object detection. Our

proposed model shows a favorable accuracy–speed

tradeoff compared to the state-of-the-art models.

II. RELATED WORK

A. Object Detection With Multimodal Data

Recently, multimodal data have been widely leveraged in

numerous practical application scenarios, including visual

question answering [20], auto-pilot vehicles [21], saliency

detection [22], and remote sensing classification [23]. It is

found that combining the internal information of multimodal

data can efficiently transfer complementary features to avoid

certain information of a single modality from being omitted.

In the field of RSI processing, there exist various modalities

(e.g., RGB, synthetic aperture radar (SAR), Light Detec-

tion and Ranging (LiDAR), IR, panchromatic (PAN), and

multispectral (MS) images) from diverse sensors, which can

be fused with complementary characteristics to enhance the

performance of various tasks [24], [25], [26]. For exam-

ple, the additional IR modality [27] captures longer thermal

wavelengths to improve the detection under difficult weather
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Fig. 2. Overview of the proposed SuperYOLO framework. Our new contributions include: 1) removal of the Focus module to reserve HR; 2) MF; and
3) assisted SR branch. The architecture is optimized in terms of mean square error (mse) loss for the SR branch and task-specific loss for object detection.
During the training stage, the SR branch guides the related learning of the spatial dimension to enhance the HR information preservation for the backbone.
During the test stage, the SR branch is removed to accelerate the inference speed equal to the baseline.

conditions. Manish et al. [27] proposed a real-time framework

for object detection in multimodal remote sensing imaging,

in which the extended version conducted mid-level fusion and

merged data from multiple modalities. Despite that multisensor

fusion can enhance the detection performance, as shown in

Fig. 1, hardly can its low-accuracy detection performance and

to-be-improved computing speed meet the requirements of

real-time detection tasks.

The fusion methods are primarily grouped into three strate-

gies, i.e., pixel-level fusion, feature-level fusion, and decision-

level fusion methods [28]. The decision-level fusion methods

fuse the detection results during the last stage, which may

consume enormous computation resources due to repeated

calculations for different multimodal branches. In the field

of remote sensing, feature-level fusion methods are mainly

adopted with multi branches. The multimodal images will be

input into the parallel branches to extract respective indepen-

dent features of different modalities, and then, these features

will be combined by some operations, such as attention

module or simple concatenation. The parallel branches bring

repeated computation as the modalities increase, which is not

friendly in the real-time tasks in remote sensing.

In contrast, the adoption of pixel-level fusion methods can

reduce unnecessary computation. In this article, our proposed

SuperYOLO fuses the modalities at the pixel level to signif-

icantly reduce the computation cost and design operations in

spatial and channel domains to extract inner information in

the different modalities, which can help enhance detection

accuracy.

B. Super Resolution in Object Detection
In the recent literature, the performance of small object

detection can be improved by multiscale feature learning

[29], [30] and context-based detection [31]. These methods

always enhance the information representation ability of the

network in different scales but ignore the HR contextual infor-

mation reservation. Conducted in a preprocessing step, SR has

proven to be effective and efficient in various object detection

tasks [32], [33]. Shermeyer and Van Etten [34] quantified its

effect on the detection performance of satellite imaging by

multiple resolutions of RSI. Based on generative adversarial

networks (GANs), Courtrai et al. [35] utilized SR to generate

HR images that were fed into the detector to improve its

detection performance. Rabbi et al. [36] leveraged a Laplacian

operator to extract edges from the input image to enhance

the capability of reconstructing HR images, thus improv-

ing its performance in object localization and classification.

Ji et al. [37] introduced a cycle-consistent GAN structure as an

SR network and modified faster R-CNN architecture to detect

vehicles from enhanced images that are produced by the SR

network. In these works, the adoption of the SR structure has

effectively addressed the challenges regarding small objects.

However, compared with single detection models, additional

computation is introduced, which attributes to the enlarged

scale of the input image by HR design.

Recently, Wang et al. [38] proposed an SR module that can

maintain HR representations with LR input while reducing

the model computation in segmentation tasks. Inspired by

Wang et al. [38], we design an SR assisted branch. In contrast
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Fig. 3. Backbone structure of YOLOv5s. The low-level texture and high-level semantic features are extracted by stacked CSP, CBS, and SPP structures.

to the aforementioned work in which the SR is realized in

the start stage, the assisted SR module guides the learning of

high-quality HR representations for the detector, which not

only strengthens the response of small dense objects but also

improves the performance of the object detection in spatial

space. Moreover, the SR module is removed in the inference

stage to avoid extra computation.

III. BASELINE ARCHITECTURE

As shown in Fig. 2, the baseline YOLOv5 network consists

of two main components: the backbone and head (includ-

ing the neck). The backbone is designed to extract low-

level texture and high-level semantic features. Next, these

hint features are fed to the head to construct the enhanced

feature pyramid network from top to bottom to transfer robust

semantic features and from bottom to top to propagate a strong

response of local texture and pattern features. This resolves the

various scale issue of the objects by yielding an enhancement

of detection with diverse scales.

In Fig. 3, CSPNet [39] is utilized as the backbone to

extract the feature information, consisting of numerous sam-

ple Convolution-Batch-normalization-SiLu (CBS) components

and cross stage partial (CSP) modules. The CBS is composed

of operations of convolution, batch normalization, and activa-

tion function SiLu [40]. The CSP duplicates the feature map

of the previous layer into two branches and then halves the

channel numbers through 1 × 1 convolution, by which the

computation is, therefore, reduced. With respect to the two

copies of the feature map, one is connected to the end of the

stage, and the other is sent into ResNet blocks or CBS blocks

as the input. Finally, the two copies of the feature map are

concatenated to combine the features, which is followed by a

CBS block. The spatial pyramid pooling (SPP) module [41]

is composed of parallel maxpool layers with different kernel

sizes and is utilized to extract multiscale deep features. The

low-level texture and high-level semantic features are extracted

by stacked CSP, CBS, and SPP structures.

Limitation 1: It is worth mentioning that the Focus mod-

ule is introduced to decrease the number of computations.

As shown in Fig. 2 (bottom left), inputs are partitioned

into individual pixels, reconstructed at intervals, and, finally,

concatenated in the channel dimension. The inputs are resized

to a smaller scale to reduce the computation cost and accel-

erate the network training and inference speed. However, this

may sacrifice object detection accuracy to a certain extent,

especially for small objects vulnerable to resolution.

Limitation 2: It is known that the backbone of YOLO

employs deep convolutional neural networks to extract hier-

archical features with a stride step of 2, through which the

size of the extracted features is halved. Hence, the feature size

retained for multiscale detection is far smaller than that of the

original input image. For example, when the input image size

is 608, the sizes of output features for the last detection layer

are 76, 38, and 19, respectively. LR features may result in the

missing of some small objects.

IV. SUPERYOLO ARCHITECTURE

As summarized in Fig. 2, we introduce three new con-

tributions to our SuperYOLO network architecture. First,

we remove the Focus module in the backbone and replace

it with an MF module to avoid resolution degradation and,

thus, accuracy degradation. Second, we explore different

fusion methods and choose the computation-efficient pixel-

level fusion to fuse RGB and IR modalities to refine dissimilar

and complementary information. Finally, we add an assisted

SR module in the training stage, which reconstructs the HR

images to guide the related backbone learning in spatial

dimension and, thus, maintain HR information. In the infer-

ence stage, the SR branch is discarded to avoid introducing

additional computation overhead.

A. Focus Removal

As presented in Section III and Fig. 2 (bottom left), the

Focus module in the YOLOv5 backbone partitions images at
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Fig. 4. Architecture of the MF module at the pixel level.

intervals on the spatial domain and then reorganize the new

image to resize the input images. Specifically, this operation

is to collect a value for every group of pixels in an image and

then reconstruct it to obtain smaller complementary images.

The size of the rebuilt images decreases with the increase

in the number of channels. As a result, it causes resolution

degradation and spatial information loss for small targets.

Considering that the detection of small targets depends more

heavily on higher resolution, the Focus module is abandoned

and replaced by an MF module (as shown in Fig. 4) to prevent

the resolution from being degraded.

B. Multimodal Fusion

The more the information is utilized to distinguish objects,

the better the performance can be achieved in object detection.

MF is an effective path for merging different information

from various sensors. The decision-, feature-, and pixel-level

fusions are the three mainstream fusion methods that can be

deployed at different depths of the network. Since decision-

level fusion requires enormous computation, it is not consid-

ered in SuperYOLO.

We propose a pixel-level MF to extract the shared and

special information from the different modalities. The MF

can combine multimodal inner information bidirectionally in

a symmetric and compact manner. As shown in Fig. 4, for the

pixel-level fusion, we first normalize an input RGB image and

an input IR image into two intervals of [0, 1]. The input modal-

ities XRGB, X IR ∈ R
C×H×W are subsampled to IRGB, IIR ∈

R
C×(H/n)×(W/n), which are fed to SE blocks extracting inner

information in channel domain [42] to generate FRGB, FIR

FRGB = SE(IRGB), FIR = SE(IIR). (1)

Then, the attention map that reveals the inner relationship

of the different modalities in the spatial domain is defined as

mIR = f1(FIR), mRGB = f2(FRGB) (2)

where f1 and f2 represent 1 × 1 convolutions for the RGB

and IR modalities, respectively. Here, ⊗ denotes the element-

wise matrix multiplication. Inner spatial information between

the different modalities is produced by

Fin1 = mRGB ⊗ FRGB, Fin2 = mIR ⊗ FIR. (3)

To incorporate internal inner view information and spatial

texture information, the features are added by the original

input modalities and then fed into 1 × 1 convolutions. The

full features are

Fful1 = f3(Fin1 + IRGB), Fful2 = f4(Fin2 + IIR) (4)

where f3 and f4 represent 1 × 1 convolutions. Finally, the

features are fused by

Fo = SE(Concat(Fful1, Fful2)) (5)
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Fig. 5. SR structure of SuperYOLO. The SR structure can be regarded as a simple encode–decoder model. The low- and high-level features of the backbone
are selected to fuse local textures patterns and semantic information, respectively.

where Concat(·) denotes the concatenation operation along the

channel axis. The result is then fed to the backbone to produce

multilevel features. Note that X is subsampled to 1/n size of

the original image to accomplish the SR module discussed in

Section IV-C and to accelerate the training process. The X
represents the RGB or IR modality, and the sampled image is

denoted as I ∈ R
C×(H/n)×(W/n) and generated by

I = D(X) (6)

where D(·) represents the n times downsampling operation

using bilinear interpolation.

C. Super Resolution

As mentioned in Section III, the feature size retained for

multiscale detection in the backbone is far smaller than that

of the original input image. Most of the existing methods

conduct upsampling operations to recover the feature size.

Unfortunately, this approach has produced limited success due

to the information loss in texture and pattern, which explains

that it is inappropriate to employ this operation to detect small

targets that require HR preservation in RSI.

To address this issue, as shown in Fig. 2, we introduce

an auxiliary SR branch. First, the introduced branch shall

facilitate the extraction of HR information in the backbone and

achieve satisfactory performance. Second, the branch should

not add more computation to reduce the inference speed.

It shall realize a tradeoff between accuracy and computation

time during the inference stage. Inspired by the study of

Wang et al. [38] where the proposed SR succeeded in facil-

itating segmentation tasks without additional requirements,

we introduce a simple and effective branch named SR into

the framework. Our proposal can improve detection accuracy

without computation and memory overload, especially under

circumstances of LR input.

Specifically, the SR structure can be regarded as a simple

encode–decoder model. We select the backbone’s low- and

high-level features to fuse local textures and patterns, and

semantic information, respectively. As depicted in Fig. 4,

we select the result of the fourth and ninth modules as the low-

and high-level features, respectively. The encoder integrates

the low-level feature and high-level feature generated in the

backbone. As illustrated in Fig. 5, in the encoder, the first

CR module is conducted on the low-level feature. For the

high-level feature, we use an upsampling operation to match

the spatial size of the low-level feature, and then, we use

a concatenation operation and two CR modules to merge

the low- and high-level features. The CR module includes

a convolution and ReLU. For the decoder, the LR feature is

upscaled to the HR space in which the SR module’s output size

is twice larger than that of the input image. As illustrated in

Fig. 5, the decoder is implemented using three deconvolutional

layers. The SR guides the related learning of spatial dimension

and transfers it to the main branch, thereby improving the

performance of object detection. In addition, we introduce

EDSR [43] as our encoder structure to explore the SR per-

formance and its influence on detection performance.

To present a more visually interpretable description,

we visualize the features of backbones for YOLOv5s,

YOLOv5x, and SuperYOLO in Fig. 6. The features are upsam-

pled to the same scale as the input image for comparison.

By comparing the pairwise images of (c), (f), and (i); (d),

(g), and (j); and (e), (h), and (k) in Fig. 6, it can be observed

that SuperYOLO contains clearer object structures with higher

resolution with the assistance of the SR. Eventually, we obtain

a bumper harvest in high-quality HR representation with the

SR branch and utilize the head of YOLOv5 to detect small

objects.

D. Loss Function

The overall loss of our network consists of two components:

detection loss Lo and SR construction loss Ls , which can be

expressed as

L total = c1Lo + c2Ls (7)

where c1 and c2 are the coefficients for a balance of the two

training tasks. The L1 loss (rather than L2 loss) [44] is used to

calculate the SR construction loss Ls between the input image

X and SR result S, to which the expression is written as

Ls = ‖S − X‖1. (8)

The detection loss involves three components [19]: loss of

judging whether there is an object Lobj, loss of object location

L loc, and loss of object classification Lcls, which are used to

evaluate the loss of the prediction as

Lo = λloc

2∑

l=0

al L loc + λobj

2∑

l=0

bl Lobj + λcls

2∑

l=0

cl Lcls (9)
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Fig. 6. Feature-level visualization of backbone for YOLOv5s, YOLOv5x, and SuperYOLO with the same input: (a) RGB input, (b) IR input,
(c)–(e) features of YOLOv5s, (f)–(h) features of YOLOv5x, and (i)–(k) features of SuperYOLO. The features are upsampled to the same scale as the
input image for comparison. (c), (f), and (i) Features in the first layer. (d), (g), and (j) Low-level features. (e), (h), and (k) High-level features in layers at the
same depth.

where l represents the layer of the output in the head; al , bl ,

and cl are the weights of different layers for the three loss

functions; and the weights λloc, λobj, and λcls regulate error

emphasis among box coordinates, box dimensions, objectness,

no-objectness, and classification.

V. EXPERIMENTAL RESULTS

A. Dataset

The popular Vehicle Detection in Aerial Imagery (VEDAI)

dataset [45] is used in the experiments, which contains

cropped images obtained from the much larger Utah Auto-

mated Geographic Reference Center (AGRC) dataset. Each

image collected from the same altitude in AGRC has approx-

imately 16 000 × 16 000 pixels, with a resolution of about

12.5 cm × 12.5 cm per pixel. RGB and IR are the two modal-

ities for each image in the same scenes. The VEDAI dataset

consists of 1246 smaller images that focus on diverse back-

grounds involving grass, highway, mountains, and urban areas.

All images are in the size of 1024 × 1024 or 512 × 512 . The

task is to detect 11 classes of different vehicles, such as car,

pickup, camping, and truck.

B. Implementation Details

Our proposed framework is implemented in PyTorch and

runs on a workstation with an NVIDIA 3090 GPU. The

VEDAI dataset is used to train our SuperYOLO. Follow-

ing [27], the VEDAI dataset is devised for tenfold cross-

validation. In each split, 1089 images are used for training,

and another 121 images are used for testing. The ablation

experiments are conducted on the first fold of data, while

the comparisons with previous methods are performed on the

ten folds by averaging their results. The annotations for each

object in the image contain the coordinates of the bounding

box center, the orientation of the object concerning the positive

x-axis, the four corners of the bounding box, the class ID,

a binary flag identifying whether an object is occluded, and

another binary flag identify whether an object is cropped.

We do not consider classes with fewer than 50 instances in

the dataset, such as plane, motorcycle, and bus. Thus, the

annotations of the VEDAI dataset are converted to YOLOv5

format, and we transfer the ID of the interested class to

0, 1, . . . , 7, i.e., N = 8. Then, the center coordinates of the

bounding box are normalized, and the absolute coordinate is

transformed into a relative coordinate. Similarly, the length and

width of the bounding box are normalized to [0, 1]. To realize

the SR assisted branch, the input images of the network are

downsampled from 1024 × 1024 size to 512 × 512 during

the training process. In the test process, the image size

is 512 × 512, which is consistent with the input of other

algorithms compared. In addition, data are augmented with hue

saturation value (HSV), multiscale, translation, left-right flip,

and mosaic. The augmentation strategy is canceled in the test

stage. The standard stochastic gradient descent (SGD) [46] is

used to train the network with a momentum of 0.937, a weight

decay of 0.0005 for the Nesterov accelerated gradients utilized,

and a batch size of 2. The learning rate is set to 0.01 initially.

The entire training process involves 300 epochs.

C. Accuracy Metrics

The accuracy assessment measures the agreements and dif-

ferences between the detection result and the reference mask.

The recall, precision, and mean Average Precision (mAP)

are used as accuracy metrics to evaluate the performance of

the methods to be compared with. The calculations of the

precision and recall metrics are defined as

Precision = TP

TP + FP
(10)

Recall = TP

TP + FN
(11)

where the true positive (TP) and true negative (TN) denote

correct prediction, and the false positive (FP) and false

negative (FN) denote incorrect outcome. The precision and
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TABLE I

COMPARISON RESULTS OF MODEL SIZE AND INFERENCE ABILITY IN

DIFFERENT BASELINE YOLO FRAMEWORKS ON THE FIRST

FOLD OF THE VEDAI VALIDATION SET

recall are correlated with the commission and omission errors,

respectively. The mAP is a comprehensive indicator obtained

by averaging AP values, which uses an integral method to

calculate the area enclosed by the precision–recall curve and

coordinate axis of all categories. Hence, the mAP can be

calculated by

mAP = AP
N

=
∫ 1

0
p(r)dr
N

(12)

where p denotes the precision, r denotes the recall, and N is

the number of categories.

The giga floating-point operations per second (GFOLPs)

and parameter size are used to measure the model complexity

and computation cost. In addition, PSNR and SSIM are used

for image quality evaluation of the SR branch. Generally,

higher PSNR values and SSIM values represent the better

quality of the generated image.

D. Ablation Study

First, we verify the effectiveness of our proposed method by

designing a series of ablation experiments that are conducted

on the first fold of the validation set.

1) Validation of the Baseline Framework: In Table I, the

model size and inference ability of different base frameworks

are evaluated in terms of the number of layers, parameter size,

and GFLOPs. The detection performances of those models

are measured by mAP50, i.e., the detection metric of mAP at

the intersection over union (IOU) = 0.5. Although YOLOv4

achieves the best detection performance, it has 169 more layers

than YOLOv5s (393 versus 224), its parameter size (params) is

7.4 times larger than that of YOLOv5s (52.5M versus 7.1M),

and its GFLOPs is 7.2 times higher than that of YOLOv5s

(38.2 versus 5.3). With respect to YOLOv5s, although its

mAP is slightly lower than those of YOLOv4 and YOLOv5m,

its number of layers, parameter size, and GFLOPs are much

smaller than those of other models. Therefore, it is easier to

deploy YOLOv5s on board to achieve real-time performance

in practical applications. The above fact verifies the rationality

of YOLOv5s as the baseline detection framework.

2) Impact of Removing Focus Module: As presented in

Section IV-A, the Focus module reduces the resolution of

input images, which imposes encumbrance on the detection

performance of small objects in RSI. To investigate the influ-

ence of the Focus module, we conduct experiments on the

TABLE II

INFLUENCE OF REMOVING THE FOCUS MODULE IN THE NETWORK ON

THE FIRST FOLD OF THE VEDAI VALIDATION SET

TABLE III

COMPARISON RESULT OF PIXEL- AND FEATURE-LEVEL FUSIONS IN

YOLOV5S (NOFOCUS) FOR MULTIMODAL DATASET ON THE

FIRST FOLD OF THE VEDAI VALIDATION SET

four YOLOv5 network frameworks: YOLOv5s, YOLOV5m,

YOLOv5l, and YOLOv5x. Note that the results here are

collected after the concatenation pixel-level fusion of RGB and

IR modalities. As listed in Table II, after removing the Focus

module, we observe a noticeable improvement in the detec-

tion performance of YOLOv5s (62.2%→69.5% in mAP50),

YOLOv5m (64.5%→72.2%), YOLOV5l (63.7%→72.5%),

and YOLOv5x (64.0%→69.2%). This is because by removing

the Focus module, not only can the resolution degradation be

avoided, but also the spatial interval information be retained

for small objects in RSI, thereby reducing the missing errors of

object detection. Generally, removing the Focus module brings

more than 5% improvement in the detection performance

(mAP50) of the whole frameworks.

Meanwhile, we notice that the above removal

increases the inference computation cost (GFLOPs) in

YOLOv5s (5.3→20.4), YOLOv5m (16.1→63.6), YOLOV5l

(36.7→145), and YOLOv5x (69.7→276.6). However, the

GFLOPs of YOLOv5s-noFocus (20.4) are smaller than

those of YOLOv3 (52.8), YOLOv4 (38.2), and YOLOrs

(46.4), as shown in Table I. The parameters of these models

are slightly reduced after removing the Focus module.

In summary, in order to retain the resolution to better detect

smaller objects, priority shall be given to the detection

accuracy, for which the convolution operation is adopted to

replace the Focus module.

3) Comparison of Different Fusion Methods: To evaluate

the influence of the devised fusion methods, we compare

five fusion results on YOLOv5-noFocus, as presented in
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Fig. 7. Feature-level fusion of different blocks in the latent layers. Fusion-n
represents the concatenation fusion operation performed in the nth blocks.
(a) and (b) Feature-level fusion. (c) Multistage feature-level fusion.

Section IV-B. As shown in Fig. 7, fusion1, fusion2, fusion3,

and fusion4 represent the concatenation fusion operation

performed in the first, second, third, and fourth blocks, respec-

tively. The IR image is expanded to three bands in feature-

level fusion to obtain the features that have equal channels

for the two modes. The final result is listed in Table III.

The parameter size, GFLOPs, and mAP50 of pixel-level fusion

with concatenation operation are 7.0705M, 20.37, and 69.5%,

and those of the pixel-level fusion with MF module are

7.0897M, 21.67, and 70.3%, which are the best among all the

compared methods. There are some reasons why the model

parameters of the feature-level fusions are close to the pixel-

level fusion. First, the feature-level fusion is completed in

the latent layers rather than the whole two separate models.

Second, the modules before the concatenation fusion are

different, making the different fusion channels cause different

parameters. However, it can be proved that the calculation

cost is increased with the layer of fusion becoming deeper.

In addition, we compare the multistage feature-level fusion

[as shown in Fig. 7(c)] with the proposed pixel-level fusion.

As shown in Table III, the accuracy of multistage feature-

level fusion is only 59.3% mAP50 lower than that of pixel-

level fusion, while its computation cost is 34.56 GFLOPs

with 7.7545M parameters, which is higher than that of pixel-

level fusion. These findings suggest that innovative pixel-level

fusion methods are more effective than multistage shallow

feature-level fusion because the multiple stages of fusion can

lead to the accumulation of redundant information. The above

results suggest that pixel-level fusion can accurately detect

objects while reducing the computation. Our proposed MF

fusion can improve detection accuracy with some computation

costs. Overall, the proposed method only uses pixel-level

fusion to contain the lower computation cost.

TABLE IV

INFLUENCE OF DIFFERENT RESOLUTIONS FOR INPUT IMAGE ON

NETWORK PERFORMANCE ON THE FIRST FOLD OF THE

VEDAI VALIDATION SET

4) Impact of High Resolution: We compare different train-

ing and test modes to explore more possibilities in terms of the

input image resolution in Table IV. First, we compare cases

where the image resolutions of the training set and the test

set are the same. By comparing the result of YOLOv5s, the

detection metric mAP50 is improved from 62.2% to 77.7%,

causing a 15.5% increase when the image size is doubled

from 512 to 1024. Similarly, YOLOv5s-noFocus (1024) out-

performs YOLOv5s-noFocus (512) by 9.8% mAP50 score

(79.3% versus 69.5%). The mean recall and mean precision

increase simultaneously, suggesting that ensuring resolution

reduces the commission and omission errors in object detec-

tion. Based on the above analysis, we argue that the charac-

teristics of HR significantly influence the final performance of

object detection. However, it is noteworthy that maintaining an

HR input image of the network introduces a certain amount

of calculation. The GFLOPs with a size of 1024 (HR) is

higher than that with 512 (low resolution) in both YOLOv5s

(21.3 versus 5.3) and YOLOv5s-noFocus (81.5 versus 20.4).

As shown in Table IV, the use of different sizes of the

image during the training process (train size) and the test

process (test size) results in the score reduction of mAP50,

i.e., (10.6% versus 62.2%), (48.2% versus 77.7%), (13.4%

versus 69.5%), and (62.9% versus 79.3%). This may attribute

to the inconsistent scale of objects in the test process and in

the training process, where the size of the predicted bounding

box is not suitable for the objects of test images anymore.

Finally, mAP50 of YOLOv5s-noFocus + SR is close to

the YOLOv5-noFocus HR (1024) one (78.0% versus 79.3%),

and the GFOLPs is equal to that of YOLOv5-noFocus LR

(512) one (20.4 versus 20.4). Our proposed network decreased

the resolution of input images in the test process to reduce

computation and maintain accuracy by remaining the identical

resolution of the training and testing data, thereby highlighting

the advantage of the proposed SR branch.

5) Impact of Super Resolution Branch: Some ablation

experiences about the SR branch are completed in Table V.

Compared with the upsampling operation, the YOLOv5s
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TABLE V

ABLATION EXPERIMENT RESULTS ABOUT THE INFLUENCE OF SR BRANCH ON DETECTION

PERFORMANCE ON THE FIRST FOLD OF THE VEDAI VALIDATION SET

TABLE VI

EFFECTIVE VALIDATION OF THE SR BRANCH FOR THE DIFFERENT

BASELINE ON THE FIRST FOLD OF THE VEDAI VALIDATION SET

(noFocus) added SR network shows favorable performance

and gets mAP50 1.8% better than upsampling operation. The

SR network is a learnable upsampling method with a more

vital reconstruction ability that can help the feature extraction

in the backbone for detection. We deleted the PANet struc-

ture and two detectors, which are responsible for enhancing

middle- and large-scale target detections because the objects in

RSI datasets, such as VEDAI are on the small scale and can be

detected with the small-scale detector. When we only use one

detector, the number of parameters (7.0705M versus 4.8259M)

and GFLOPs (20.37 versus 16.68) can be decreased, and the

detection accuracy can be increased (78.0% versus 79.0% ).

When we utilize the EDSR network (rather than three ordinal

deconvolutions) as a decoder and L1 loss (rather than L2 loss)

as an SR loss function in the SR branch, which is powerful

in the SR task, not only the performance of SR is improved

but also the performance of the detection network enhanced

meantime because the SR branch helps the detection network

to extract more effective and superior features in the backbone,

accelerating the convergence of the detection network and,

thus, improving the performance of the detection network. The

performance of SR and object detection is complementary and

cooperative.

Table VI shows the favorable accuracy–complexity tradeoff

of the SR branch. At the different baselines, the influence

of the SR branch on object detection is positive. Com-

pared with bare baseline, baseline added SR shows favorable

performance: YOLOv3 + SR performs mAP50 9.2% better

than YOLOv3, YOLOv4 + SR is mAP50 3.3% better than

YOLOv4, and YOLOv5s + SR performs mAP50 2.2% better

than YOLOv5s. Notably, SR can be removed in the inference

stage. Hence, no extra parameters and computation costs are

introduced, which is impressive considering that the SR branch

does not require a lot of manpower to refine the design of the

detection network. The SR branch is general and extensible,

and can be utilized in the existing FCN framework.

E. Comparisons With Previous Methods

The visual detection results of the compared YOLO methods

and SuperYOLO are shown in Fig. 8, for a diverse set of

scenes. It can be observed that SuperYOLO can accurately

detect those objects that are not detected, or predicted into a

wrong category or with uncertainty, in YOLOv4, YOLOv5s,

and YOLOv5m. The objects in RSIs are challenging to detect

on small scales. In particular, Pickup and Car or Van and

Boat are easily confused in the detection process due to their

similarities. Hence, improving the detection classification is of

necessity in object detection tasks except for location detec-

tion, which can be accomplished by the proposed SuperYOLO

with better performance.

Table VII summarizes the performance of the

YOLOv3 [47], YOLOv4 [48], YOLOv5s-x [19], YOLOrs
[27], YOLO-Fine [49], YOLOFusion [50], and our proposed

SuperYOLO. Note that the AP scores of multimodal modes

are significantly higher than those of unimodal (RGB or IR)

modes for most classes. The overall mAP50 of multimodal

(multi) modes outperforms those of RGB or IR modes. These

results confirm that MF is an effective and efficient strategy

for object detection based on information complementation

between multimodal inputs. However, it should be noted

that the slight increase in parameters and GFLOPs with MF

reflects the necessity of choosing pixel-level fusion rather

than feature-level fusion.

It is obvious that the SuperYOLO achieves higher mAP50

than the other frameworks except for YOLOFusion. The

results of YOLOFusion are slightly better than SuperYOLO,

as YOLOFusion uses pretrained weight which is trained on

MS COCO [7]. However, its parameter count is approximately

three times that of SuperYOLO. The performance of YOLO-

Fine is good on a single modality, but it lacks the develop-

ment of multimodality fusion techniques. In particular, the

SuperYOLO outperforms the YOLOv5x by a 12.44% mAP50

score in multimodal mode. Meanwhile, parameter size and

GFLOPs of SuperYOLO are about 18× and 3.8× less than

YOLOv5x.

In addition, it can be noticed that superior performance

is achieved for the classes of Car, Pickup, Tractor, and

Camping, which have the most training instances. YOLOv5s

performs superior on GFLOPs, which depends on the Focus
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Fig. 8. Visual results of object detection using different methods involving YOLOv4, YOLOv5s, YOLOv5m, and the proposed SuperYOLO. The red cycles
represent the false alarms, the yellow ones denote the FP detection results, and the blue ones are FN detection results. (a)–(e) Different images in the VEDAI
dataset.

module to slim the input image, but results in lousy detection

performance, especially for small objects. The SuperYOLO

performs 18.30% mAP50 better than YOLOv5s. Our proposed

SuperYOLO shows a favorable speed–accuracy tradeoff com-

pared to the state-of-the-art models.

F. Generalization to Single Modal Remote Sensing Images
At present, although there are massive multimodal images

in remote sensing, the labeled dataset in object detection

tasks is lacking due to the expensive cost of manually

annotating. To validate the generalization of our proposed

network, we compare the SuperYOLO with different one- or

two-stage methods using data from the single modality,

including a large-scale Dataset for Object Detection in Aerial

images (DOTA), object DetectIon in Optical Remote sensing

images (DIOR), and Northwestern Polytechnical University

Very-High-Resolution 10-class (NWPU VHR-10) datasets.

1) DOTA: The DOTA dataset was proposed in 2018 for

object detection of remote sensing. It contains 2806 large

images and 188 282 instances, which are divided into 15 cat-

egories. The size of each original image is 4000 × 4000,

and the images are cropped into 1024 × 1024 pixels with an

overlap of 200 pixels in the experiment. We select half of the

original images as the training set, 1/6 as the validation set,

and 1/3 as the testing set. The size of the image is fixed to

512 × 512.
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TABLE VII

CLASSWISE AVERAGE PRECISION AP, MEAN AVERAGE PRECISION mAP50 , PARAMETERS, AND GFLPS FOR THE PROPOSED SUPERYOLO, YOLOV3,
YOLOV4, YOLOV5S-X, YOLORS, YOLO-FINE, AND YOLOFUSION, INCLUDING UNIMODAL AND MULTIMODAL CONFIGURATIONS

ON VEDAI DATASET. * REPRESENTS USING PRETRAINED WEIGHT

2) NWPU VHR-10: The dataset of NWPU VHR-10 was

proposed in 2016. It contains 800 images, of which 650 pic-

tures contain objects, so we use 520 images as the training

set and 130 images as the testing set. The dataset contains ten

categories, and the size of the image is fixed to 512 × 512.
3) DIOR: The DIOR dataset was proposed in 2020 for

the task of object detection, which involves 23 463 images

and 192 472 instances. The size of each image is 800 × 800.

We choose 11 725 images as the training set and 11 738 images

as the testing set. The size of the image is fixed to 512 × 512.

The training strategy is modified to accommodate the new

dataset. The entire training process involves 150 epochs for

NWPU and DIOR datasets, and 100 epochs for DOTA. The

batch size of the DOTA and DIOR is 16 and of NWPU is 8.

To verify the superiority of the SuperYOLO proposed in this

article, we selected 11 generic methods for comparison: one-

stage algorithms (YOLOv3 [47], FCOS [53], ATSS [54],

RetainNet [51], and GFL [52]); two-stage method (Faster
R-CNN [5]); lightweight models (MobileNetV2 [55] and

ShuffleNet [56]); distillation-based methods (ARSD [59]);

and remote sensing designed approaches (FMSSD [58] and

O2DNet [57]).

As presented in Table VIII, our SuperYOLO achieves

the optimal detection result (69.99%, 93.30%, and 71.82%

mAP50), and the model parameters (7.70M, 7.68M, and

7.70M) and GFLOPs (20.89, 20.86, and 20.93) are much

smaller than other SOTA detectors regardless of the two-

stage, one-stage, lightweight, or distillation-based method.

The PANet structure and three detectors are responsible for

enhancing small-, middle-, and large-scale target detections in

consideration of the big objects, such as playgrounds in these

three datasets. Hence, the model parameters of SuperYOLO

are more than those in Table VII. We also compare two detec-

tors designed for RSI, such as FMSSD [58] and O2DNet [57].
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TABLE VIII

PERFORMANCE OF DIFFERENT ALGORITHMS ON DOTA, NWPU, AND DOTA TESTING SETS

Although these models have a close performance with our

lightweight model, the huger parameters and GFLOPs seem to

be a massive cost in computation resources. Hence, our model

has a better balance in consideration of detection efficiency

and efficacy.

VI. CONCLUSION AND FUTURE WORK

In this article, we have presented SuperYOLO, a real-

time lightweight network that is built on top of the widely

used YOLOv5s to improve the detection performance of

small objects in RSI. First, we have modified the baseline

network by removing the Focus module to avoid resolu-

tion degradation, through which the baseline is significantly

improved and overcomes the missing error of small objects.

Second, we have conducted research fusion of multimodal-

ity to improve the detection performance based on mutual

information. Lastly and most importantly, we have introduced

a simple and flexible SR branch facilitating the backbone

to construct an HR representation feature, by which small

objects can be easily recognized from vast backgrounds with

merely LR input required. We remove the SR branch in the

inference stage, accomplishing the detection without changing

the original structure of the network to achieve the same

GFOLPs. With joint contributions of these ideas, the proposed

SuperYOLO achieves 75.09% mAP50 with lower computation

cost on the VEDAI dataset, which is 18.30% higher than

that of YOLOv5s, and more than 12.44% higher than that

of YOLOv5x.

The performance and inference ability of our proposal

highlight the value of SR in remote sensing tasks, paving way

for the future study of multimodal object detection. Our future

interests will be focusing on the design of a low-parameter

mode to extract HR features, thereby further satisfying real-

time and high-accuracy motivations.
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