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Stencil computation is one of the fundamental computing patterns in many application domains such as
scientific computing and image processing. While there are promising studies that accelerate stencils on
FPGAs, there lacks an automated acceleration framework to systematically explore both spatial and temporal
parallelisms for iterative stencils that could be either computation-bound or memory-bound. In this paper,
we present SASA, a scalable and automatic stencil acceleration framework on modern HBM-based FPGAs.
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design with the best parallelism configuration in TAPA high-level synthesis C++ as well as its corresponding
host code. Compared to state-of-the-art automatic stencil acceleration framework SODA that only exploits
temporal parallelism, SASA achieves an average speedup of 3.41× and up to 15.73× speedup on the HBM-based
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1 INTRODUCTION
Stencil computation is one of the most widely used computing patterns in many important applica-
tion domains, such as scientific computing, image processing, and cellular automata [1, 11, 17, 26].
Due to its importance, stencil kernels have been well studied and accelerated on multicore CPUs,
GPUs, and FPGAs [3, 4, 9, 15, 18, 20, 23–25, 29, 30]. Among these approaches, FPGA accelera-
tion [2–4, 9, 16, 19, 21–23, 25, 29, 30] is getting increasing attention due to its high performance, low
power consumption, and high flexibility for customization. For example, in the automatic stencil
acceleration framework SODA [4], it designed an optimized dataflow architecture with optimal
data reuse and achieved up to 3.28× speedup on an FPGA over a 24-thread CPU.

However, one important factor that is often overlooked in prior studies is that, the stencil com-
putation can be either computation-bound or memory-bound, depending on the stencil operations
in the kernel and the number of iterations in the stencil kernel. To demonstrate this, we have
measured the computation intensity, defined as the number of algorithmic operations divided by
the number of bytes for off-chip memory accesses (OPs/byte), for a wide range of stencil kernels
(detailed experimental setup in Section 5.1). The measurement is based on the assumption of the
optimal data reuse, i.e., every byte of data only needs to be accessed from off-chip memory once.
As shown in Figure 1a, the computation intensity varies between different stencil kernels, ranging
from 1.25 to 4.5. Moreover, as shown in Figure 1b, the computation intensity increases linearly
with the number of iterations. A high computation intensity indicates that the stencil kernel is
computation-bound, while a low one indicates the stencil kernel is memory-bound.
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(a) Computation intensity of different stencil kernels
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1

4

16

64

256

1024

1 2 4 8 16 32 64 256

O
ps
/b
yt
e

Iteration Number

(b) Computation intensity of the JACOBI2D stencil
kernel with different numbers of iterations

Fig. 1. Computation intensity (number of algorithmic operations per byte of off-chip memory access, i.e.,
OPs/byte) comparison for different stencil kernels and different numbers of iterations.

Such observations suggest that different types of parallelism optimizations are needed for a stencil
kernel to achieve the best performance on an FPGA. In general, there is a broad range of iteration
numbers for stencil applications. For non-iterative stencil kernels, the iteration number is considered
as one. Some iterative stencil kernels could have a large iteration number [4]. Depending on the
stencil kernel and its number of iterations, one may need to either 1) parallelize the computation
along the iteration dimension (called temporal parallelism), or 2) parallelize the memory access
along the data dimension (called spatial parallelism), or 3) combine both parallelisms together (called
hybrid parallelism). Moreover, it is nontrivial to program FPGAs to realize the best parallelism for
the stencil kernels, especially for domain experts who program in high-level languages. Ideally,
domain experts would only need to program in a simple stencil domain-specific language (DSL),
and a tool would automatically compile the DSL to a highly efficient stencil accelerator on an FPGA
and choose the best parallelism (and the optimal data reuse). Unfortunately, as summarized in
Table 1 and Section 2.2, none of the prior studies satisfy all these requirements.
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In this paper, we design and implement SASA, a DSL-based, scalable, and automatic stencil
acceleration framework on modern HBM-based FPGAs. To support different types of parallelisms
for stencil kernels, SASA takes a scalable multi-PE (processing element) approach. For the single
PE design, we take a similar design to SODA [4], which explores fine-grained data parallelism that
matches the data streaming speed from a single memory bank and achieves the optimal data reuse
within a single stencil iteration. Moreover, we further optimize the single PE design by utilizing
the coalesced reuse buffers (i.e., widened and shortened FIFOs) to reduce its resource utilization
and reduce the high fan-out for better timing. For computation-bound stencil kernels, we scale
the number of PEs to explore temporal parallelism between stencil iterations and use the same
coalesced reuse buffer technique to dataflow between multiple PEs and exploit data reuse between
stencil iterations.
For memory-bound stencil kernels, we scale the number of PEs to explore the coarse-grained

spatial parallelism to better utilize the available off-chip bandwidth of multiple HBM banks on
modern FPGAs. Moreover, we support the combination of temporal and spatial parallelisms to get
benefits from both sides.
To bridge the programming gap, we support a simple stencil DSL so that end-users can easily

develop their stencil algorithm and get hardware acceleration on FPGAs. Given the stencil DSL and
FPGA platform as inputs, SASA can automatically generate a scalable stencil accelerator design in
TAPA [5] high-level synthesis (HLS) C++ and its corresponding host code. The generated stencil
design automatically chooses the best temporal and spatial parallelism based on our accurate ana-
lytical model. Moreover, the open source TAPA framework [5, 13, 14] invokes Vitis HLS to compile
our generated TAPA HLS code in parallel, applies coase-grained floorplanning and pipelining to
improve the timing closure. Experimental results for a wide range of stencil kernels and iterations
confirm the effectiveness of SASA. Compared to state-of-the-art automatic stencil acceleration
framework SODA [4] that only explores temporal parallelism, SASA explores the optimized hybrid
spatial and temporal parallelism and achieves an average speedup of 3.41× and up to 15.73× speedup
on the HBM-based Xilinx Alveo U280 FPGA board.

In summary, this paper makes the following contributions:
• Scalable stencil accelerator design optimizations, including coalesced reuse buffers to further
improve the resource usage of the already well-optimized dataflow stencil design [4] that exploits
the temporal parallelism, and two design alternatives—redundant computation without commu-
nication vs. border streaming for fast border communication—to exploit the spatial parallelism.

• An accurate analytical model, which has less than 5% performance prediction error, to choose
the best parallelism configuration for a given iterative stencil kernel, based on whether it is
computation-bound or memory-bound.

• An end-to-end automation framework that takes the high-level stencil DSL and FPGA platform
as inputs, and automatically generates the optimized FPGA design with the best parallelism
configuration on that FPGA. It will be open sourced at https://github.com/SFU-HiAccel/SASA.
The rest of the paper is organized as follows. Section 2 introduces the stencil computation

pattern and presents the previous studies and their limitations in accelerating stencil kernels on
FPGAs. Section 3 presents the scalable stencil accelerator architecture design of SASA, and its
various types parallelism optimizations. Section 4 describes our end-to-end automation framework,
including the high-level stencil DSL, the analytical performance models for our accelerator design,
the code generator and automation tool flow. Section 5 evaluates the performance of SASA on
a comprehensive set of stencil benchmarks with different numbers of iterations, compares the
performance of different parallelism optimizations, and demonstrates that SASA achieves an average
speedup of 3.41× and up to 15.73× speedup over state-of-the-art automatic stencil acceleration
framework SODA [4]. Finally, Section 6 concludes this paper and discusses the future work.
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2 BACKGROUND AND RELATEDWORK
In this section, we first introduce the stencil computation pattern. Then, we discuss related literature
on FPGA acceleration for stencil computations and their limitations. Finally, we describe the goal
of our paper.

2.1 Stencil Computation
Stencil computation usually operates on a multidimensional array and updates each data cell using
its neighbor cells in a fixed pattern. Listing 1 and Figure 2 show an example of the JACOBI2D
stencil kernel, which is a 5-point, 2-dimensional stencil that computes and updates each data cell
(i.e., 𝑜𝑢𝑡𝑝𝑢𝑡 [𝑖] [ 𝑗]) with the values from itself (i.e., 𝑖𝑛𝑝𝑢𝑡 [𝑖] [ 𝑗]) and its four neighbor cells (i.e.,
𝑖𝑛𝑝𝑢𝑡 [𝑖] [ 𝑗 − 1], 𝑖𝑛𝑝𝑢𝑡 [𝑖 − 1] [ 𝑗], 𝑖𝑛𝑝𝑢𝑡 [𝑖] [ 𝑗 + 1], and 𝑖𝑛𝑝𝑢𝑡 [𝑖 + 1] [ 𝑗]). Its stencil kernel radius size is
1, which is defined as the distance between the center cell and its furthest neighbor cell. In practice,
such a stencil kernel will be executed multiple iterations; in the next iteration, the output array from
the previous iteration becomes the input, while the input array from the previous iteration becomes
the output. As discussed earlier in the introduction, depending on the stencil operations and the
number of iterations, the stencil kernel could be either computation-bound or memory-bound, and
would require a different parallelism optimization to achieve the best performance.

void jacobi2d (float input[R][C], float output[R][C]) {
for (int i = 1; i < R − 1; ++i)
for (int j = 1; j < C − 1; ++j)
output[i][j] = (input[i][j−1] + input[i−1][j] + input[i][j] + input[i][j+1] + input[i+1][j]) / 5;

}

Listing 1. A 5-point stencil JACOBI2D kernel

r = 1 ( i,  j - 1)

( i,  j)( i - 1,  j ) ( i + 1,  j)

( i,  j + 1)

C

R

Fig. 2. Stencil access pattern of JACOBI2D: R and C are the number of input rows and columns, r is the stencil
radius size.

2.2 FPGA Acceleration for Stencil Computation
Previous research efforts in FPGA-based stencil computing generally target the following aspects:
1) improving the on-chip data reuse and reducing the FPGA on-chip memory usage for the stencil
computation, 2) exploring temporal and/or spatial parallelisms in the stencil accelerator designs,
including leveraging the HBM bandwidth on modern FPGAs to further extend the spatial paral-
lelism, and 3) facilitating automatic stencil design generation. Some of these studies also need
pre-processing on the host CPU to enable their optimizations. Next we discuss the prior studies
considering these aspects. Some of the recent studies are also summarized in Table 1 for com-
parison and illustrating the novelty of our work. We also list their tiling approach (1-dimension,
2-dimension, and not available) and fine-grained parallelism factor.
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Table 1. Comparison of stencil acceleration frameworks. #PUs per PE denotes the best possible fine-grained
parallelism factor, i.e., the number of processing units inside each processing element, assuming a 512-bit
wide off-chip memory interface. NA stands for not available.

Multi-PE
parallelism

Pre-processing
free

Automatic
optimization

On-chip
data reuse Tiling #PUs

per PE
[2, 19] temporal ✓ ✓ streaming 2D N/A
[4] temporal ✓ ✓ streaming 2D 16
[21] temporal ✓ ✗ streaming N/A 16
[23] temporal ✓ ✗ streaming 2D 16
[29] temporal ✗ ✗ streaming 2D 16
[25] hybrid ✓ ✗ buffering 2D N/A
[22] hybrid ✓ ✗ buffering 2D 16
[9] hybrid ✗ ✗ buffering N/A 16
[16] hybrid ✗ ✗ streaming 1D 16
Ours hybrid ✓ ✓ streaming 1D 16

In effort to improve on-chip data reuse and reduce the FPGA on-chip memory usage for the
stencil computation, Chi et al. presented SODA [4] and proposed the optimal streaming solution
to minimize the reuse buffer size and leveraged microarchitectural design optimizations to also
minimize the external memory access. Therefore, we also build our baseline design based on SODA.
Other methods such as a sliding-window design is used in [7], which requires maintaining only a
small on-chip buffer to reduce the BRAM usage, but introduces additional off-chip communication
overhead. Further, another graph-theory based implementation proposed in [10] can derive the
minimum memory partition factor for the on-chip memory banks, but such a design only supports
a limited set of stencil kernels.
Various studies have explored accelerating the iterative stencil computation through different

types of parallelisms. Namely, acceleration through temporal parallelism has been well studied
and explored in most previous iterative stencil kernel accelerator designs on FPGA [2, 4, 9, 12, 16, 19,
21–23, 25, 29, 30]. For example, in [2, 19], Natale and Cattaneo et al. designed a dataflow architecture
that executes multiple stencil computing iterations as multiple temporal stages. However, it lacks
exploiting the fine-grained spatial parallelism during the processing of a single iteration stage. In
SODA [4], Chi et al. also presented a streaming-based accelerator design that exploits the temporal
parallelism in the iterative stencil acceleration and proposedmicroarchitectural design optimizations
to minimize the reuse buffer size and external memory access. For these designs [2, 4, 19], there
is no data pre-processing requirement; and they also provide an automatic design optimization
framework to explore design space and optimize designs based on accurate analytical performance
models. Further, Hasitha et al. [23] and Reggiani et al. [21] explored scaling the temporal parallelism
of their accelerator design across multiple FPGAs without requiring any redundant computations.
However, their design is only efficient for the computation-bound stencil kernel, where it can
benefit from the great amount of data reuse. A common limitation these temporally accelerated
designs share is that they do not exploit any coarse-grained spatial parallelism, which would lead
to under-optimized performance when the stencil kernel has a low number of iterations and is
memory-bound.
To leverage both temporal and spatial parallelisms, previous studies have exploited hybrid

parallelism in their designs [9, 16, 22, 25, 30]. Unlike the streaming-based designs, some of
these designs require data buffering and typically have a significant on-chip memory utilization
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requirement. For example, the designs in [22, 25] need to load multiple tiles of data on chip for its
PEs to execute in parallel; another approach presented in [9] requires a single but rather larger on-
chip buffer. To further exploit the spatial parallelism by leveraging the HBM bandwidth on modern
FPGAs, previous work also explored utilizing multiple memory banks of an HBM in their multi-PE
design [16] and single-PE design [9]. However, their implementations require data pre-processing
on the host CPU side to allow the parallel memory access and to exploit the efficient burst access
from the FPGA off-chip memory. Another common limitation of these work is the lack of a design
automation framework to facilitate the automatic design generation and mitigate the long design
exploration process.

2.3 Goal of This Paper
The goal of this paper is to develop an automatic stencil acceleration framework to incorporate the
all the features as summarized in Table 1. First, a streaming-based design similar to SODA [4] is used
in SASA for achieving the optimal data reuse; we also additionally include coalesced reuse buffers
to further reduce resource utilization in our design. Second, SASA leverages a hybrid multi-PE
design architecture, exploiting both spatial and temporal parallelisms (presented in Section 3).
Furthermore, SASA utilizes the HBM memory on modern FPGAs to achieve higher throughput, yet
unlike previous HBM-based stencil designs, our tool does not require any data pre-processing on
the host CPU side. And lastly, in terms of design automation, SASA enables end-users to define
their stencil operations through a DSL and will automatically compile and optimize the accelerator
designs with the best parallelism configuration based an analytical model (detailed in Section 4).

3 SCALABLE STENCIL ACCELERATOR DESIGNWITH HYBRID TEMPORAL AND
SPATIAL PARALLELISM

In this section, we explore different types of parallelism optimizations in SASA, as summarized in
Figure 4, 5 and 6. It is nontrivial to choose the best parallelism for a stencil kernel, since the most
appropriate parallelism varies, depending on the stencil kernel and its number of iterations. First,
in Section 3.1, we present our single PE design, which is based on the streaming-based architecture
proposed in SODA [4]; and we describe our coalesced reuse buffer design optimization for further
reducing the resource utilization of the design. Next, in Section 3.2, we briefly describe our temporal
parallelism design for computation-bound stencils with high number of iterations, which is similar
to SODA but uses our coalesced reuse buffer optimization. After that, in Section 3.3, we introduce
our spatial parallelism design for memory-bound stencil kernels and discuss two design alternatives
to implement it. Finally, in Section 3.4, we explore hybrid parallelism, which exploits benefits of
both spatial and temporal parallelisms in our multi-PE designs.

3.1 Single PE Optimization
As mentioned in Section II, our single PE design is based on SODA’s design [4], since it achieves
the optimal reuse buffer size and off-chip memory access requirement. Figure 3 (a) shows an
architecture overview of SODA’s single PE design. For the input data that stream from the off-chip
memory, SODA exploits the memory coalescing optimization to stream 512-bit wide data every
cycle and stores it in an on-chip line buffer using BRAM. Then, it distributes this buffered data into
reuse buffer channels composed of FIFOs and FFs, where each has a data width that matches the
size of each stencil data cell (e.g., 32-bit for the float data type). The data from these reuse buffer
channels are then forwarded to the parallel processing units (PUs) for exploiting the fine-grained
(spatial) parallelism and generate the output results. Each PU computes and updates for one data
cell in the stencil, as shown in the JACOBI2D example in Listing 1. The degree of fine-grained
parallelism (i.e., the number of PUs) is set to saturate the off-chip bandwidth of a single memory
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Fig. 3. Single processing element (PE) architecture based on SODA [4], with optimization of coalesced reuse
buffers to reduce on-chip BRAM usage.

bank and ensure the design executes in a dataflow fashion. For example, for a single HBM bank
that uses 512-bit wide AXI interface and a data cell type of float, the number of PUs can be derived
as 512 𝑏𝑖𝑡𝑠 / (8𝑏𝑖𝑡𝑠/𝑏𝑦𝑡𝑒) / 𝑠𝑖𝑧𝑒𝑜 𝑓 (𝑓 𝑙𝑜𝑎𝑡) 𝑏𝑦𝑡𝑒𝑠 = 16. For the detailed microarchitecture design of
the baseline PE, we refer the audience to the SODA paper [4].
However, based on our experiments, SODA’s distributed reuse buffer channel implementation

can be further optimized to reduce the on-chip BRAM usage. For such, in SASA, we propose an
alternative implementation that removes the on-chip line buffer for storing the input data, and
coalesces all the narrow distributed reuse buffers into a single wide coalesced reuse buffer as shown
in Figure 3 (b), to further reduce the BRAM usage. With memory coalescing, the input data it reads
in from off-chip memory is typically 512-bit wide. Without coalesced FIFOs, it needs an on-chip
line buffer to store such 512-bit wide data that is read in a AXI burst mode. And then it distributes
such wide data from the on-chip line buffer onto multiple narrow (32-bit wide for floating data
type) FIFOs, as shown in Figure 3 (a). With coalesced FIFO, we stream in 512-bit data and write
them into the 512-bit wide FIFO (i.e., coalesced FIFO) directly. Thus, we can get rid of the extra
on-chip line buffer. Each cycle we also read one 512-bit data from each coalesced FIFO, divide it into
multiple 32-bit registers, and feed them to the parallel PUs. Another benefit of our optimization is
that it helps reducing the number of fan-outs from SODA’s line buffer design, and thus allows the
design to achieve a higher operating frequency when further scaling out to multiple PEs.
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Fig. 4. Temporal parallelism among the stencil iterations. 𝑑 stands for delay between two temporal stages; 𝑟
stands for stencil radius size; 𝑅 and𝐶 stand for the row and column size; 𝑠𝑡 stands for the number of temporal
stages; 𝑖𝑡𝑒𝑟 stands for the number of iterations. These are summarized in Table 4 as well.

3.2 Temporal Parallelism Optimization
In order to exploit the temporal parallelism, we instantiate multiple of our single PEs in a cascaded
pipeline fashion as shown in Figure 4, which is similar to SODA’s temporal parallelism design. The
difference is that we use the coalesced reuse buffers to connect multiple PEs. The input data is
only read once from the off-chip memory and the output result is also written once back to the
off-chip memory after processing N iterations of the stencil computation. Each PE handles one
iteration of the stencil processing. For computation-bound stencil kernel designs with high number
of iterations, it is more efficient to leverage the temporal parallelism since it allows for a higher
level of data reuse across processing multiple consecutive stencil iterations in a pipelined fashion
on the FPGA and does not require a huge amount of off-chip memory bandwidth. However, when
the number of iterations becomes low, it will be hard to leverage the benefits of this temporal
parallelism.

3.3 Spatial Parallelism Optimization
For stencil kernels with low computation intensity and low number of iterations, parallelizing the
memory access along the spatial (data) dimension is more efficient, compared to leveraging the
temporal parallelism. To fully exploit the spatial parallelism during a single iteration of the stencil
computation, first we need to evenly partition the input data and store them onto different HBM
banks to allow for more parallel memory access. Note that here we are just simply partitioning the
input data vertically by the rows, so there is no data pre-processing overhead. After that, we can
then instantiate multiple spatially parallel PEs to distribute the workload for coarse-grained parallel
computation and memory access. Due to the dependency of the halo data, which is the boarder
data between partitions, synchronization could be required at the end of each stencil iteration to
maintain correctness of the output results.
To address the halo synchronization issue when leveraging the spatial parallelism, Figure 5 (a)

and 5 (b) present the two approaches in our stencil accelerator design:
1. Redundant Computation: In order to reduce the memory transfer overhead during the data

synchronization, one way is to avoid data synchronization. As shown in Figure 5 (a), input data
is partitioned into multiple tiles and each PE processes one tile. Each PE needs to read additional
halo data from neighbouring tiles at the start, then performs the computation of all iterations
without synchronization. The halo size is decided by the number of iterations and the stencil
algorithm itself.
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redundant computation; 𝑘𝑠𝑠 stands for for the number of PEs spatial parallelism with border streaming. These
are summarized in Table 4 as well.

2. Border Streaming: Another way is to exchange the halo data between neighbor PEs via the
border streaming technique. As shown in Figure 5 (b), each PE only computes its own input tile
without redundant computations for extra halo data. Instead, it exchanges the required halo
data with the neighbouring PEs at the end of every iteration. To support efficient halo data
exchange, it exchanges such data via on-chip streaming. Compared to redundant computation,
this approach uses slightly more on-chip resource (e.g., LUTs and FFs) to implement border
streaming interfaces, but can reduce the computation overhead.

3.4 Hybrid Parallelism Optimization
There are limitations for both temporal parallelism and spatial parallelism. As previously discussed
in Section 1, the performance bottleneck varies with the algorithmic intensity and number of itera-
tions of a stencil kernel. This is because when the stencil iteration number is high and computation
intensity is high (i.e., computation-bound), the major performance improvement comes from the
parallel processing across multiple consecutive stencil iterations in a pipelined fashion with high
on-chip data reuse on the FPGA (i.e., temporal parallelism). Conversely, for the memory-bound
stencil kernels with a low iteration number, the performance gain comes from the parallel mem-
ory access within each stencil iteration, and the spatial parallelism can efficiently parallelize the
computation across the data dimension.
In our hybrid parallelism approach, both temporal and spatial parallelisms are exploited to

better support efficient acceleration of the arbitrary stencil operations. In terms of the design
architecture, we integrate the temporal parallelism and explore the two variants of the spatial
parallelism optimizations: 1)𝐻𝑦𝑏𝑟𝑖𝑑_𝑅 (temporal with the 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑅 parallelisms) and 2)𝐻𝑦𝑏𝑟𝑖𝑑_𝑆
(temporal with the 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑆 parallelisms), as shown in Figure 6 (a) and (b), respectively.
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Fig. 6. Hybrid parallelism with redundant computation and border streaming. 𝑅 and 𝐶 stand for the row
and column size; 𝑟 stands for stencil radius size; 𝑘ℎ𝑟 and 𝑠ℎ𝑟 stand for the degree of spatial parallelism and
temporal parallelism respectively in hybrid parallelism with redundant computation; 𝑘ℎ𝑠 and 𝑠ℎ𝑠 stand for
the degree of spatial parallelism and temporal parallelism respectively in hybrid parallelism with border
streaming. These are summarized in Table 4 as well.

1. Hybrid_R: To integrate temporal parallelism with 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑅 spatial parallelism, we instantiate
multiple (𝑘ℎ𝑟 ) spatial PE groups to concurrently process different partitions of the input data
without any synchronization requirement as described in Section 3.3. Within each spatial PE
group, we apply temporal parallelism to concurrently process multiple stencil iterations using
multiple (𝑠ℎ𝑟 ) PEs in a dataflow fashion, as shown in Figure 6 (a). To avoid halo synchronization,
PEs in the earlier stages need to compute increasingly more halo data than those PEs in the later
stages. In total, there are 𝑘ℎ𝑟 × 𝑠ℎ𝑟 PEs running concurrently, processing 𝑠ℎ𝑟 stencil iterations at a
time. The whole design has to be executed multiple rounds to finish the entire stencil iterations.

2. Hybrid_S: To integrate temporal parallelism with 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑆 spatial parallelism, we adopt a
similar approach as the 𝐻𝑦𝑏𝑟𝑖𝑑_𝑅 design. We denote the number of spatial PE groups as 𝑘_ℎ𝑠
for spatial parallelism, and the number of temporal stages within each spatial PE group as 𝑠_ℎ𝑠 .
The main difference lays in the additional synchronization step to update the halo region data
after processing each iteration/temporal stage. If we simply replicate the 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑆 design by 𝑠ℎ𝑠
number of temporal stages, the corresponding number of border streaming connections will also
increase, and thus may cause overhead in the placement and routing, as well as design frequency
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degradation. As an optimization, in our design, only the spatial PEs in the first temporal stages
have the border streaming connections between themselves and perform the halo data exchange.
Instead of only exchanging one ℎ𝑎𝑙𝑜 rows of data, they exchange all required ℎ𝑎𝑙𝑜 ×𝑠_ℎ𝑠 rows of
data required by PEs for all following 𝑠_ℎ𝑠 temporal stages. For the remaining temporal stages,
no more synchronization is required. The whole design has to be executed multiple rounds to
finish the entire stencil iterations, and only at the beginning of each round, there is halo data
exchange required.

4 AUTOMATION FRAMEWORK FOR SASA
In this section, we discuss the automation perspectives of SASA and its fundamental components.
First, we describe a domain-specific language (DSL), which is similar to the one used in SODA [4], for
domain experts to easily define their stencil computation settings. Then, we introduce the analytical
model for estimating the design performance under different types of parallelisms according to the
design parameters. Finally, we present the entire work flow of our code generator that incorporates
our analytical model to automatically determine the best parallelism configuration, compiles the
DSL to the corresponding optimized stencil design in TAPA high-level synthesis (HLS) C++ [5],
and generates the corresponding TAPA host code in C++ [5].

4.1 Stencil DSL

kernel: JACOBI2D
iteration: 4
input float: in_1(9720, 1024)
output float: out_1(0,0) = ( in_1(0,1) + in_1(1,0) + in_1(0,0) + in_1(0,−1) + in_1(−1,0) ) / 5

Listing 2. A 5-point stencil JACOBI2D kernel description in SASA DSL

kernel: HOTSPOT
iteration: 64
input float: in_1(9720, 1024)
input float: in_2(9720, 1024)
output float: out_1(0,0) = 1.296 ∗ ((in_2(−1,0) + in_2(1,0) − in_2(0,0) + in_2(0,0)) ∗ 0.949219 + in_1(−1,0) +

(in_2(0,−1) + in_2(0,1) − in_2(0,0) + in_2(0,0)) ∗ 0.010535 + (80 − in_2(0,0)) ∗ 0.00000514403)

Listing 3. A 9-point stencil HOTSPOT kernel description in SASA DSL with two inputs

kernel: BLUR−JACOBI2D
iteration: 4
input float: in(9720, 1024)
local float: temp(0,0) = (in(−1,0) + in(−1,1) + in(−1,2) + in(0,0) + in(0,1) + in(0,2) + in(1,0) + in(1,1) +

in(1,2)) / 9
output float: out(0,0) = (temp(0,1) + temp(1,0) + temp(0,0) + temp(0,−1) + temp(−1,0)) / 5

Listing 4. A description of two combined stencil kernels in SASA DSL

To allow domain experts to easily define any arbitrary stencil computing workload at a high
abstraction level, SASA provides a stencil domain-specific language (DSL) similar to SODA [4].
Here We present a few stencil kernel samples using SASA DSL: Listing 2 shows the description of
a 5-point, 2-dimensional JACOBI2D stencil kernel; Listing 3 shows the description of a 9-point, 2
dimensional HOTSPOT stencil kernel handling two input data; and Listing 4 shows the description
of two combined stencil loops.
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1. The text following the kernel keyword specifies the name of the stencil kernel, which is also
used as the name of the top-level function in HLS for the FPGA kernel.

2. The number after the iteration keyword specifies the number of iterations that the stencil
kernel will be executed.

3. For input keyword, first, the data type of each stencil cell is specified, followed by the name
and dimension of the input data array.

4. Similarly, for the output keyword, the data type is first specified. Then, users should specify the
name of the output data and the formula to compute and update one output data cell.

5. Multiple inputs and outputs and multiple stencil loops are supported.
6. The local keyword is used to define the intermediate data between multiple stencil loops.

4.2 Analytical Performance Model
In this section, to guide the design automation, we build an analytical performance model for our
accelerator framework with the temporal, spatial, and hybrid parallelism optimizations presented
in Section 3. Such a comprehensive model is not present in previous studies. Table 2 shows the
description of the parameters used in our analytical model to determine the latency 𝐿 of designs
with different parallelisms. Parameters such as the number of input rows and columns (𝑅 and 𝐶),
number of stencil iterations (𝑖𝑡𝑒𝑟 ), and stencil radius size (𝑟 ) can be extracted from the input stencil
DSL. Note that our analytical model only models a two-dimensional stencil. As will be presented in
Section 4.3, our code generator will transform a multidimensional array specified in the stencil
DSL into a two-dimensional array. Parameters such as the delay between two temporal stages
(𝑑) and size of halo region for one iteration (ℎ𝑎𝑙𝑜) can be directly derived from the input 𝑟 , i.e.,
𝑑 = ℎ𝑎𝑙𝑜 = 2 × 𝑟 . For other parameters such as the number of PUs inside each PE (𝑈 ), the degree
of spatial parallelism (𝑘 with different subscripts), and the degree of temporal parallelism (𝑠 with
different subscripts), our automation tool flow (Section 4.3) will automatically choose the best
configurations.

Table 2. Description of analytical model parameters

Parameter Definition
Output 𝐿 Overall execution latency

Input

𝑅 Number of input rows
𝐶 Number of input columns
𝑖𝑡𝑒𝑟 Number of stencil iterations
𝑟 Stencil radius size

Derived 𝑑 Delay between two temporal stages (𝑑 = 2 × 𝑟 )
ℎ𝑎𝑙𝑜 Size of halo region for one iteration (ℎ𝑎𝑙𝑜 = 2 × 𝑟 )

SASA
automatic
exploration

𝑈 Unroll factor along column dimension, i.e., number of PUs per PE
𝑘 Degree of spatial parallelism
𝑠 Degree of temporal parallelism

Subscript

subscript 𝑡 Temporal parallelism
subscript 𝑠𝑟 Spatial parallelism with redundant computation
subscript 𝑠𝑠 Spatial parallelism with border streaming
subscript ℎ𝑟 Hybrid parallelism with redundant computation
subscript ℎ𝑠 Hybrid parallelism with border streaming

For each PE, the latency to execute one stencil iteration is determined by the dimension (i.e.,
number of rows (𝑅) and columns (𝐶)) of the input data and the number of PUs inside each PE (i.e.,
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𝑈 ) of the design, which is ⌈𝑅×𝐶
𝑈

⌉. Next we describe our analytical models to compute the latency
for each parallelism configuration for the multi-PE design.

Resource Bound and Memory Bound. The maximum number of PEs that can be implemented
is limited by both on-chip hardware resource and available off-chip memory banks (i.e., bandwidth).
For the limitation of on-chip resource, we have:

#𝑃𝐸𝑟𝑒𝑠 =
𝛼 × 𝑡𝑜𝑡𝑎𝑙_𝐹𝑃𝐺𝐴_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒

𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝑝𝑒𝑟_𝑃𝐸
(1)

where 𝛼 is the FPGA resource utilization constraint ratio and is initially set as 75%, since typical
design that uses more than 75% of the FPGA resource becomes very difficult to pass the placement
and routing.

For the constraint of off-chip memory banks, the number of spatial PEs is bounded as:

#𝑃𝐸𝑏𝑤 =
#𝑡𝑜𝑡𝑎𝑙_𝑜 𝑓 𝑓 _𝑐ℎ𝑖𝑝_𝑚𝑒𝑚_𝑏𝑎𝑛𝑘𝑠

#𝑜 𝑓 𝑓 _𝑐ℎ𝑖𝑝_𝑚𝑒𝑚_𝑏𝑎𝑛𝑘𝑠_𝑝𝑒𝑟_𝑠𝑝𝑎𝑡𝑖𝑎𝑙_𝑃𝐸
(2)

where #𝑜 𝑓 𝑓 _𝑐ℎ𝑖𝑝_𝑚𝑒𝑚_𝑏𝑎𝑛𝑘𝑠_𝑝𝑒𝑟_𝑠𝑝𝑎𝑡𝑖𝑎𝑙_𝑃𝐸 is defined by the inputs and outputs number of
stencil algorithm. Then, we can determine the maximum PE number based on FPGA platform
specification and hardware resource constraints:

𝑀𝑎𝑥 #𝑃𝐸 =𝑚𝑖𝑛 (#𝑃𝐸𝑟𝑒𝑠 , #𝑃𝐸𝑏𝑤 × 𝑠) (3)

where 𝑠 is the number of temporal stages (i.e., the degree of temporal parallelism) in each spatial
PE group and these temporal stages do not require extra bandwidth.

Temporal Parallelism. As shown in Figure 4, we exploit the temporal parallelism in our design
by cascading 𝑠𝑡 number of PEs to execute in a dataflow fashion. This also means 𝑠𝑡 iterations of
the stencil computation is processed concurrently as input data get streamed through our design.
To process an iterative stencil computation with 𝑖𝑡𝑒𝑟 iterations, our design should be executed
⌈𝑖𝑡𝑒𝑟/𝑠𝑡 ⌉ times. To compute any single output in PE 𝑖 (except the first PE), data across two stencil
radius size (2r) are required from the previous PE 𝑖 − 1. Thus, there is a delay 𝑑 = 2𝑟 rows between
any two neighbor stages. The last PE 𝑠𝑡 has to wait 𝑑 × (𝑠𝑡 − 1) ×𝐶 cycles to start the execution.
Therefore, we determine overall latency of the temporal parallelism design as:

𝐿𝑡 =

⌈
(𝑅 + 𝑑 × (𝑠𝑡 − 1)) ×𝐶

𝑈

⌉
×
⌈
𝑖𝑡𝑒𝑟

𝑠𝑡

⌉
, 𝑠𝑡 ≤ #𝑃𝐸𝑟𝑒𝑠 (4)

In this case and 𝑠𝑡 is limited by #𝑃𝐸𝑟𝑒𝑠 , i.e., the available computing resource.
Spatial Parallelism. In the context of spatial parallelism as shown in Figure 5 (a) and (b), we have

two different design implementations: redundant computation (𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑅) and border streaming
(𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑆). In both of these implementations, the computation of a single stencil iteration is
distributed across multiple parallel spatial PEs. Every single PE processes ⌈𝑅/𝑘𝑠𝑟 ⌉ or ⌈𝑅/𝑘𝑠𝑠⌉ rows
of the input data, plus some halo region rows. The design has to be executed 𝑖𝑡𝑒𝑟 times. Note in the
spatial parallelism, we put one PE inside each FPGA spatial PE group and the number of FPGA
spatial PE groups equals to the number of PEs.

For 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑅, the latency can determined as

𝐿𝑠𝑟 =

⌈
(⌈ 𝑅

𝑘𝑠𝑟
⌉ + ℎ𝑎𝑙𝑜 × 𝑖𝑡𝑒𝑟 ′) ×𝐶

𝑈

⌉
× 𝑖𝑡𝑒𝑟, 𝑘𝑠𝑟 ≤ 𝑀𝑎𝑥 #𝑃𝐸 (5)

where ℎ𝑎𝑙𝑜 × 𝑖𝑡𝑒𝑟 ′ represents the halo data size gradually decreases over the processing iteration
(i.e., 𝑖𝑡𝑒𝑟 ′) as explained in Section 3.3. On average, 𝑖𝑡𝑒𝑟 ′ = 𝑖𝑡𝑒𝑟/2.
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As for 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑆 , we calculate its latency in Equation 6, since all the PEs synchronize with their
neighboring PEs for a fixed number of ℎ𝑎𝑙𝑜 rows after each stencil iteration.

𝐿𝑠𝑠 =

⌈
(⌈ 𝑅

𝑘𝑠𝑠
⌉ + ℎ𝑎𝑙𝑜) ×𝐶

𝑈

⌉
× 𝑖𝑡𝑒𝑟, 𝑘𝑠𝑠 ≤ 𝑀𝑎𝑥 #𝑃𝐸 (6)

For both spatial parallelisms, they are limited by both the computing resource and memory
bandwidth, i.e.,𝑀𝑎𝑥 #𝑃𝐸.
Hybrid Parallelism. As shown in Figure 6 (a) and (b), when combining spatial and temporal

parallelisms, there are 𝑘ℎ𝑟 (or 𝑘ℎ𝑠 ) FPGA spatial PE groups running concurrently, each FPGA spatial
PE group processing ⌈𝑅/𝑘ℎ𝑟 ⌉ (or ⌈𝑅/𝑘ℎ𝑠⌉) rows of input data. Within each FPGA spatial PE group,
there are 𝑠ℎ𝑟 (or 𝑠ℎ𝑠 ) temporal stages running concurrently in a dataflow fashion, processing 𝑠ℎ𝑟
(or 𝑠ℎ𝑠 ) stencil iterations at a time. Therefore, our design with hybrid parallelism has to execute
⌈𝑖𝑡𝑒𝑟/𝑠ℎ𝑟 ⌉ (or ⌈𝑖𝑡𝑒𝑟/𝑠ℎ𝑠⌉) times. In total, there are 𝑘ℎ𝑟 × 𝑠ℎ𝑟 (or 𝑘ℎ𝑠 × 𝑠ℎ𝑠 ) PEs running concurrently
in the design.
For 𝐻𝑦𝑏𝑟𝑖𝑑_𝑅, which is the combination of temporal parallelism and spatial parallelism with

redundant computation, for one round of execution, all PEs within each FPGA spatial PE group 𝑖
complete exactly at the same time. The reason is that the prior PE 𝑖, 𝑗 − 1 needs to redundantly
compute ℎ𝑎𝑙𝑜 more rows of data than the next PE 𝑖, 𝑗 , while the next PE 𝑖, 𝑗 needs to wait 𝑑 rows of
data from the prior PE 𝑖, 𝑗 − 1, where ℎ𝑎𝑙𝑜 = 𝑑 = 2𝑟 . Therefore, we derive Equation 7 for the latency
of 𝐻𝑦𝑏𝑟𝑖𝑑_𝑅:

𝐿ℎ𝑟 = ⌈
(⌈ 𝑅

𝑘ℎ𝑟
⌉ + ℎ𝑎𝑙𝑜 × 𝑖𝑡𝑒𝑟 ′) ×𝐶

𝑈
⌉ × ⌈𝑖𝑡𝑒𝑟

𝑠ℎ𝑟
⌉, 𝑘ℎ𝑟 ≤ 𝑃𝐸𝑏𝑤, 𝑘ℎ𝑟 × 𝑠ℎ𝑟 ≤ 𝑀𝑎𝑥 #𝑃𝐸 (7)

where the first term represents the latency to execute one round of our hybrid parallelism design,
and ℎ𝑎𝑙𝑜 × 𝑖𝑡𝑒𝑟 ′ represents the halo data size gradually decreases over the processing rounds. On
average, 𝑖𝑡𝑒𝑟 ′ = 𝑖𝑡𝑒𝑟/2. In this case, the degree of spatial parallelism is limited by the memory
bandwidth, and the total degree of parallelism is limited by both the computing resource and
memory bandwidth.
For 𝐻𝑦𝑏𝑟𝑖𝑑_𝑆 , which is the combination of temporal parallelism and spatial parallelism with

border computation, similarly, for one round of execution, all PEs within each FPGA spatial PE
group 𝑖 complete exactly at the same time. However, in this design, these PEs only need an extra
latency for ℎ𝑎𝑙𝑜 more rows within each round. Between different rounds, PEs in the first temporal
stage exchange ℎ𝑎𝑙𝑜 data with each other using border streaming. Therefore, we derive its latency
as below:

𝐿ℎ𝑠 = ⌈
(⌈ 𝑅

𝑘ℎ𝑠
⌉ + ℎ𝑎𝑙𝑜 × 𝑠ℎ𝑠 ) ×𝐶

𝑈
⌉ × ⌈𝑖𝑡𝑒𝑟

𝑠ℎ𝑠
⌉, 𝑘ℎ𝑠 ≤ 𝑃𝐸𝑏𝑤, 𝑘ℎ𝑠 × 𝑠ℎ𝑠 ≤ 𝑀𝑎𝑥 #𝑃𝐸 (8)

In this case, the degree of spatial parallelism is limited by the memory bandwidth, and the total
degree of parallelism is limited by both the computing resource and memory bandwidth.

Automatic Parallelism Optimization. In order to automatically determine the optimal paral-
lelism, the automation tool would need to find the parallelism with the minimum latency as:

𝐿𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = min(𝐿𝑡 , 𝐿𝑠𝑟 , 𝐿𝑠𝑠 , 𝐿ℎ𝑠 , 𝐿ℎ𝑠 ) (9)

Examining our analytical performance model at a high level and assuming maximum PE number
is the same across different parallelisms and 𝑅, 𝐶 , 𝑈 and 𝑟 are fixed during running time, we
summarize the following observations:
1. In spatial parallelism, 𝐿𝑠𝑟 grows with 𝑖𝑡𝑒𝑟 slightly more than linearly, while 𝐿𝑠𝑠 grows with

𝑖𝑡𝑒𝑟 exactly linearly. It shows that both solutions provide proximate performance when the
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iteration number is relatively small. But as the iteration number increases, border streaming
will outperform redundant computation. For the two hybrid parallelism alternatives, 𝐿ℎ𝑟 and
𝐿ℎ𝑠 have the same relation as the one between 𝐿𝑠𝑟 and 𝐿𝑠𝑠 .

2. Comparing spatial parallelism with temporal parallelism, when 𝑖𝑡𝑒𝑟 is large enough and 𝑖𝑡𝑒𝑟 is
divisible by 𝑠𝑡 , temporal parallelism could achieve a similar performance to spatial parallelism, as
the value of 𝑠𝑡 would be set to the same as 𝑘𝑠𝑟 and 𝑘𝑠𝑠 . In addition, temporal parallelism requires
much less amount of off-chip bandwidth. However, when 𝑖𝑡𝑒𝑟 is small enough, the largest value
of 𝑠𝑡 is the same as 𝑖𝑡𝑒𝑟 , while 𝑘𝑠𝑟 and 𝑘𝑠𝑠 can be much larger than 𝑖𝑡𝑒𝑟 by exploiting off-chip
memory bandwidth (especially on HBM-based FPGAs). This will bring significant performance
degradation for temporal parallelism. In this case, hybrid parallelism can further improve the
performance with less bandwidth requirement. Finally, when 𝑖𝑡𝑒𝑟 is not divisible by 𝑠𝑡 (or 𝑠ℎ𝑟 , or
𝑠ℎ𝑠 ), 𝐿𝑡 (or 𝐿ℎ𝑟 , or 𝐿ℎ𝑠 ) will also suffer some overhead to process the whole input data with some
PEs idle in the last round.

4.3 Code Generator and Automation Tool Flow
Figure 7 shows an overview of the automation flow for SASA. It takes a stencil DSL and FPGA
platform information as input, and automatically generates optimized FPGA accelerator design with
the best parallelism optimization as the output. To address the timing closure issue (and conduct a
fairer comparison between different parallelism implementations), we have integrated the open
source TAPA/AutoBridge framework [5,14] into our SASA framework to build our generated
multi-PE design. TAPA/AutoBridge is a high-performance fast-compiling HLS framework that is
fully compatible with the Xilinx Vitis/Vivado workflow. It takes in task-parallel program in Vitis
HLS syntax with additional TAPA APIs. It has three major advantages. First, it supports easier
programming of task-parallel dataflow programs in C++, without the need of the more complex
OpenCL approach (using multiple OpenCL kernels) to support task parallelism. Our SASA code
generator automatically converts the stencil DSL to the TAPAHLS and host code. Second, it replaces
the resource-inefficient AXI interface with a lightweight streaming interface to access off-chip
memory. The standard AXI interface always buffers data in BRAM and consumes a significant
amount of resources on the bottom die of the HBM-based U280 FPGA (with multiple AXI interfaces),
which often causes place-and-route congestion and timing violation timing congestion on the
bottom die. With the lightweight streaming interfaces, it saves resources for actual computations
and reduces place-and-route congestion and timing violation timing congestion on the bottom
die. Third, it automatically applies coarse-grained floorplanning and pipelining optimizations
to improve the timing closure for dataflow programs, and can often greatly improve the design
build success rate and the final design frequency. With this integration, we are able to generate
high-frequency stencil accelerators.

The detailed steps inside the SASA automation flow are described as below.
1. Our code generator first parses the user programmed stencil DSL for a given stencil application

and generates the optimized single PE design in Vitis HLS C++ code. To do this, our code
generator uses a Python based meta-language specification, 𝑡𝑒𝑥𝑡𝑋 [8], which uses meta-model
to define a DSL. With our pre-defined meta-model grammar as illustrated in Section 4.1, our
compiler parses the DSL, generates the abstract syntax tree (AST), and extracts the user-defined
stencil configurations. The stencil configurations include the number of input rows (𝑅), the
number of input columns (𝐶), the number of stencil iterations (𝑖𝑡𝑒𝑟 ), and the stencil radius size
(𝑟 ). Note that for a multidimensional array specified in the DSL, our code generator flattens
all the dimensions except the first dimension into one dimension. Take 3D stencil input size
256×16×16 as an example, we buffer two rows of 16×16 data in the row buffer like a 2D stencil
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kernel. The difference between 2D and 3D stencil accelerator designs is that they read data from
different locations of the row buffer when updating each cell. Then, it coverts the AST into a
model consisting of Python objects. The code generator further interprets the model to analyze
the data dependency in each statement between the input(s) and output(s). After that, the code
generator generates the Vitis HLS C++ code for a single PE design presented in Section 3.1,
based on the user-defined configurations (i.e., 𝑅, 𝐶 , 𝑖𝑡𝑒𝑟 , 𝑟 ) extracted from the DSL. The unroll
factor (i.e., the number of PUs inside each PE in Figure 3),𝑈 (e.g., 16), is chosen based on the
AXI interface width (e.g., 512-bit) of a single memory bank and the size of each stencil data cell
(e.g., 32-bit) to saturate the off-chip bandwidth.

2. To determine the maximum number of PEs that can be instantiated on the FPGA platform, we
first estimate the resource utilization of the single-PE design generated from the code generator
block, by running Vitis HLS [28] synthesis. Then, combined with the FPGA platform specification
and hardware utilization constraints, we determine the maximum PE number as described in
Equation 1, 2 and 3.
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3. Once the #𝑃𝐸𝑟𝑒𝑠 , #𝑃𝐸𝑏𝑤 , and𝑀𝑎𝑥 #𝑃𝐸𝑠 are determined, we explore different temporal and spatial
parallelism configurations of the multi-PE design based on the analytical performance model
presented in Section 4.2, and choose the optimal design choice such that it achieves the least
execution latency, based on Equations 4 to 9. For temporal parallelism, we set 𝑠𝑡 = #𝑃𝐸𝑟𝑒𝑠 in
Equation 4. For the spatial parallelism alternatives, we set 𝑘𝑠𝑟 = 𝑘𝑠𝑠 = 𝑀𝑎𝑥 #𝑃𝐸𝑠 in in Equations 5
and 6. For the two hybrid parallelism implementations, we explore all combinations of (𝑘ℎ𝑟 , 𝑠ℎ𝑟 )
and (𝑘ℎ𝑠 , 𝑠ℎ𝑠 ) that meets 𝑘ℎ𝑟 × 𝑠ℎ𝑟 = 𝑘ℎ𝑠 × 𝑠ℎ𝑠 = 𝑀𝑎𝑥 #𝑃𝐸𝑠 , 𝑘ℎ𝑟 ≤ 𝑃𝐸𝑏𝑤 , and 𝑘ℎ𝑠 ≤ 𝑃𝐸𝑏𝑤 . in
Equations 7 and 8. To simplify the floorplanning, we limit the number of FPGA spatial PE groups
𝑘ℎ𝑟 and 𝑘ℎ𝑠 to be a multiple of #𝑆𝐿𝑅𝑠 , so that we have a very small number of (𝑘ℎ𝑟 , 𝑠ℎ𝑟 ) and
(𝑘ℎ𝑠 , 𝑠ℎ𝑠 ) pairs to explore. Our analytic model will select the best multi-PE design choice with the
best parallelism. When multiple parallelisms achieve a similar performance, we choose the most
resource-efficient one. For example, 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑆 and 𝐻𝑦𝑏𝑟𝑖𝑑_𝑆 are the two best choices among
many configurations, then our model will choose 𝐻𝑦𝑏𝑟𝑖𝑑_𝑆 as it uses fewer HBM banks.

4. Once the best multi-PE design choice is selected, our code generator will automatically generate
the corresponding multi-PE accelerator design in TAPA HLS C++ [5], based on the multi-PE
architecture presented in Section 3 and single-PE design generated in step 1. Moreover, we will
also automatically generate the corresponding host code with TAPA API to manage this FPGA
kernel, which includes common FPGA device setup, host buffer allocation, data communication
between the host and the FPGA, and signal to start the FPGA kernel execution.

5. Finally, we build the optimal design from our code generator using Xilinx Vitis 2020.2 tool
to generate the final FPGA bitstream and host executable. If the design is successfully built
and meets the frequency requirement, it will be output as the optimal design. Otherwise, our
automation tool will first attempt to build the next best parallelism design with the same number
of PEs. If none of those designs can pass the requirement, our tool will lower the number of PEs
by the number of SLRs (i.e., 𝑀𝑎𝑥 #𝑃𝐸𝑠 = 𝑀𝑎𝑥 #𝑃𝐸𝑠 − #𝑆𝐿𝑅𝑠) and repeat steps 3 to 5 until the
design can be successfully built.
Code generator is one fundamental block of our automation framework, which is utilized at

two different stages of the automation flow. First, after the stencil DSL is parsed and interpreted,
the code generator needs to automate the generation of a single-PE design. At this point, only the
datapath logic is defined based on the stencil operation, and the fine-grained data parallelism is
set to match the off-chip memory bandwidth to enable the dataflow computing requirement. The
second function of the code generator is to automate the multi-PE binding code generation when
the number of PEs and the optimal design parallelism settings have been chosen by our analytical
performance model. This time the code generator will return a software driver code to run on the
host CPU and an optimized stencil accelerator design to deploy on the chosen FPGA platform.

In summary, with our automation framework SASA, for a given FPGA platform, users can easily
define the stencil computing parameters (i.e., input and output data dimension, iteration number,
and stencil operation) through a high-level DSL. To automate the design space exploration, we
derive analytical models for all five types of parallelisms shown in Figure 4, 5 and 6. As a result, our
automation framework supports arbitrary stencil workload and can generate performance portable
accelerator designs with the optimized parallelism across different HBM-based FPGAs.

5 EXPERIMENTAL RESULTS
In this section, we conduct a comprehensive evaluation of our proposed framework SASA and
compare it to state-of-the-art automatic stencil acceleration framework SODA [4], which only
exploits temporal parallelism. First, we introduce the experiment setup of our evaluation. Second,
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we present the improvement of our single PE optimization over SODA. Finally, we compare different
parallelism optimizations, and discuss the results of the best parallelism configuration.

5.1 Experimental Setup
We evaluate a wide range of stencil benchmarks including:
1. JACOBI2D/3D from from SODA testbench. They are a 2D 5-point stencil kernel and a 3D 7-point

stencil kernel, respectively. They are used in linear algebra algorithms to find the solution for
linear equations.

2. BLUR from SODA testbench [4]. It is a 2D 9-point stencil kernel. It is commonly used for edge
smoothing and noise removing in image processing domains.

3. SEIDEL2D from SODA testbench. It is a 2D 9-point stencil kernel and used in linear algebra to
solve a system or linear equations.

4. DILATE from the Rodinia-HLS benchmark suite [6]. It is a 2D 13-point stencil kernel and used
to detect and track leukocyte of blood vessel in biomedical research.

5. HOTSPOT from the Rodinia-HLS benchmark suite. It is a 2D 5-point stencil kernel with two
inputs and one output. It is used to estimate processor temperature based on power grid and
temperature of the corresponding area.

6. HEAT3D from SODA testbench. It is a 3D 7-point stencil kernel and used for heat diffusion
simulation.

7. SOBEL2D from SODA testbench. It is a 2D 9-point stencil kernel and used for image processing,
particularly for edge detection.

Table 3. Iteration counts scope of different stencil benchmarks

Iteration counts
JACOBI2D many, e.g., 256
JACOBI3D many, e.g., 256

BLUR few, e.g., 4
SEIDEL2D many, e.g., 256
DILATE non-iterative, i.e., 1

HOTSPOT many, e.g., 256
HEAT3D many, e.g., 256
SOBEL2D non-iterative, i.e., 1

We use four different input sizes, 256 × 256, 720 × 1024, 9720 × 1024 and 4096 × 4096, when
evaluating all the 2-dimensional stencil benchmarks; and use 256 × 16 × 16, 720 × 32 × 32, 9720 ×
32 × 32 and 4096 × 64 × 64, input sizes for the 3-dimensional stencil benchmarks. Furthermore, we
sweep the iteration number from 1 to 256 at a power of 4 increment. We also list the rough scope
of iteration counts in Table 3 to demonstrate the common usage of different stencil benchmarks.
Some benchmarks, such as DILATE and SOBEL2D, are non-iterative kernels in most applications.
We still evaluate the performance of those kernels in different iteration counts to illustrate the
performance difference of different parallelism optimizations. We analyze the throughput of input
size 720 × 1024 and 720 × 32 × 32 in Section 5.3, and other input sizes in appendix. Note that when
the iteration number is 1, spatial parallelism and hybrid parallelism will be the same and have the
same throughput. All these stencil kernels are written in the stencil DSL as illustrated in Section 4.1.

We evaluate SASA on Xilinx Alevo U280 datacenter FPGA board with 32 HBM2 banks [27]. First,
SASA compiles the stencil DSL into the optimized FPGA design in Xilinx Vitis HLS C++ with TAPA
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(c) DSP utilization
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Fig. 8. Resource utilization of a single PE saturating one HBM bank bandwidth on Alveo U280 for the input
size of 9720×1024 and 9720×32×32

APIs [5] and the corresponding host code. Then it uses AutoBridge [13] to do the floorplanning
and pipelining optimizations for our design and Vitis 2020.2 [28] to build the generated design to
run on the U280 FPGA. We set 225 MHz as the target frequency of our designs since all of them
use 512-bit wide streaming connections and can already fully utilize the effective bandwidth from
each HBM memory bank. This is because on the U280 FPGAs, the two HBM stacks operate at
450 MHz, and are connected to 32 hardened AXI ports in width of 256-bit. Therefore, to achieve
the HBM memory bandwidth using a 512-bit AXI port, the kernel frequency needs to be above
450MHz × 256-bit / 512-bit = 225MHz. And the theoretical peak bandwidth of a single 512-bit AXI
port accessing a single HBM bank is 512 bits/cycle × 225MHz / 8 bits-per-byte = 14.4GB/s.

5.2 Results for Single PE Optimization
To demonstrate the quality of our design, we first evaluate our optimized single PE design, which
accelerates one stencil iteration using the optimized streaming access from one HBM bank. From
the performance perspective, it saturates the bandwidth of a single HBM bank by placing 16 parallel
PUs (processing units) inside each PE to execute in a fully streaming fashion. Therefore, it achieves
the optimal performance given one HBM bank, which is the same as SODA [4] that uses the optimal
data reuse size and memory access requirement.
Next, we focus on the comparison of its resource consumption. Figure 8 shows an overall

resource utilization comparison with original SODA and optimized SODA (i.e., SODA-opt) that
is integrated with TAPA/AutoBridge [5, 13] for a fair comparison, including BRAM, FF, DSP and
LUT consumption. Compared to the original SODA, the major benefit of our design comes from
removing the on-chip line buffer by introducing the coalesced reuse buffer design. It brings a 4.3%-
69.8% reduction in the BRAM utilization compared to the previous SODA design. Consequently, the
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BRAM reduction further reduces the FFs and LUTs consumption of the design by 12.9%-34.8% and
1.8%-51.7%, respectively. Since both of SODA and our design use the same fine-grained parallelism
and place 16 PUs inside each PE (i.e., loop unroll factor 𝑈 = 16), we both achieve the same DSP
utilization. Note that DILATE only has boolean logic operations and thus does not utilize any DSP
resource.
For the majority of benchmarks, both our implementation and the optimized SODA achieve a

similar amount of resources.

5.3 Results for Different Multi-PE Parallelisms
In this subsection, we first validate the accuracy our analytical performancemodel. Thenwe evaluate
the performance trend of temporal parallelism, two spatial parallelisms, and two hybrid parallelisms,
respectively, when the number of iterations changes. Finally, we compare the performance between
temporal, spatial, and hybrid parallelisms and summarize the best parallelism configurations.
All results for different parallelisms are summarized in Figure 10 (for input size of 720 × 1024),

and Figure 13 to Figure 20 in the Appendix (for all input sizes), which are measured using the
common throughput metric GCell/s (i.e., how many billion of stencil data cells it can process per
second). We also mark the best parallelism predicted by our automation flow in Figure 10, and
Figure 13 to 20 in the Appendix, with a red bar. Note that when iteration count is 1, both spatial
parallelism and hybrid parallelism are the same. When two parallelism optimizations have very
close predicted performance (within 2% predicted performance difference), our tool chooses the
most resource-efficient one: for example, 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑅 is favored over 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑆 since 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑆 costs
slightly more wires to implement streaming connections, and 𝐻𝑦𝑏𝑟𝑖𝑑_𝑆 is favored over 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑆
since 𝐻𝑦𝑏𝑟𝑖𝑑_𝑆 uses fewer HBM banks. Finally, the total number of PEs for different parallelisms
are summarized in Figure 11 (for column size of 1024), and Figure 21 (for column size of 256) and
Figure 22 (for column size of 4096) in the Appendix, which will be used to explain our results.

5.3.1 Performance Model Accuracy. To evaluate the accuracy of our analytical performance model,
we run awide range of configurations, including different iteration numbers and different parallelism
optimizations for each stencil kernel, and compare the model predicted execution time with the
actual measured time of on-board execution. Figure 9 shows the average (histogram), maximum (top
bar), and minimum (bottom bar) error rates of our performance model for each stencil benchmark
with different parallelism optimizations. For each histogram, the error rate is averaged across
different numbers of stencil iterations from 1 to 64. For all configurations, our performance model
has an error rate within 5% in estimating the performance of our accelerator designs.

5.3.2 Performance Results of Temporal Parallelism Designs. As shown in Figure 10, the performance
of the temporal parallelism designs generally increases with the iteration number, as more stencil
iterations are concurrently processed on the FPGA in a dataflow fashion. This linear performance
improvement trend stops when we could not instantiate more temporal stages (i.e., stencil iterations)
on the FPGA. For most benchmarks, their maximum number of PEs in temporal parallelism designs
are between 9 to 15 when their iteration number is large enough, as shown in Figure 18 to 20.
Therefore, their throughput increases linearly as the iteration number grows from 1 to 4. The two
exceptions are JACOBI2D and DILATE. Their linear throughput increase is achieved when iteration
ranges from 1 to 16 since their maximum PE numbers are 21 and 18, respectively.

When the iteration number is larger than the maximum number of PEs, this performance does
not improve linearly with the iteration number; the performance is mainly decided by the ratio of
iteration number and rounds of FPGA kernel execution. For example, in BLUR, when the iteration
number is 64 and 16, respectively, the maximum number of PEs is 12 in both cases; therefore, the
numbers of FPGA kernel runs are 6 and 2, respectively. While the work to be done is increased by
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Fig. 9. Accuracy of our analytical performance model

fourfold from iteration number 16 to 64, the execution time is only increased by 6/2 = 3×. In this
way, the throughput of iteration number 64 is larger than that of iteration number 16 as shown in
Figure 10a.

5.3.3 Performance Results of Spatial Parallelism Designs. To better understand the performance
difference between the two spatial parallelism design variants presented in Section 3.3, 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑅
and 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑆 , we further analyze the performance trend of these two designs at different iteration
numbers, input sizes and stencil kernels. As shown in Figure 10, for the 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑅 design, its
performance generally decreases as the iteration number increases. This is mainly due to the
increase of the halo data processing as the iteration number increases. The performance decrease
is worse on smaller input sizes as halo data increase has more significant impact on smaller input
sizes. For example, the throughput of 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑅 drops faster at 256 × 256 and 720 × 1024 input
sizes in JACOBI2D compared with 9720 × 1024 and 4096 × 4096 input sizes. On the other hand, the
performance of the 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑆 design does not vary with the iteration number. This is because the
amount of halo data exchange remains the same as the iteration number increases. These trends
align with our performance model in Equations 5 and 6, respectively.

Comparing between these two design variants, when the iteration number is low (i.e., less than
4) and with the same number of PEs, as shown in Figure 10, 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑅 and 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑆 achieve about
the same throughput. And as the iteration number increases, the 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑆 design can maintain its
performance and outperforms the 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑅 design especially for smaller input sizes.
As shown in Figure 10c and 10d, there are a few exceptions, JACOBI2D and JACOBI3D, where

𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑅 design achieves a better throughput than the 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑆 design as 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑅 can place
more PEs. This is because, border streaming based approach consumes slightly more wires due
to the streaming connections than redundant computation based approach to implement border
streaming, which affects timing closure, especially when the increase of cross-SLR (i.e., cross-die)
connections is approaching FPGA board limit.

5.3.4 Performance Results of Hybrid Parallelism Designs. In hybrid parallelism designs, both tem-
poral and spatial parallelisms are exploited. The performance from 𝐻𝑦𝑏𝑟𝑖𝑑_𝑅 and 𝐻𝑦𝑏𝑟𝑖𝑑_𝑆 paral-
lelism designs reflects a combination of trend from both the temporal parallelism design as described
in Section 5.3.2 and the spatial designs discussed in Section 5.3.3.
1. When the iteration number is 1, the hybrid parallelism is the same as spatial parallelism, since

each spatial PE group has only one temporal stage. When iteration number is larger than 1,
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(a) Throughput of BLUR 720 × 1024
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(b) Throughput of SEIDEL2D 720 × 1024
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(c) Throughput of JACOBI2D 720 × 1024
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(d) Throughput of JACOBI3D 720 × 1024
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(e) Throughput of DILATE 720 × 1024
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(f) Throughput of HOTSPOT 720 × 1024
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(g) Throughput of HEAT3D 720 × 1024
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(h) Throughput of SOBEL2D 720 × 1024

Fig. 10. Throughput (GCell/s) comparison of different parallelism optimizations with the number of iterations
changing from 1 to 256, with input size of 720 × 1024.

there are multiple combinations of spatial parallelism degree and temporal parallelism degree.
For example, in JACOBI3D, maximum number of PEs can be implemented is 15, as shown in
Figure 10d. We choose the degree of spatial parallelism based on the number of SLRs, which is 3
on Alevo U280 board. When iteration number is 4, 6 spatial PE groups with 2 temporal stages
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(a) Number of PEs with the number of iteration = 64
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(b) Number of PEs with the number of iteration = 2

Fig. 11. Total number of PEs for different parallelisms on Alveo U280 with column size = 1024

will outperform 3 spatial PE groups with 5 temporal stages even with less PEs. This is because
the former can utilize more off-chip memory bandwidth without idle PEs.

2. Hybrid parallelism has a similar trend as spatial parallelism with the increase of the iteration
number, when the ratio of iteration number and rounds of FPGA kernel execution maintains
the same, especially when the iteration number is small. The effect of this ratio is illustrated
in Section 5.3.2. For example, in BLUR, SEIDEL2D and HEAT3D, the throughput of 𝐻𝑦𝑏𝑟𝑖𝑑_𝑅
decreases as the iteration number increases in the range from 4 to 256, since the ratio of iteration
number and rounds of FPGA kernel execution does not change. And the throughput of𝐻𝑦𝑏𝑟𝑖𝑑_𝑆
in the same iteration range stays the same as the pattern of 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑆 since they have the same
number of PEs.

3. However, when iteration number becomes large enough and this ratio of iteration number and
rounds of FPGA kernel execution changes, the throughput of hybrid parallelism will have a
noticeable change, as temporal parallelism plays a heavier role. Such pattern is more outstanding
at small input size, like 256 × 256. For example, in JACOBI2D, DILATE, and HOTSPOT, the
throughput of 𝐻𝑦𝑏𝑟𝑖𝑑_𝑅 decreases when iteration number ranges from 16 to 256, reflecting
the characteristics of spatial parallelism. However, there is a big performance boost when the
iteration number changes from 4 to 16, since the ratio changes and temporal parallelism play a
heavier role.
For most benchmarks,𝐻𝑦𝑏𝑟𝑖𝑑_𝑅 and𝐻𝑦𝑏𝑟𝑖𝑑_𝑆 have the same number of PEs.𝐻𝑦𝑏𝑟𝑖𝑑_𝑆 achieves

a similar performance to 𝐻𝑦𝑏𝑟𝑖𝑑_𝑅 at a small iteration number. At a large iteration number,
𝐻𝑦𝑏𝑟𝑖𝑑_𝑆 outperforms 𝐻𝑦𝑏𝑟𝑖𝑑_𝑅, because the 𝐻𝑦𝑏𝑟𝑖𝑑_𝑅 design requires redundant computation
for more halo data than 𝐻𝑦𝑏𝑟𝑖𝑑_𝑆 . Lastly, there is only one case where the border streaming based
approach achieves fewer PEs than the redundant computation based approach. Specifically, for
JACOBI2D at 9270 × 1024 and 4096 × 4096, 𝐻𝑦𝑏𝑟𝑖𝑑_𝑆 has fewer PEs than 𝐻𝑦𝑏𝑟𝑖𝑑_𝑅. As a result,
when the iteration number is 32, the performance of 𝐻𝑦𝑏𝑟𝑖𝑑_𝑅 is better than 𝐻𝑦𝑏𝑟𝑖𝑑_𝑆 . However,
such advantage is offset by the redundant halo computation overhead for other iteration numbers.

5.3.5 Performance Impact by Different Input Sizes. For the four different stencil input sizes, 256×256,
720× 1024, 9720× 1024, and 4096× 4096 (for 2D stencils), we have made the following observations.

First, for the majority of our stencil benchmarks under these input sizes (more specifically,
different column sizes), the row buffer resource consumption did not become a bottleneck, as each
PE roughly needs to buffer only two rows of data on-chip.

Second, the row sizes do have a performance impact, especially for the redundant computation
based spatial parallelism (𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑅) and hybrid parallelism (𝐻𝑦𝑏𝑟𝑖𝑑_𝑅). With a smaller row size
(e.g., 256), when the iteration count becomes larger, the performance of 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑅 decreases
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significantly as the redundant computation adds a very significant overhead. Therefore, the border
streaming based spatial parallelism (𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑆) is a better choice. While with a larger row size
(e.g., 9720), such overhead is much smaller and the difference between 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑅 and 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑆 is
marginal. A similar performance impact is observed for 𝐻𝑦𝑏𝑟𝑖𝑑_𝑅.
Third, in general, the overall throughput for the small 256 × 256 input size is relatively lower

than those with larger input sizes. The reasons are twofold. First, the execution time of extra halo
regions for a smaller input size occupies a high execution time percentage, i.e., the overhead is
bigger. Second, with the smaller input size, the memory burst size for each HBM bank is relatively
small, thus leading to lower off-chip memory bandwidth utilization.

5.3.6 Performance Comparison between Temporal, Spatial, and Hybrid Parallelisms. Overall, tempo-
ral parallelism achieves the lowest performance amongst all parallelism variants when the iteration
count is low. As shown in Figure 10, when the iteration count is low, e.g., 1 or 4, temporal parallelism
cannot efficiently exploit the HBM memory bandwidth. Even when the iteration count is as large
as 64, temporal parallelism also may not give the best performance since the iteration count may
not be evenly divisible by the temporal stages instantiated on hardware. Take JACOBI2D as an
example, there are 21 temporal stages on the hardware as shown in Figure 22a. When its iteration
count is 64, it needs to execute the hardware ceil (64 / 21) = 4 rounds. In the last round, there is
only one last iteration (64 - 21 × 3 = 1) that needs to be executed; 20 temporal stages on hardware
are under-utilized. When the iteration count becomes 256, the performance difference between
temporal parallelism and hybrid parallelism (Hybrid_S) becomes much smaller, sometimes almost
the same. The reason is that the performance overhead caused by temporal unrolling factors not
evenly divided by the required number of iterations becomes much smaller.
For the remaining parallelism variants, spatial and hybrid, boarder streaming based approach

generally achieves better performance than the redundant computation based method as detailed
above in Section 5.3.3 and Section 5.3.4. However, depending on stencil kernel, iteration number,
and input sizes, the best parallelism may vary.

First, there are cases where 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑆 and 𝐻𝑦𝑏𝑟𝑖𝑑_𝑆 achieve a similar performance and are the
best among all parallelisms, specifically for BLUR, SEIDEL2D, and HEAT3D kernels. The reason is
that both parallelisms have 12 PEs and can fully utilize them under different iteration numbers
and input sizes. Specifically for 𝐻𝑦𝑏𝑟𝑖𝑑_𝑆 , when the iteration number is 2, the degree of spatial
parallelism is 6 and the degree of temporal parallelism is 2; when the iteration number larger than
2, the degree of spatial parallelism is 3 and the degree of temporal parallelism is 4. Therefore, all 12
PEs can be fully utilized with different iteration numbers.

Second, there are cases where 𝐻𝑦𝑏𝑟𝑖𝑑_𝑆 outperforms 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑆 and 𝐻𝑦𝑏𝑟𝑖𝑑_𝑆 is the best among
all parallelisms, specifically for DILATE, SOBEL2D, JACOBI2D with large iteration number, and
JACOBI3D with large iteration number. There are two reasons behind this: 1) for DILATE and
JACOBI2D, due to the HBM bank (i.e., bandwidth) restriction, 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑆 has fewer PEs than
𝐻𝑦𝑏𝑟𝑖𝑑_𝑆 ; 2) for SOBEL2D and JACOBI3D, 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑆 has fewer PEs than 𝐻𝑦𝑏𝑟𝑖𝑑_𝑆 as it is harder
to pass the timing closure.
Third, there is also one case where 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑆 achieves a better performance than 𝐻𝑦𝑏𝑟𝑖𝑑_𝑆

and is the best, specifically for HOTSPOT at a small iteration number. In fact, both 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑆 and
𝐻𝑦𝑏𝑟𝑖𝑑_𝑆 have 9 PEs in this case. However, in 𝐻𝑦𝑏𝑟𝑖𝑑_𝑆 , the degree of spatial parallelism is 3 and
the degree of temporal parallelism is 3, which cannot be evenly divided by the iteration number. As
a result, some PEs are underutilized in 𝐻𝑦𝑏𝑟𝑖𝑑_𝑆 , leading to a lower performance than 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑆 .

Fourth, there are two exceptional cases where 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑅 performs better than 𝐻𝑦𝑏𝑟𝑖𝑑_𝑆 and is
the best, specifically for JACOBI2D and JACOBI3D when the iteration number is small and the
number of input rows is large. This is because the𝐻𝑦𝑏𝑟𝑖𝑑_𝑆 significantly under-utilizes the number
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Table 4. Configuration of the best parallelism on Alveo U280, for the input size of 9720 × 1024

Iteration = 64 Iteration = 2

Parallelism Frequency k s #HBM
banks Parallelism Frequency k s #HBM

banks
JACOBI2D Hybrid_S 250 MHz 3 7 6 Spatial_R 233 MHz 15 1 30
JACOBI3D Hybrid_S 250 MHz 3 5 6 Spatial_R 226 MHz 15 1 30

BLUR Hybrid_S 249 MHz 3 4 6 Spatial_R 229 MHz 12 1 24
SEIDEL2D Hybird_S 225 MHz 3 4 6 Spatial_R 225 MHz 12 1 24
DILATE Hybrid_S 250 MHz 3 6 6 Hybrid_S 250 MHz 6 2 12

HOTSPOT Hybrid_S 250 MHz 3 3 9 Spatial_S 250 MHz 9 1 27
HEAT3D Hybrid_S 225 MHz 3 4 6 Spatial_R 230 MHz 12 1 24
SOBEL2D Hybrid_S 250 MHz 3 4 6 Hybrid_S 250 HHz 3 4 6

of PEs when the iteration count is small, especially when iteration count is 2 or 4. For example,
𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑅 of JACOBI3D can utilize all 15 PEs when the iteration number is 2, while 𝐻𝑦𝑏𝑟𝑖𝑑_𝑆 can
only utilizes 12 PEs with the best configuration of 6 spatial PE groups and 2 temporal PEs in each
group.
Lastly, there are some exceptions where temporal parallelism achieves the best performance

when the iteration count is 256. Specifically for JACOBI2D with iteration count of 256 at input size
of 720× 1024, 9720× 1024 and 4096× 4096, temporal parallelism achieves the best performance. The
reason is that the PE number of temporal parallelism is larger than the one of hybrid parallelism
(𝐻𝑦𝑏𝑟𝑖𝑑_𝑆), shown in Figure 11a and 22a. There are also several cases where temporal parallelism
achieves very close performance to 𝐻𝑦𝑏𝑟𝑖𝑑_𝑆 due to the large iteration count of 256 and our tool
chooses temporal parallelism as the final one since it is more resource-efficient.

5.3.7 The Best Parallelism Configurations and Their Resource Utilization. As discussed above, the
best parallelism optimization varies with the stencil benchmark and the number of iterations.
Table 4 summarizes the best parallelism configuration for each benchmark for the input size of
9720×1024, when the number of iterations is 64 and 2, respectively. When the number of iterations
is 64, 𝐻𝑦𝑏𝑟𝑖𝑑_𝑆 achieves the best performance for all benchmarks as it is not affected by the
redundant halo computation overhead. Note that one advantage of hybrid parallelism over spatial
parallelism is that it requires much less off-chip bandwidth (shown as the number of HBM banks
in Table 4). When the number of iterations is 2, spatial parallelism achieves the best performance
for most benchmarks for most of the benchmarks; both 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑅 or 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑆 achieve a similar
performance. There are some exceptions, DILATE and SOBEL2D, where𝐻𝑦𝑏𝑟𝑖𝑑_𝑆 achieves the best
performance. This is because their 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑅 and 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝑆 parallelism implements less number
of PEs due to the limitation of the available HBM banks and timing closure issues, respectively.
For the best parallelism configurations, the degree of spatial parallelism (𝑘) and the number of

temporal stages (𝑠) are also included in Table 4. These number also vary between benchmarks,
which again highlights the importance of an automation framework to compile the high-level DSL
to the optimized FPGA design. All of our designs achieve a clock frequency of at least 225 MHz to
fully utilize bandwidth of each HBM bank.
Finally, we also show the utilization of on-chip resources and off-chip HBM banks for the best

parallelism configurations in Figure 12 and Table 4, respectively. The bottleneck resource changes as
the computation intensity increases. As shown in Figure 12, for benchmarks with lower computation
intensity, such as JACOBI2D, JACOBI3D, BLUR, SEIDEL2D, and DILATE, LUT has the highest
resource utilization rate compared with other resources. For benchmarks with higher computation
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(a) Resource utilization of the best parallelism with
the number of iteration = 64
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(b) Resource utilization of the best parallelism with
the number of iteration = 2

Fig. 12. Resource utilization of the best parallelism configuration on Alveo U280, for the input size of 9720×1024

intensity, such as HOTSPOT, HEAT3D, and SOBEL2D, DSP is the bottleneck to scale up to more
PEs.

5.4 Comparison to Prior Work
As discussed in Section 3.1, SODA [4] is less efficient than our SASA temporal parallelism imple-
mentation due to the additional on-chip line buffer usage. To conduct a fair comparison between
SODA and SASA , we integrate SODA with TAPA/AutoBridge [5, 13] to address the major resource
inefficiency, and rerun all the experiments on the same HBM-based U280 FPGA. The on-chip line
buffer to buffer the input data from off-chip memory, shown in Figure 8, is also removed in this
integration, since TAPA replaces the resource-inefficient AXI interface with a lightweight streaming
interface. As a result, both SODA and SASA temporal parallelism implementation achieve the same
performance. However, SODA only supports temporal parallelism, and does not support other
types of parallelisms that we have explored in this paper; therefore, its performance is sub-optimal
when the iteration count is small or the iteration count cannot be evenly divided by the temporal
stages in the hardware design. Compared to SODA, SASA achieves better throughput with an
average of at least 3.41× speedup across all configurations. The highest speedup over temporal
parallelism is reached in JACOBI3D when iteration number is 1, where redundant computation
based spatial parallelism can reach 15.73× speedup.
The stencil accelerator design proposed in [29] only supports temporal parallelism and its

throughput is measured when the iteration count is super large. For temporal parallelism, the
throughput is determined by the bandwidth of a single memory bank. Since their FPGA uses DDR4,
which has a higher bandwidth (19.2GB/s theoretical bandwidth) than that of a single HBM bank
(14.4GB/s theoretical bandwidth) in our results, their reported GCell/s is higher than ours. However,
for the given HBM bank, our implementation already achieves the best performance that the HBM
bank can achieve. More importantly, we have explored different parallelisms and can automatically
generate the design with the best parallelism.

6 CONCLUSION
In this paper we propose a scalable and automatic stencil acceleration framework on modern
HBM-based FPGAs called SASA. In terms of the accelerator design architecture, SASA employs a
multi-PE approach to exploit temporal and spatial parallelisms for better scalability. Each single PE
design is optimized for on-chip data reuse, off-chip memory access, and the on-chip buffer usage.
For design automation, SASA provides a high-level DSL for domain experts to configure and define
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the stencil operation. Then a code generator automatically explores the design space based on our
analytical performance model and generates an optimized stencil accelerator design with the best
parallelism optimization. Experimental results across a wide range of stencil benchmarks show that
our SASA can achieve an average speedup of 3.41 × and up to 15.73× speedup on the HBM-based
Xilinx Alveo U280 FPGA, compared to state-of-the-art automatic stencil acceleration framework
SODA [4] that only exploits temporal parallelism. Finally, we plan to open source our tool in the
near future at this link: https://github.com/SFU-HiAccel/SASA.
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A APPENDIX
Figure 13 to 20 present the throughput of different parallelism optimizations for each benchmark
with different input sizes at 256 × 256, 720 × 1024, 9720 × 1024, and 4096 × 4096.
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(a) Throughput of JACOBI2D 256 × 256
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(b) Throughput of JACOBI2D 720 × 1024
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(c) Throughput of JACOBI2D 9720 × 1024
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(d) Throughput of JACOBI2D 4096 × 4096

Fig. 13. Throughput (GCell/s) comparison of different parallelism optimizations for JACOBI2D with the
number of iterations changing from 1 to 256
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(a) Throughput of JACOBI3D 256 × 16 × 16
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(b) Throughput of JACOBI3D 720 × 32 × 32
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(c) Throughput of JACOBI3D 9720 × 32 × 32
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Fig. 14. Throughput (GCell/s) comparison of different parallelism optimizations for JACOBI3D with the
number of iterations changing from 1 to 256
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(a) Throughput of BLUR 256 × 256
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(b) Throughput of BLUR 720 × 1024
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(c) Throughput of BLUR 9720 × 1024
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(d) Throughput of BLUR 4096 × 4096

Fig. 15. Throughput (GCell/s) comparison of different parallelism optimizations for BLUR with the number
of iterations changing from 1 to 256
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(a) Throughput of SEIDEL2D 256 × 256
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(b) Throughput of SEIDEL2D 720 × 1024
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(c) Throughput of SEIDEL2D 9720 × 1024
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(d) Throughput of SEIDEL2D 4096 × 4096

Fig. 16. Throughput (GCell/s) comparison of different parallelism optimizations for SEIDEL2D with the
number of iterations changing from 1 to 256
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(a) Throughput of DILATE 256 × 256
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(b) Throughput of DILATE 720 × 1024
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(c) Throughput of DILATE 9720 × 1024
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(d) Throughput of DILATE 4096 × 4096

Fig. 17. Throughput (GCell/s) comparison of different parallelism optimizations for DILATE with the number
of iterations changing from 1 to 256
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(a) Throughput of HOTSPOT 256 × 256
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(b) Throughput of HOTSPOT 720 × 1024
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(c) Throughput of HOTSPOT 9720 × 1024
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(d) Throughput of HOTSPOT 4096 × 4096

Fig. 18. Throughput (GCell/s) comparison of different parallelism optimizations for HOTSPOT with the
number of iterations changing from 1 to 256
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(a) Throughput of HEAT3D 256 × 16 × 16
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(b) Throughput of HEAT3D 720 × 32 × 32
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(c) Throughput of HEAT3D 9720 × 32 × 32

0

10

20

30

40

50

1 4 16 64 256

Th
ro

ug
hp

ut
(G

Ce
lls

/s
)

Iteration Number

Temporal Spatial_R Spatial_S Hybrid_R Hybrid_S

(d) Throughput of HEAT3D 4096 × 64 × 64

Fig. 19. Throughput (GCell/s) comparison of different parallelism optimizations for HEAT3D with the number
of iterations changing from 1 to 256
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(a) Throughput of SOBEL2D 256 × 256
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(b) Throughput of SOBEL2D 720 × 1024

0

10

20

30

40

50

1 4 16 64 256

Th
ro

ug
hp

ut
(G

Ce
lls

/s
)

Iteration Number

Temporal Spatial_R Spatial_S Hybrid_R Hybrid_S

(c) Throughput of SOBEL2D 9720 × 1024
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(d) Throughput of SOBEL2D 4096 × 4096

Fig. 20. Throughput (GCell/s) comparison of different parallelism optimizations for SOBEL2D with the
number of iterations changing from 1 to 256
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Figure 21 and 22 present the total number of PEs for different parallelisms for column size of 256
and 4096, respectively.
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(a) Number of PEs with the number of iteration = 64
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(b) Number of PEs with the number of iteration = 2

Fig. 21. Total number of PEs for different parallelisms on Alveo U280 with column size = 256
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(a) Number of PEs with the number of iteration = 64
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(b) Number of PEs with the number of iteration = 2

Fig. 22. Total number of PEs for different parallelisms on Alveo U280 with column size = 4096
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