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The k-nearest neighbors (KNN) algorithm is an essential algorithm in many applications, such as similarity

search, image classification, and database query. With the rapid growth in the dataset size and the feature

dimension of each data point, processing KNN becomes more compute and memory hungry. Most prior studies

focus on accelerating the computation of KNN using the abundant parallel resource on FPGAs. However, they

often overlook the memory access optimizations on FPGA platforms and only achieve a marginal speedup

over a multi-thread CPU implementation for large datasets.

In this paper, we design and implement CHIP-KNN: an HLS-based, configurable, and high-performance

KNN accelerator. CHIP-KNN optimizes the off-chip memory access on modern HBM-based FPGAs such as

the AMD/Xilinx Alveo U280 FPGA board. CHIP-KNN is configurable for all essential parameters used in the

algorithm, including the size of the search dataset, the feature dimension and data type representation of each

data point, the distance metric, and the number of nearest neighbors - K. In terms of design architecture, we

explore and discuss the trade-offs between two design versions: CHIP-KNNv1 (Ping-Pong buffer based) and

CHIP-KNNv2 (streaming-based). Moreover, we investigate the routing congestion issue in our accelerator

design, implement hierarchical structures to shorten critical paths, and integrate an open-source floorplanning

optimization tool called TAPA/AutoBridge to eliminate the place-and-route issues. To explore the design space

and balance the computation and memory access performance, we also build an analytical performance model.

Given a user configuration of the KNN parameters, our tool can automatically generate TAPA HLS C code for

the optimal accelerator design and the corresponding host code, on the HBM-based FPGA platform.

Our experimental results on the Alveo U280 show that, compared to a 48-thread CPU implementation,

CHIP-KNNv2 achieves a geomean performance speedup of 15x, with a maximum speedup of 45x. Additionally,

we show that CHIP-KNNv2 achieves up to 2.1x performance speedup over CHIP-KNNv1 while increasing

configurability. Compared with the state-of-the-art Facebook AI Similarity Search (FAISS) [23] GPU imple-

mentation running on a Nvidia Tesla V100 GPU, CHIP-KNNv2 achieves an average latency reduction of 30.6x

while requiring 34.3% of GPU power consumption.
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1 INTRODUCTION
The k-nearest neighbors (KNN) algorithm [2] is one of the top 10 most influential algorithms

in the data mining research community [37]. It is widely used in many applications such as

similarity search, image classification, and database query [17, 34, 41]. With the rapid growth in

the size of the overall search dataset and the dimension of each data point’s feature vector, there is

an ever-increasing demand of computing resource and memory bandwidth to process the KNN

algorithm [21, 24].

Previous works have investigated accelerating the KNN algorithm on CPUs and GPUs through

parallel or distributed computing [3, 14, 15, 29, 30]. Considering the significant slowdown of

CPU performance scaling and the high power consumption of GPUs, recently, accelerating the

performance of KNN on FPGAs has gained increasing attention. Several prior studies [20, 32,

35] have achieved decent performance and/or energy efficiency improvements over the CPU

and GPU implementations by exploring the massive fine-grained parallelism for the neighbor

distance calculation and sorting in their FPGA-based KNN accelerator designs. For example, the

latest FPGA accelerator for KNN in [35] achieves an equivalent performance as a 56-thread CPU

implementation for large datasets while achieving a 324x higher energy-efficiency. Compared with

the GPU accelerator for KNN, the FPGA accelerator in [32] achieves 3x better performance-per-Joule

ratio for small datasets.

However, there are twomajor issues in most of these prior KNN accelerator designs on FPGAs [20,

32, 35]. First, most of them, except the latest design in [35], only support a fixed configuration of KNN

with a small dataset, fixed feature dimension, distance metric, and data type representation. Second,

most prior studies overlook the memory access optimizations, which limits the KNN accelerator

performance on FPGAs, especially for large datasets that cannot fit into on-chip memory. Although

modern datacenter FPGAs have equipped with multiple DRAM or HBM banks to boost the off-

chip memory bandwidth—e.g., Xilinx Alveo U200 [38] and U280 [39] datacenter FPGA boards

respectively provide up to 76.8GB/s and 460GB/s theoretical memory bandwidth using four DDR4

banks and 32 HBM2 banks—many existing KNN accelerator designs only utilize no more than 12%

of the available off-chip bandwidth on their evaluated platforms as summarized in Section 5.1.

In this paper we design and implement CHIP-KNN: an open-source, HLS (high-level synthesis)

C based, configurable, and high-performance KNN accelerator for HBM-based FPGAs, such as the

AMD/Xilinx Alveo U280 FPGA board. We choose an HBM-equipped FPGA which provides high

off-chip bandwidth, since the KNN algorithm is primarily bandwidth-bound. In terms of design

architecture, we explore two different alternatives. Firstly, CHIP-KNNv1 is a Ping-Pong buffer

based architecture, which uses multiple on-chip buffers to accelerate the on-chip computation and

efficiently overlap off-chip memory transfers and the computation. Secondly, to further improve

device resource utilization and acceleration performance, we design and implement CHIP-KNNv2,

a streaming-based architecture that enables FIFO-based task-level dataflow. Both versions are well

optimized for their off-chip memory access to utilize the bandwidth of multiple HBM banks and

fully exploit the bandwidth of each HBM bank.

To better support large search datasets, CHIP-KNN takes a scalable multi-PE (processing element)

approach. Our design relies on a template PE, where CHIP-KNNv1 loads data from off-chip memory

into on-chip buffers for the the computation units - i.e., neighbour distance calculation and sorting,
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and CHIP-KNNv2 streams data from off-chip memory into these computation units. These compu-

tation units are optimized by exploring the pipeline parallelism and fine-grained data parallelism

enabled by a novel sorting algorithm. After the correct optimizations are identified, we scale up the

number of PEs to take advantage of coarse-grained parallelism and to utilize multiple HBMmemory

banks with off-chip bandwidth optimizations. To merge the multiple copies of K nearest neighbours

suggested by the multiple PEs, we utilize a hierarchical merge-tree design, which reduces congestion

and improves the achievable kernel frequency. To further optimize the placement-and-route quality

of our streaming-based design, CHIP-KNNv2, we also add support to use a coarse-grained floor-

planning optimization tool named TAPA/AutoBridge [8, 18], for streaming-based HLS accelerator

designs. Additionally, TAPA/AutoBridge also supports out-of-context synthesis to speed up the

high-level synthesis process, and includes HBM-specific optimizations to reduce resource overhead

from the HBM interface IPs compared with Vitis HLS.

CHIP-KNN is also configurable to all key parameters used in the KNN algorithm, which includes

1) the number of data points in the search space, N; 2) the dimension of each data point’s feature

vector, D; 3) the distance metric; and 4) the number of nearest neighbors, K. With CHIP-KNNv2,

one can also configure 5) the data-type representation of search space points and distances. Given

a user configuration of these KNN parameters and an FPGA platform, our tool can automatically

generate the optimal accelerator design that could reach the off-chip memory bandwidth boundary

or the FPGA computing resource boundary. To achieve this automation, we also build an analytical

performance model for all the three major stages—data loading/streaming, distance calculation,

and distance sorting—to explore the design space and balance the execution of these three stages.

We conduct our experiments on the AMD/Xilinx HBM-based Alveo U280 [39] datacenter FPGA,

with various configurations of KNN parameters. CHIP-KNNv2 achieves a geomean 15.5x perfor-

mance speedup over a 48-thread CPU implementation, with an 8.5x geomean speedup when only

considering single-precision floating-point designs. We also show that CHIP-KNNv2 achieves up

to a 2.1x performance speedup over CHIP-KNNv1. Compared against state-of-the-art FAISS [23]

GPU implementation running on a Nvidia Tesla V100 GPU, our design achieves an average of 30.6x

latency improvement, while using 34.3% of the power.

In summary, this paper makes the following contributions.

1. Exploration of both Ping-Pong buffer based and streaming-based architecture designs to acceler-

ate the KNN algorithm on HBM-based datacenter FPGAs with off-chip memory optimizations

and frequency optimizations.

2. An open-source tool, CHIP-KNN, to automatically generate an optimized KNN accelerator

design on an HBM-based FPGA board for a wide set of KNN parameters, including the size of

the search dataset, the feature dimension and data type representation of each data point, the

distance metric, and the number of nearest neighbors - K.

3. Experimental results to demonstrate the superior performance gains of our CHIP-KNN designs

on the FPGA.

The rest of this paper is organized as follows. Section 2 introduces background information

about the KNN Algorithm and datacenter FPGAs. Section 3 discusses the two design alternatives of

CHIP-KNN, including their computation customization, bandwidth optimizations, and frequency

optimizations. Section 4 evaluates the CHIP-KNN design against a 48-thread CPU implementation,

analyzes its performance across the configuration space, and analyzes its efficiency. Section 5

presents related work for KNN Acceleration on CPUs, GPUs, and FPGAs, including a quantitative

comparison to state-of-the-art GPU accelerator. Finally, Section 6 concludes this paper.
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2 KNN ALGORITHM AND DATACENTER FPGAS
2.1 KNN Algorithm
The KNN algorithm, specifically the brute-force search KNN, is widely used in numerous appli-

cations such as similarity searching, image classification, and database query search [17, 34, 41].

In this paper we mainly focus on the exact KNN algorithm without any approximation for two

reasons. First, approximate KNNs [4, 5, 31] achieve lower accuracy. Second, even in approximate

KNN methods, after the initial classification or filtering, they still have to apply the exact KNN in

the final step. The exact KNN algorithm consists of two major tasks:

1. Distance calculation. For an input query, this step calculates its distance to every data point in

the search space. Each point is represented by a 𝐷-dimensional feature vector. Common distance

metrics include 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 and 𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛 distances between two feature vectors. Assuming

there are 𝑁 points in the search space, the algorithmic complexity for this step is:

𝐷𝑖𝑠𝑡𝐶𝑎𝑙𝑐𝑅𝑢𝑛𝑡𝑖𝑚𝑒 = 𝑂 (𝑁 ∗ 𝐷) (1)

There is abundant data parallelism in this function: 1) the distance calculation for each data

point can be parallelized, and 2) to calculate a single distance, the computation between each

feature dimension can be parallelized.

2. Top K distances sorting. This step sorts the 𝑁 distances and returns the 𝐾 nearest neighbors,

where 𝐾 is usually very small, e.g., 𝐾 = 10. The algorithmic complexity of this step is:

𝑇𝑜𝑝𝐾𝑆𝑜𝑟𝑡𝑅𝑢𝑛𝑡𝑖𝑚𝑒 = 𝑂 (𝑁 ∗ 𝐾) (2)

This is because we only require the K smallest distances to be sorted. Task-level parallelism can

be realized by sorting a subset of the search space in parallel.

To summarize, the essential parameters in the KNN algorithm include N, D, K, distance metric, as
well as the datatype of each data point. The data access complexity is also 𝑂 (𝑁 ∗ 𝐷), making the

memory access optimizations very important.

2.2 Datacenter FPGAs
To meet the increasing demand in computing resource and off-chip bandwidth, modern Datacenter

FPGAs typically consist of multiple FPGA dies and multiple DRAM or HBM banks. For example, the

Xilinx Alveo U200 [38] FPGA board has three SLRs (super logic regions, i.e., FPGA dies) and four

DDR4 banks (64GB total size), which can provide up to 76.8GB/s theoretical memory bandwidth.

And the Alveo U280 [39] FPGA board has three SLRs and 32 HBM2 banks (8GB size), which can

provide up to 460GB/s theoretical memory bandwidth. The U280 provides great opportunity to

accelerate the performance of the KNN algorithm, due to the high memory bandwidth.

Most prior studies [20, 32, 35] on KNN acceleration overlook the memory access optimization

on FPGA platforms and achieve sub-optimal performance. In fact, many of them only utilize no

more than 12% of such available off-chip memory bandwidth. First, they do not explore the parallel

access bandwidth of multiple DRAM or HBM banks. Second, even for accessing a single memory

bank, they do not tune the access to achieve the maximum effective bandwidth, which may leave a

bandwidth gap up to 16x according to [11, 43].

While taking advantage of these missed opportunities could further improve acceleration perfor-

mance, the increasing logic complexity of highly parallel accelerator designs makes it very difficult

for the placement and routing tools to meet the desired timing requirements, and in some cases,

even fail to be mapped onto the FPGA. In this work, our goal is design a scalable and configurable

KNN accelerator on modern HBM-based FPGAs, especially focusing on the off-chip memory access

optimizations, frequency optimizations, configurability and automation support.
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Fig. 1. Overall architecture of our CHIP-KNN accelerator. The top shows the Ping-Pong buffer based processing
element (PE) design and the bottom shows the streaming-based PE design.

3 CHIP-KNN DESIGN
To better accelerate KNN with large search datasets, CHIP-KNN takes a multi-PE (processing

element) approach with a scalable number of PE units. Figure 1 shows the overall design architecture.

For the single-PE design, we explore and implement two design architectures: 1) a buffer-based

implementation in Section 3.1, and 2) a streaming-based implementation in Section 3.2. For both

architectures, we implement a novel sorting algorithm and explore common HLS optimizations

such as pipelining and parallelization to accelerate the computation units. For the buffer-based

architecture, we exploit the Ping-Pong buffer technique to overlap the off-chip memory access and

computation using on-chip buffers; for the streaming-based architecture, we further reduce the

on-chip resource usage for each PE by streamlining the data transfer. In Section 3.3, we present the

multi-PE design with a global top K merger that explores the coarse-grained parallelism and the

off-chip bandwidth of multiple HBM banks.

To improve the clock frequency of our multi-PE CHIP-KNN design, in Section 3.4, we first

implement hierarchical tree-based merge modules to merge results from sorting modules within

a PE and merge results from multiple PEs. Moreover, in Section 3.5, we also integrate state-of-

the-art coarse-grained floorplanning and pipelining optimization tool TAPA/AutoBrdige [8, 18] to

improve the floorplanning and thus the achievable frequency of CHIP-KNN. Since CHIP-KNN is

bandwidth bound, in Section 3.6, we first characterize the effective off-chip memory of each HBM

bank. Based on this characterization, in Section 3.7, we build an analytical performance model,

which models the memory access performance and computation performance under different

design parameters. Finally, in Section 3.8, we develop an automation framework to generate the

final optimized CHIP-KNN accelerator design on FPGA based on the user-specified configurations,

including the following parameters as described in Section 2.1: N, D, K, distance metric, and datatype.

3.1 Buffer-Based Single-PE KNN Design
Algorithm 1 shows the pseudo code of the buffer-based (CHIP-KNNv1) single-PE KNN algorithm.

CHIP-KNNv1 supports the following user-configured parameters as described in Section 2.1: N, D,
K, and distance metric. CHIP-KNNv1 supports Euclidean and Manhattan distances, and the most

widely used single-precision floating-point data type. However, in Algorithm 1, we list datatype

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.
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Algorithm 1 Pseudo HLS-C code for single-PE KNN accelerator. User-configurable parameters are

noted in italic blue font, including N , D, K , distance metric, and datatype, as described in Section 2.1.

B denotes the number of buffered data points.

1: function Load_Buf

2: datatype local_search_space[B][D]
3: memcpy (local_search_space← a portion of N data points in search_space from off-chip memory)

//pipeline II=1
4: function Dist_Calc

5: datatype input_query[D]
6: datatype local_search_space[B][D]
7: datatype point_dist[B]
8: for i in 0 to B do
9: //pipeline II=dist_II, unroll=dist_factor
10: point_dist[i] = Manhattan or Euclidean distance
11: function Top_K_Sort

12: datatype point_dist[B + K] //K dummy MAX dist

13: int point_id[B + K] //K dummy invalid ids

14: datatype k_nearest_dist[K+2] //Initialized as MAX dist

15: int k_nearest_id[K+2] //Initialized as invalid ids

16: for i in range 0 to B + K do
17: //unroll=sort_factor, pipeline II=3 for CHIP-KNNv1 and II=2 for CHIP-KNNv2
18: k_nearest_dist[0] = point_dist[i]

19: k_nearest_id[0] = point_id[i]

20: //Parallel compare-and-swap with items ahead
21: for j in 1 to K; j+=2 do //fully unrolled
22: if k_nearest_dist[j] < k_nearest_dist[j+1] then
23: swap (k_nearest_dist[j], k_nearest_dist[j+1])

24: swap (k_nearest_id[j], k_nearest_id[j+1])

25: //Parallel compare-and-swap with items behind
26: for j in 1 to K; j+=2 do //fully unrolled
27: if k_nearest_dist[j] > k_nearest_dist[j-1] then
28: swap (k_nearest_dist[j], k_nearest_dist[j-1])

29: swap (k_nearest_id[j], k_nearest_id[j-1])

30: //Optional step to merge local top K contenders in this function

as user-configurable, as CHIP-KNNv2 supports this additional configuration. For each tile of the

dataset, the PE buffers it on chip and processes it in three major stages. Note all lines of code refer

to Algorithm 1.

3.1.1 Load_Buf Stage (Lines 1-3). To improve the memory access performance, this stage reads

a portion of the search space data points from off-chip memory and buffers them in the on-chip

memory. This memory read uses burst access and achieves an II (initiation interval) of 1. The

following two stages, Dist_Calc and Top_K_Sort, work on this local on-chip buffer. The off-chip

memory access is also optimized by carefully tuning the memory ports’ data width and consecutive

data access size, as well as the operating frequency of the accelerator design, which will be further

explained in Section 3.6.

3.1.2 Dist_Cal Stage (Lines 4-10). This stage calculates the distance between the query point and
each point in the buffered search space. Currently, CHIP-KNN supports two types of distance metric

calculations: Manhattan distance and Euclidean distance. One can easily extend CHIP-KNN with
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other distance metrics. Between two D-dimension data points, X and Y, the Manhattan distance

and Euclidean distance are:

𝑀 (𝑋,𝑌 ) =
𝐷∑︁
𝑖=1

��𝑋𝑖 − 𝑌𝑖
�� , 𝐸 (𝑋,𝑌 ) = 𝐷∑︁

𝑖=1

(𝑋𝑖 − 𝑌𝑖 )2 (3)

where we do not include the square root operation for Euclidean distance in either CPU, GPU, or

FPGA implementations.

In this stage, we explore the following fine-grained data parallelism and pipeline parallelism.

First, we fully parallelize (unroll) the calculation of all D dimensions in each distance calculation as

shown in Equation 3 when necessary; for very high dimension D, we only perform partial unroll

to balance different stages. Second, we further divide the buffered search space into dist_factor
partitions and fully parallelize the distance calculation within each partition. Third, we pipeline

the processing between multiple partitions with II of dist_II, as shown in lines 8-9. In Section 3.8,

our automation tool will choose the optimal dist_factor and dist_II to balance the execution of the

three stages in each PE.

3.1.3 Top_K_Sort Stage (Lines 11-30). This step sorts the top K nearest neighbors to the input

query data point and returns the sorted top K distances and their corresponding data point IDs

(lines 14-15). To improve the hardware efficiency, we propose the following novel top K sorting

algorithm, which reduces the overall algorithmic complexity to O(2N).

1. To avoid the frequent off-chip memory write and read of the local top K results for each tile, we

use the on-chip buffer 𝑘_𝑛𝑒𝑎𝑟𝑒𝑠𝑡_𝑑𝑖𝑠𝑡 to store the up-to-date top K results across all processed

tiles within each PE. For each tile, this 𝑘_𝑛𝑒𝑎𝑟𝑒𝑠𝑡_𝑑𝑖𝑠𝑡 buffer is compared against all the B data

points in the 𝑝𝑜𝑖𝑛𝑡_𝑑𝑖𝑠𝑡 buffer (lines 12-13) to make sure it always keeps the K smallest distances.

That is, we have the i loop that iterates the 𝑝𝑜𝑖𝑛𝑡_𝑑𝑖𝑠𝑡 buffer as the outer loop (line 16), and the

j loops that iterate the 𝑘_𝑛𝑒𝑎𝑟𝑒𝑠𝑡_𝑑𝑖𝑠𝑡 buffer as the inner loops (lines 21 and 26).

2. To enable fine-grained data parallelism and pipeline parallelism, inside each loop iteration i (line

16), we split the compare-and-swap loop into two j loops. For the first j loop (lines 20-24), it

compares-and-swaps elements with their next neighbor. For the second j loop (lines 25-29), it

compares-and-swaps elements with their previous neighbor. Both loops increment j by a step of

two. As a result, we can fully parallelize (unroll) both j loops. Moreover, we should be able to

pipeline the i loop with an II of 2; however, in CHIP-KNNv1, due to Vitis HLS tool limitation, it

only achieved an II of 3.

To explore coarse-grained parallelism, we further divide the 𝑝𝑜𝑖𝑛𝑡_𝑑𝑖𝑠𝑡 buffer into sort_factor
partitions and all partitions sort their own top K results in parallel. After processing all tiles within

the PE, a local merger within the 𝑇𝑜𝑝_𝐾_𝑆𝑜𝑟𝑡 function is used to merge sort_factor copies of

top K results buffered on chip, which has an algorithmic complexity of O(sort_factor*K). Since
sort_factor is much smaller than N, the execution time of this local merger is negligible. In cases of

high-dimensional feature vectors, this coarse-grained parallelism optimization is not needed since

the 𝑇𝑜𝑝_𝐾_𝑆𝑜𝑟𝑡 stage runs much faster than the other two stages. In Section 3.8, our automation

tool will decide whether the coarse-grained parallelism optimization and the corresponding local

merger is needed, and if yes, it will choose the optimal sort_factor to balance the execution of the

three stages in each PE.

Proof of the Top_K_Sort algorithm. Finally, we prove the correctness of our novel hardware-

friendly sorting algorithm. To get started, 𝑘_𝑛𝑒𝑎𝑟𝑒𝑠𝑡_𝑑𝑖𝑠𝑡 [1 : 𝐾] swaps in the first K distances from

𝑝𝑜𝑖𝑛𝑡_𝑑𝑖𝑠𝑡 [0 : 𝐾 −1] after the first K iterations of the i loop. For any following loop iteration 𝑖 >= 𝐾

(line 16), it compares 𝑘_𝑛𝑒𝑎𝑟𝑒𝑠𝑡_𝑑𝑖𝑠𝑡 [1 : 𝐾] (i.e., current top K distances) and 𝑘_𝑛𝑒𝑎𝑟𝑒𝑠𝑡_𝑑𝑖𝑠𝑡 [0]
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(i.e., incoming 𝑝𝑜𝑖𝑛𝑡_𝑑𝑖𝑠𝑡 [𝑖]) so that the largest distance is always swapped to 𝑘_𝑛𝑒𝑎𝑟𝑒𝑠𝑡_𝑑𝑖𝑠𝑡 [0].
This is guaranteed because:

1. If the largest distance is 𝑘_𝑛𝑒𝑎𝑟𝑒𝑠𝑡_𝑑𝑖𝑠𝑡 [0] in iteration 𝑖 , it is already there and does not need

any swapping.

2. If the largest distance is newly introduced in iteration 𝑖′, i.e., 𝑖 − 𝐾 < 𝑖′ < 𝑖 , then the furthest

position this largest distance can go is 𝑖 − 𝑖′. At the same time, in iteration 𝑖 , it has already gone

through 𝑖 − 𝑖′ compares-and-swaps. Therefore, it is guaranteed to arrive at 𝑘_𝑛𝑒𝑎𝑟𝑒𝑠𝑡_𝑑𝑖𝑠𝑡 [0].
3. If the largest distance was in 𝑘_𝑛𝑒𝑎𝑟𝑒𝑠𝑡_𝑑𝑖𝑠𝑡 [1 : 𝐾], in iteration 𝑖 − 𝐾 or earlier, it has already

gone through K compares-and-swaps to arrive at 𝑘_𝑛𝑒𝑎𝑟𝑒𝑠𝑡_𝑑𝑖𝑠𝑡 [0].
In summary, 𝑘_𝑛𝑒𝑎𝑟𝑒𝑠𝑡_𝑑𝑖𝑠𝑡 [1 : 𝐾] always keeps the K smallest distances. The final extra K

iterations (line 16) are used to ensure that the final 𝑘_𝑛𝑒𝑎𝑟𝑒𝑠𝑡_𝑑𝑖𝑠𝑡 [1 : 𝐾] are sorted from the

largest to the smallest.

3.1.4 Ping-Pong Buffer. Finally, we use the Ping-Pong buffer technique [9, 10] to execute the
Load_Buf, Dist_Cal, and Top_K_Sort stages in a coarse-grained pipeline. We call these three stages

together a single processing element (PE).

3.2 Streaming-based Single-PE KNN Design
To further improve resource utilization and design frequency, we implement another design variant

—CHIP-KNNv2—a streaming-based architecture which reuses most of the processing modules

(except the intra-PE merge unit) from CHIP-KNNv1. The processing modules of CHIP-KNNv2 are

constructed in a dataflow fashion by making the following changes, as shown in Figure 1.

1. In the distance compute module, we buffer the query point, and stream all search space points

once to compute their distances from the query point;

2. In the sort module, we buffer the K nearest distance-id pairs, and stream new distance-id pairs

from distance compute module throughmultiple parallel compare units to swap with the buffered

K nearest distance-id pairs;

3. In the merge module (will be detailed in Section 3.4), we stream from the lowest distance value

to the highest distance value elements from each 𝑘_𝑛𝑒𝑎𝑟𝑒𝑠𝑡 buffer for comparison, and merge

the intermediate results into a single set of K nearest distance-id pairs.

CHIP-KNNv2 also provides an extra configuration to allow users to specify different 𝑑𝑎𝑡𝑎𝑡𝑦𝑝𝑒s of

the search space points, including 8-bit, 16-bit, and 32-bit fixed-point, as well as 32-bit floating-point

data types. Compared with the buffer-based CHIP-KNNv1 design, our CHIP-KNNv2 architecture

eliminates the high on-chip buffer (BRAM and URAM) usage and their associated control logic

overhead, and leverages the resource efficient FIFO channels to link the processing modules together.

3.3 Multi-PE Scaling
To better scale the design to utilize the computing resource from multiple SLRs (FPGA dies) and

off-chip bandwidth frommultiple HBM banks, CHIP-KNN further exploits the task-level parallelism

by instantiating multiple PE instances to process different partitions of the search space in parallel.

We denote the number of PEs as P, which will be generated by our automation tool in Section 3.8.

Since each PE only produces the partial top_K result, we add an inter-PE merge unit, to merge

the P copies of top-K contenders to the global K-nearest neighbors. This inter-PE merger only

needs to execute once after all PEs finish processing their section of the search space. Its execution

time is negligible if the data access to all the local top_K results are on chip. This merge unit is

discussed further in Section 3.4.
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Fig. 2. Architecture diagrams of monolithic merging unit and hierarchical merging unit.

3.4 Hierarchical Tree-based Merge Module Design
To alleviate the routing congestion of our accelerator design, we investigate and rethink the design

of our merge module which draws values from multiple input sources and funnels them through

based on their comparison results. For our CHIP-KNN design, as input, our merge module takes

multiple K nearest neighbour results from different sorting modules (i.e., intra-PE merging) or PE

modules (i.e., inter-PE merging). The output is a single set of K nearest neighbours results.

Figure 2 shows architecture diagrams for two implementations: a monolithic merging unit, and a

hierarchical merging unit. Here, we see that the monolithic merging unit features centralized logic,

requiring many wires to route into a small area. On the other hand, the hierarchical merging unit

features distributed pairwise merge nodes, connected in a tree-like fashion. These nodes could be

distributed across the board, decreasing congestion in comparison to the monolithic merging unit.

To evaluate the end-to-end frequency gain from the hierarchical merge structure, we have

collected and compared results across all of the dimensional configurations listed in Table 1 in

Section 4.1, with K=10 and N=4M. The results show an average frequency improvement of 2.1%,

and up to 5.2% frequency improvement. In fact, for one of the evaluated designs, the monolithic

merge-based design failed to route, whereas the hierarchical merge-based design was successfully

placed and routed, achieving the desired frequency of 225MHz.

3.5 Timing Closure and Floorplanning Optimization
Meeting timing constraints is a major challenge for many high-performance FPGA accelerator

designs on multi-die datacenter FPGAs [12, 18, 44]. CHIP-KNN also suffers from this, as we have

experienced in our CHIP-KNNv1 paper [27]. To address the timing closure issue, we have integrated

the open-source TAPA/AutoBridge framework [8, 18] into our CHIP-KNN framework to build our

streaming-based CHIP-KNNv2 multi-PE design.

TAPA/AutoBridge is a high-performance fast-compiling HLS framework that is fully compatible

with the AMD/Xilinx Vitis/Vivado toolflow. It generally provides three main benefits. First, to

improve the timing closure issue for dataflow programs where tasks communicate via FIFO streams,

it automatically applies coarse-grained floorplanning optimizations: it constrains each task within

a local FPGA region to improve local placement and routing, and inserts pipeline registers between

local regions (i.e., dataflow tasks) to shorten global routing paths. This greatly improves the design

build success rate and the final design frequency. With this integration, we are able to generate

high-frequency CHIP-KNN accelerators. Second, it also reduces BRAM resource utilization for

the standard Xilinx AXI interface by using a more lightweight resource-efficient streaming AXI

interface to access off-chip memory. This is particularly helpful for the HBM-based U280 FPGA since

the significant BRAM consumption on the bottom die of the FPGA (due to multiple AXI interfaces)
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Fig. 3. Floorplanning results of CHIP-KNN designs: a) the CHIP-KNNv2 design without TAPA/AutoBridge
at 104MHz, and b) the CHIP-KNNv2 design with TAPA/AutoBridge at 227MHz. The CHIP-KNNv1 design
failed to place, even with only 12 PEs. Please note different colours represent different PEs. All designs use
configuration parameters: N=4,194,304, K=10, D=2, Metric=Euclidean, with float32 data.

often causes timing violations and poor place-and-route results. This also saves resources for useful

computations and alleviates timing constraints. Third, it provides a user-friendly programming

model (called TAPA) for task-parallel dataflow programs in C++ by abstracting away the complex

OpenCL API calls to support task parallelism. To leverage the benefits of TAPA/AutoBridge, as will

be detailed in Section 3.8, CHIP-KNN automatically generates the TAPA HLS design and host code.

To illustrate the floorplanning differences, Figure 3 shows the same CHIP-KNNv2 design with

and without Autobridge. The design configurations shown are as follows: 𝑁 = 4𝑀 , 𝐾 = 10, 𝐷 = 2,

Euclidean distance metric, with 32-bit single-precision floating-point data. The PEs are numbered

in the figures, and are highlighted in different colors. The buffer-based CHIP-KNNv1 design is not

included in Figure 3, because this design failed to place with even 12 PEs. This is due to the fact that

the buffer-based CHIP-KNNv1 design uses considerably more resources than the streaming-based

CHIP-KNNv2 design, discussed further in Section 4.4. Figure 3a shows the streaming-based CHIP-

KNNv2 design without using AutoBridge, which achieved a kernel frequency of 104 MHz. Figure

3b shows the streaming-based CHIP-KNNv2 design with AutoBridge, which achieved a kernel

frequency of 227 MHz. Comparing between these two figures visually, we see that AutoBridge

organizes the PEs significantly better, reducing long delay paths, and grouping the logic together

more tightly. For example, in Figure 3a, we see PEs 2, 5, 11, and 12 all straddling the central reserved

column of the FPGA board, which causes additional logic delays. We also see that without coarse-

grained floorplanning, Vivado decides to overlap the logic for different PEs, as seen in PEs 4, 5,

and 8. Meanwhile, Figure 3b shows better clustering of logic. Only PE 12 seems to be significantly

spread across the board, but the TAPA-inserted FIFOs enable this sort of floorplanning without a

harsh frequency drop. We also notice better spreading of the logic - whereas Vivado alone clusters

far more logic at the bottom of the board (close to the HBM banks) and leaves the top unused,

Vivado with the guidance of AutoBridge more evenly distributes logic across the entire board.
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Fig. 4. Read bandwidth of a single HBM bank on Alveo U280 FPGA, with different consecutive data access
sizes: a) shows the effective bandwidth at different AXI port widths ranging from 32-bit to 1024-bit; b)
shows the effective bandwidth of a 512-bit AXI port at different kernel frequencies ranging from 100MHz to
300MHz [28]. Note the x-axis is plotted in 𝑙𝑜𝑔2 scale.

3.6 Off-Chip Bandwidth Characterization and Optimization
To optimize the data access between off-chip memory and on-chip buffers for each PE, we follow the

method described in [28] to characterize the effective memory access bandwidth of a single HBM

bank on the Alveo U280 FPGA board [39]. Shown in Figure 4a, as the memory access port width

increases and the consecutive data access size increases, the effective bandwidth increases. While

the peak theoretical bandwidth of a single HBM bank is 14.4GB/s, the peak effective bandwidth

is only 13.18GB/s and can only be achieved when the port width is no less than 512bits and the

consecutive access size is no less than 128KB. Therefore, our CHIP-KNNv2 automation framework

selects a 512-bit port width. Another important key bandwidth impacting factor is the kernel

frequency as shown in Figure 4b. For a 512-bit port, the effective bandwidth increases as the kernel

frequency increases until 225MHz, since the HBM stack on U280 operate at 450MHz, and the

physical AXI port width is 256-bit. Therefore, our CHIP-KNN designs only need to achieve 225MHz

clock frequency to exploit the effective off-chip bandwidth. When using all 32 HBM banks, the

maximum achieved bandwidth is approximately 421.6 GB/s.

3.7 Analytical Performance Model
To guide our automation tool to select the optimal design points, we build an analytical perfor-

mance model to calculate the latencies for all three stages— Load_Buf, Dist_Cal, and Top_K_Sort in
Algorithm 1—that execute in a dataflow fashion. The goal is to balance the execution latencies of

these three stages within each PE.

For any pipelined function, the total execution time is calculated as follows:

𝐿𝑎𝑡𝑒𝑛𝑐𝑦 = (𝑝𝑖𝑝𝑒_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 − 1) ∗ 𝐼 𝐼 + 𝑝𝑖𝑝𝑒_𝑑𝑒𝑝𝑡ℎ (4)

where 𝑝𝑖𝑝𝑒_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 is the number of pipeline iterations, 𝐼 𝐼 is the initiation interval, and

𝑝𝑖𝑝𝑒_𝑑𝑒𝑝𝑡ℎ is the pipeline depth. Next, we apply the performance model from equation 4 to

the buffer-based implementation. Note that the latencies of the merge units are negligible, as

explained in Section 3.1 and 3.3. Therefore, we do not model them. However, their execution time

is included in our experimental results in Section 4.

3.7.1 Buffer-based Architecture Performance Model. In order to balance the execution times

of our three modules, we formulate an analytical performance model for each module.
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Buffered_Load. The latency to load one tile is:

𝐿𝑜𝑎𝑑 = [(𝑏𝑢𝑓 _𝑠𝑖𝑧𝑒/𝑝𝑜𝑟𝑡_𝑤𝑖𝑑𝑡ℎ − 1) + 𝑑𝑒𝑝𝑡ℎ𝑙𝑑 ] ∗ effective_BW_factor(𝑏𝑢𝑓 _𝑠𝑖𝑧𝑒, 𝑝𝑜𝑟𝑡_𝑤𝑖𝑑𝑡ℎ)
(5)

Here, the burst read achieves an II of 1, and each load reads 𝑝𝑜𝑟𝑡_𝑤𝑖𝑑𝑡ℎ size of data. Therefore, it

needs 𝑏𝑢𝑓 _𝑠𝑖𝑧𝑒/𝑝𝑜𝑟𝑡_𝑤𝑖𝑑𝑡ℎ number of loads. 𝑑𝑒𝑝𝑡ℎ𝑙𝑑 is the fixed initialization overhead that can

be retrieved from one-time HLS synthesis. By default, Vitis HLS assumes an ideal linear bandwidth

scaling with the port_width and does not consider the effective memory bandwidth that we have

characterized in section 3.6. To make it more accurate, we introduce 𝑒 𝑓 𝑓 𝑒𝑐𝑡𝑖𝑣𝑒_𝐵𝑊 _𝑓 𝑎𝑐𝑡𝑜𝑟 =

𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐_𝐵𝑊 /𝑒 𝑓 𝑓 𝑒𝑐𝑡𝑖𝑣𝑒_𝐵𝑊 to adjust the load latency based on buf_size and port_width.
Buffered_Dist_Calc. In order to define the latency to calculate distances, we first need to

determine the number of buffered distances, 𝐵, that we have to compute.

𝐵 = 𝑏𝑢𝑓 _𝑠𝑖𝑧𝑒/(𝐷 ∗ 𝑏𝑦𝑡𝑒𝑠_𝑖𝑛_𝑑𝑎𝑡𝑎𝑡𝑦𝑝𝑒) (6)

As 𝐷 or 𝑏𝑦𝑡𝑒𝑠_𝑖𝑛_𝑑𝑎𝑡𝑎𝑡𝑦𝑝𝑒 grows, the number of distances that must be computed and buffered

for each tile decreases. Now, the latency to calculate distances for one tile is:

𝐷𝑖𝑠𝑡_𝐿𝑎𝑡 = (𝐵/𝑑𝑖𝑠𝑡_𝑓 𝑎𝑐𝑡𝑜𝑟 − 1) ∗ 𝑑𝑖𝑠𝑡_𝐼 𝐼 + 𝑑𝑒𝑝𝑡ℎ𝑑𝑖𝑠𝑡 (7)

The dist_factor and dist_II can be adjusted to tune the latency of this function. The corresponding

𝑑𝑒𝑝𝑡ℎ_𝑑𝑖𝑠𝑡 can be inferred from the pipeline depth value when dist_factor=1 and dist_II=1, which

can be retrieved from one-time HLS synthesis.

Buffered_Top_K_Sort. The latency to sort distances for one tile is:

𝑆𝑜𝑟𝑡_𝐿𝑎𝑡 = ((𝐵 + 𝐾)/𝑠𝑜𝑟𝑡_𝑓 𝑎𝑐𝑡𝑜𝑟 − 1) ∗ 3 + 𝑑𝑒𝑝𝑡ℎ𝑠𝑜𝑟𝑡 (8)

which is similar to Equation 7, except that the II is fixed as 3 (due to Vitis HLS limitation). The

sort_factor can be adjusted to tune the latency. The 𝑑𝑒𝑝𝑡ℎ𝑠𝑜𝑟𝑡 can be inferred from one-time HLS

synthesis.

3.7.2 Streaming-based Architecture Performance Model. For the streaming-based architec-

ture, to achieve an overall II of 1 for the system, we analyze the II of each module, rather than

the latency. This is because the overall system throughput is bottlenecked by the module with

the largest II. For our design, we adjust the unroll factors of both the load module and distance

calculation module to achieve an II of 1. Note that for the load module, our effective bandwidth

factor no longer considers the buffer size or search space size, because the search space is typically

large and is streamed in to have a large burst access size, which maximizes the memory bandwidth,

as explained in Section 3.6. Additionally, following the characterization in Section 3.6, our port

width is always chosen to be 512 bits. The streaming-based sorting module achieves an II of 2 as a

result of the bottom-up synthesis, provided by our TAPA [8] integration. Therefore, we instantiate

twice as many sorting modules, and stagger their computations to achieve an overall II of 1.

3.8 Automation Support for CHIP-KNN
To support flexible KNN designs and eliminate the laborious design space exploration, for a given

user configuration of KNN parameters and a target FPGA platform, we develop a design automation

tool. Figure 5 shows the automation toolflow for both design versions: CHIP-KNNv1 and CHIP-

KNNv2, to generate the optimal accelerator design that best utilizes the off-chip memory bandwidth

under the available FPGA resource limit.

3.8.1 CHIP-KNNv1 Automation Support. First we discuss the automation support for CHIP-

KNNv1, which features the buffer-based architecture explained in Section 3.1. The automation

support is illustrated in Figure 5.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.



CHIP-KNNv2: A Configurable and High-Performance K-Nearest Neighbors Accelerator on HBM-based FPGAs 1:13

(a) CHIP-KNNv1 automation flow

TOOL
OUTPUT

CHIP-KNN
Design

Template

Analytical
Performance

Model

Vitis HLS

Multi-PE
Scaler

Build
Pass?

Relax
Resource

Target
Finish

Optimized
Multi-PE
Design

Optimized
Single-PE

Design

buf_size
port_width

dist_II
dist_factor
sort_factor

Memory
Bandwidth
Analysis

Resource
Estimation

Bandwidth
Utilization

buf_size
port_width

dist_II
dist_factor
sort_factor

# PEs

YN

USER 
INPUT

KNN Algorithm
Parameters
N, D, Dist, K

FPGA Platform
Information

Logic & Memory

(b) CHIP-KNNv2 automation flow
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Fig. 5. Flowchart of design automation for (a) CHIP-KNNv1 and (b) CHIP-KNNv2.

1. Given a user configuration ofN,D,K, and distance metric as input, our automation tool first gener-

ates a collection of balanced single-PE KNN designs based on our CHIP-KNNv1 design template.

To explore the design space, we vary the 𝑏𝑢𝑓 _𝑠𝑖𝑧𝑒 of 64KB and 128KB and port_width of 256bits

and 512bits. This is because the best performing single PE design that has balanced workloads

and can achieve the best effective bandwidth of a single memory bank (i.e., local_search_space no
less than 128KB and port_width no less than 512bit) sometimes cannot utilize the most off-chip

bandwidth due to resource or routing constraint as the number of PEs scales. Based on our

performance model from Section 3.7.1, we generate the corresponding balanced dist_factor,
dist_II, and sort_factor parameters of the three design stages.

2. For each balanced single-PE design, our tool determines its resource utilization using Vitis HLS

synthesis and its bandwidth utilization based on the memory bandwidth characterization in

Section 3.6.

3. In the optimal design configuration search step, we first scale the number of PEs for each

balanced design choice by taking the available logic and memory resource of the FPGA platform

as input. Since each PE occupies one single off-chip memory bank in CHIP-KNNv1, we determine
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the maximum number of PEs that can fit onto the FPGA as:

#𝑃𝐸𝑠 =𝑚𝑖𝑛(#𝑜 𝑓 𝑓 _𝑐ℎ𝑖𝑝_𝑚𝑒𝑚𝑜𝑟𝑦_𝑏𝑎𝑛𝑘𝑠, 𝛼 ∗ 𝐹𝑃𝐺𝐴_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒/𝑃𝐸_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒) (9)

where 𝛼 is a coefficient that is initially set as 70%, since a typical design that uses more than 70%

of the FPGA resource is very hard to pass the placement and routing.

4. Based on the maximum number of PEs and the bandwidth utilization results for each PE, we

can decide the total bandwidth utilization for each multi-PE design choice. Our tool chooses the

design that achieves the highest bandwidth as the final optimal design point, and generates the

final design with a set of parameters including buf_size, port_width, dist_factor, dist_II, sort_factor,
#PEs, and #tiles per PE (i.e., number of buffered tiles per PE).

5. Finally, we build the generated optimal designwith Xilinx Vitis 2019.2 tool [40]. If it is successfully

built, it ends with the selected design. Otherwise if the design fails the placement and routing,

we relax the current 𝛼 by 5% (i.e., using 5% less resource) and repeat step 3 to 5 again until the

design can be successfully built. Our experiments show that at most we need to take 5 iterations

until 𝛼 = 50% to find the final optimal design that can be successfully built.

3.8.2 CHIP-KNNv2 Automation Support. With CHIP-KNNv2, which uses the streaming-based

single-PE design explained in Section 3.2, the automation support is simplified, faster, and more

configurable. This is shown in Figure 5. In this subsection, we discuss the key differences between

the automation support in CHIP-KNNv2 and CHIP-KNNv1.

1. Increased configurability: end-users can now select a target datatype, which can be either 32-bit

single-precision floating-point, 32-bit fixed-point, 16-bit fixed-point, or 8-bit fixed-point.

2. Faster design space exploration: rather than synthesizing several pareto-optimal designs with

different combinations of buffer-size/port-width, we simplify the automation to target a single

design with the optimal port width of 512 bits for the Alveo U280 FPGA, as identified in [28].

Furthermore, the buffer size is no longer a consideration, as we have moved to a streaming-based

architecture.

3. Improved placement and routing: our automation tool now generates the kernel and host

code in TAPA HLS C [8], which can leverage the coarse-grained floorplanning and pipelining

optimizations by AutoBridge [18] to improve the timing closure. As explained in Section 3.5,

with this integration, the achievable frequency increases significantly.

4 EXPERIMENTAL RESULTS AND ANALYSIS
4.1 Experimental Setup
KNN configuration.We evaluate CHIP-KNN with a wide range of parameter configurations listed

in Table 1. The size of the search space (N) ranges from 2 million to 8 million data points, the

number of dimensions (D) ranges from 2 to 128, and the datatype includes 8-bit fixed-point, 16-bit

fixed-point, 32-bit fixed-point, and single-precision floating-point. Therefore, the total size of the

search space data, which is 𝑁 ∗ 𝐷 ∗ 𝑏𝑦𝑡𝑒𝑠_𝑖𝑛_𝑑𝑎𝑡𝑎𝑡𝑦𝑝𝑒 bytes, ranges from 4MB (when N=2M, D=2,
and datatype is 8-bit fixed-point) to 4GB (when N=8M, D=128, and datatype is 32 bits wide). The K

value we evaluate ranges from 5 to 20, since typically small Ks are used in real-world applications.

For distance metrics, both Manhattan and Euclidean distances are evaluated. All the results are

presented for a single input query.

Hardware platform and software tool. To evaluate the CPU implementation, we use a dual-

socket 14nm Xeon Silver 4214 CPU (with a total of 24 cores and 48 hyper-threads) and 196GB

DRAM. Our CPU system has a maximum memory bandwidth of 160 GB/s, measured using Intel’s

Memory Latency Checker tool [22]. Our baseline CPU implementation of KNN was adapted from

the Rodinia benchmark suite [7]. The query data are stored using vector arrays and the processing
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Table 1. Evaluated key KNN parameter configurations. *Note that Datatype is configurable in CHIP-KNNv2,
and CHIP-KNNv1 only supports float32.

KNN Parameters Values

N: Number of data points in the searchspace 2M, 4M, 6M, 8M

D: feature dimension 2, 4, 8, 16, 32, 64, 128

K 5, 10, 15, 20

Distance metric Manhattan, Euclidean

Datatype* float32, 32-fixed, 16-fixed, 8-fixed

is parallelized using 48 threads (i.e., all available hardware threads), and compiled with gcc -Ofast
optimization flag, which automatically explores the vectorization optimization. To benchmark

our CPU design, we compare it against state-of-the-art FAISS CPU implementation [23] across all

design configurations described in Table 1. Our results show that, in terms of latency (end-to-end

time per query), our CPU implementation outperforms FAISS from 3.3x to 100x (depending on the

dimension). This is because FAISS prioritizes throughput rather than latency. On the other hand,

in terms of throughput (queries-per-second), our CPU implementation is competitive with FAISS,

achieving 3.3x the throughput at low dimensions, and 0.76x at high dimensions.

For the GPU implementation, we use the state-of-the-art FAISS GPU [23] implementation, and

run experiments on an NVIDIA Tesla V100 with 16GB DRAM. We evaluate our CHIP-KNN ac-

celerator designs on the 16nm AMD/Xilinx Alveo U280 datacenter FPGA board (with 32 HBM2

banks) [39] as described in Section 2.2. Both CHIP-KNNv1 and CHIP-KNNv2 accelerators are

entirely developed using Vitis HLS. We build our CHIP-KNNv1 designs using Xilinx Vitis 2019.2,

and CHIP-KNNv2 designs using the recent version of TAPA (Ver.0.0.20220807.1), which requires

Xilinx Vitis 2020.2 [40].

4.2 Overall CHIP-KNN Speedup Over CPU
Figure 6 summarizes the geometric mean of performance improvement results of CHIP-KNN

accelerated on an Alveo U280 FPGA over the 48-thread CPU version across all configurations in Ta-

ble 1. On average, for supporting the 32-bit single-precision floating-point data representation, our

buffer-based CHIP-KNNv1 design achieves 5.23x speedup while streaming-based CHIP-KNNv2 de-

sign achieves 8.52x speedup. Taking into account all of the supported data representations in the

CHIP-KNNv2 design, it achieves 15.49x speedup over the CPU implementation.
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Fig. 6. Geometric mean of speedup over CPU across all configurations in Table 1.

Figures 7 and 8 showcase the latency and throughput comparison between CHIP-KNNv2 and the

48-thread CPU implementation, with floating-point data type. As shown, CHIP-KNNv2 outperforms
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Fig. 7. Single-query latency comparison between CHIP-KNNv2 , CPU, and FAISS-GPU, with N=4M, K=10,
and Euclidean distance. CPU and GPU implementations use floating-point data.
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Fig. 8. Throughput comparison between CHIP-KNNv2 , CPU, and FAISS-GPU, with N=4M, K=10, and
Euclidean distance. CPU and GPU implementations use floating-point data.

the CPU in both latency and throughput at each evaluated configuration, from 22.2x improvement

with 2D data, to 5.9x improvement with 128D data.

In fact, our accelerator also achieves a lower power usage than the CPU implementation at each

configuration. Figure 9 shows the throughput-per-watt comparison. Our results show that our

accelerator, using floating-point data, is 43.8x more energy efficient with 2D data, and 11.8x more

energy efficient with 128D data. On average, the power usage of CHIP-KNNv2 is 51.2% of that on

the CPU, due to the efficient custom design on FPGA.

4.3 Comparison Between CHIP-KNN and GPU
First, our FPGA design outperforms FAISS-GPU implementation in latency, as shown in Figure 7.

This is because our FPGA accelerator design optimizes for latency by exploiting data parallelism in

both distance calculation and distance sorting, as well as the pipeline parallelism between each stage.

In contrast, the FAISS’ GPU implementation optimizes for the overall throughput by concurrently

processing multiple queries in batches, with the searchspace data loaded once and shared for

each batch. In this way, the GPU outperforms CHIP-KNNv2, shown in Figure 8. Figure 9 presents

the throughput-per-watt comparison. For lower-dimension designs, CHIP-KNNv2 is competitive

to FAISS’ GPU implementation in throughput-per-watt. This is because the GPU is less able to
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Fig. 9. Throughput-per-watt comparison between CHIP-KNNv2, CPU, and FAISS-GPU, with N=4M, K=10,
and Euclidean distance. CPU and GPU implementations use floating-point data.

exploit high parallelism in the low-dimension computation. However, as the dimensions increase,

CHIP-KNNv2 is outperformed by FAISS-GPU.

More specifically, our FPGA design is outperformed by FAISS-GPU in throughput for the fol-

lowing reasons. Firstly, the V100 GPU has more computation resources running at a higher fre-

quency, and thus has more parallel computation power. Secondly, the FAISS design re-uses loaded

searchspace points across a batch of queries, which allows for more computation-per-byte. This

design is not feasible for the FPGA, due to the relatively limited computing resources. Lastly, the

V100 GPU has a theoretical memory bandwidth of 900 GB/s, which is almost twice that of the U280

FPGA at 460 GB/s.

In Table 2, we present the average performance across all the floating-point configurations

listed in Table 1. As shown, CHIP-KNNv2 achieves an average latency improvement of 30.6x over

the GPU design, for processing a single query. On the other hand, CHIP-KNNv2 on Alveo U280

FPGA achieves 13.5% of the throughput that the GPU design achieves when processing a batch

of 4,096 queries. In terms of power usage, CHIP-KNNv2 uses 34.3% of the power that the GPU

implementation requires.

Table 2. Average latency, throughput, and power usage comparison for CHIP-KNNv2 on U280 FPGA and
GPU design [14, 15] on V100, all using floating-point data type.

Latency Throughput Power Usage

30.6x faster than GPU 13.5% of GPU 34.3% of GPU

4.4 Comparison Between CHIP-KNNv1 and CHIP-KNNv2
To better understand the performance and resource differences between the two design variants,

CHIP-KNNv1 and CHIP-KNNv2, we first present the single-PE resource utilization comparison

results, where both designs achieve the same performance. Figure 10 compares the resource usages—

the LUT, FF, BRAM, URAM, and DSP utilization of a single PE—for one configuration with D=4,

N=4M, K=10, and using Euclidean distance metric on floating-point data points. Our experiments

show that other configurations have similar results. For a fair comparison, we generated both designs

using Vitis v2019.2, rather than generating CHIP-KNNv1 on Vitis v2019.2, and CHIP-KNNv2 on

Vitis v2020.2. Note that lower bar indicates improved resource efficiency. Across all resources

except for DSP (since both versions have the same processing capability), CHIP-KNNv2 design

requires fewer resources than CHIP-KNNv1 design. Especially for the on-chip memory (i.e., BRAM
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and URAM), it is almost eliminated in CHIP-KNNv2 due to its streaming-based architecture; the

remaining small amount of BRAM usage is mainly consumed by the AXI interfaces connecting the

HBM banks. The resource reduction in LUT and FF mainly come from removing the associated

control logic for the on-chip memory components.
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Fig. 10. Resource usage comparison of a single-PE accelerator design between CHIP-KNNv1 and CHIP-KNNv2,
with D=4, N=4M, K=10, float32 data, and Euclidean metric. Both versions achieve the same performance.

For the overall multi-PE performance comparison, Figure 11 shows throughput results of the

two design variants; the throughput is measured as effective off-chip bandwidth (GB/s) as both

CHIP-KNN designs are bandwidth bound. To better illustrate the performance difference, we

sweep through different feature dimensions ranging from 2D to 128D with N=4M, K=10, and

using Euclidean distance metric on floating-point data points. For low feature dimensions (i.e.,

16D and lower), CHIP-KNNv2 perform better than CHIP-KNNv1 designs mainly because of the

improved resource utilization from the streaming-based design. For high feature dimension (i.e., 32D

and higher) designs, CHIP-KNNv1 designs become bounded by the available computing resource

and severely suffer from the poor placement and routing quality; whereas CHIP-KNNv2 designs

integrated with TAPA/AutoBridge are effective to mitigate the design timing closure issue and

achieve an average throughput improvement of 1.83x over CHIP-KNNv1.
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Fig. 11. Throughput for different feature dimensions with N=4M, K=10, and Euclidean distance.

4.5 Speedup for Different KNN Configurations
To provide further details on the performance of CHIP-KNN against the optimized CPU imple-

mentation, we present speedup results for different data representations when varying each of the

essential parameters in D, K, distance metric, and N.
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4.5.1 Speedup for Different Feature Dimensions. Figure 12 presents the speedup of CHIP-KNN de-

signs over the 48-thread CPU implementation at different feature dimensions (D=2, 4, ..., 128) with

N=4M, K=10, and Euclidean distance. For designs with 32-bit data types (i.e., float32 and 32-bit

fixed-point), the speedup generally decreases as the feature dimension increases. This is because

the CHIP-KNN designs are bound by the off-chip bandwidth, and the placement and routing.

On the other hand, for higher feature dimensions, the CPU implementation can better utilize

vectorization instructions and thus its execution time increases sub-linearly. For low-precision

data types (i.e., 16-bit and 8-bit fixed-point), the achieved speedups are much higher. While the

performance of CHIP-KNN designs follows a similar trend as that of the 32-bit data type designs,

the CPU architecture is less optimized than our FPGA designs for processing the 8-bit and 16-bit

data points. The speedup fluctuation for different feature dimension is partially caused by variation

in the achievable number of PEs that affects the final bandwidth utilization, and partially due to

inherent noise in the CPU runtimes. We will analyze the accelerator efficiency in Section 4.6. We

also notice an anomalous speedup increase at the 32-dimensional configuration. This is due to the

CPU runtime increasing significantly over the 16 dimensional implementation.
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Fig. 12. Performance speedup for different feature dimensions with N=4M, K=10, and Euclidean distance.

4.5.2 Speedup for Different Ks. Figure 13 shows the speedup of CHIP-KNN designs for K=5, 10, 15,

and 20, with N=4M, D=64, and Euclidean distance. When K increases, CHIP-KNN designs for 32-bit

floating-point and fixed-point data types achieve slightly higher speedup. This is because, with a

larger K, the FPGA accelerator performance remains almost the same according to Algorithm 1,

while the CPU execution time slightly increases in the top_K_sort stage. The speedup slightly

decreases for 16-bit fixed-point and varies for 8-bit fixed-point CHIP-KNNv2 designs due to the

heuristic nature of TAPA/AutoBridge’s floorplanning optimizations.
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Fig. 13. Performance speedup for different Ks with N=4M, D=64, and Euclidean distance.
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4.5.3 Speedup for Different Distance Metrics. Figure 14 shows the speedup of CHIP-KNN designs

for Manhattan and Euclidean distances with N=4M, D=64, and K=10. Across all data types, CHIP-

KNN designs achieve nearly identical execution time for both Manhattan and Euclidean distance

metrics. However, for the CPU implementation, the version with Manhattan distance metric takes

longer to execute, due to overhead in the branch instruction (i.e. branch prediction) from the

absolute-value math function. This effect is exaggerated in graph, due to the nature of the speedup

computation: 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 = 𝐶𝑃𝑈 _𝑟𝑢𝑛𝑡𝑖𝑚𝑒/𝐹𝑃𝐺𝐴_𝑟𝑢𝑛𝑡𝑖𝑚𝑒 . Since the 8-bit design runs very quickly,

the denominator is small. Therefore, an increase in the CPU runtime is most noticeable in the

speedup value for the 8-bit design.
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Fig. 14. Performance speedup for different distance metrics with N=4M, K=10, and D=64.

4.5.4 Speedup for Different Dataset Sizes. Figure 15 shows the speedup of CHIP-KNN designs for

N=2M, 4M, 6M, and 8M, with D=64, K=10, and Euclidean distance. Our CHIP-KNN designs achieve

a consistent speedup, due to the fact that the runtime scales linearly with input size, on both CPU

and FPGA.
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Fig. 15. Performance speedup for different dataset sizes with K=10, D=64, and Euclidean distances.

4.6 Accelerator Efficiency Analysis
To better illustrate the efficiency of our CHIP-KNN designs on the U280 FPGA and explain the

speedup fluctuation results in Section 4.5, we further analyze those designs with D=2, 4, ..., 128,

N=4M, K=10, and Euclidean distance. Table 3 summarizes the resource utilization, execution time,

throughput, and bandwidth utilization of the designs generated using our automation framework.
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Dimension Version

Resource Usage (%) #HBMs

Used

#PEs

Throughput

(GB/s)

Bandwidth

utilization (%)

Runtime

(ms)

Freq.

(MHz)LUT FF BRAM URAM DSP

2

v1 67 39 60 30 12 9* 18* 98 21.3 0.32 218

v2 64 36 10 0 22 14 14 162 35.2 0.19 227

4

v1 68 41 58 27 20 16 16 173 37.6 0.36 228

v2 61 37 10 0 30 21 21 240 52.2 0.26 227

8

v1 66 47 37 40 31 24 24 283 61.5 0.44 229

v2 52 31 10 0 33 25 25 301 65.4 0.42 225

16

v1 63 45 32 47 36 28 28 296 64.4 0.85 205

v2 47 29 10 0 35 27 27 312 67.8 0.8 218

32

v1 50 39 27 40 30 24 24 202 43.9 2.48 216

v2 49 34 10 0 39 30 30 342 74.3 1.46 221

64

v1 45 37 21 27 28 16 16 183 39.8 5.45 260

v2 48 35 10 0 33 26 26 317 68.9 3.15 225

128

v1 47 38 18 14 15 8* 16* 115 25.0 17.33 259

v2 46 36 10 0 26 20 20 243 52.8 8.24 225

Table 3. Resource utilization and throughput of CHIP-KNN designs on Alveo U280 FPGA with different
dimensions, at N=4M, K=10, Euclidean distance, and single-precision floating-point data. Number of PEs,
number of HBM banks used, executioin time, and clock frequency are also included. *For the two corner
cases when D=2 and D=128 in CHIP-KNNv1, our automation tool decides that the best performance could be
achieved when each PE uses 256-bit AXI port and two PEs share one HBM bank in CHIP-KNNv1. Bandwidth
Utilization is calculated by achieved throughput divided by total HBM bandwidth.

4.6.1 Resource Utilization and Design Frequency. To pass the placement and routing, in our design

automation tool, we limit our CHIP-KNNv1 designs to utilize less than 70% of any resource (i.e.,

𝛼 = 70%). As shown in Table 3, all these designs are limited by the LUT resource. For the designs with

D=2, 4, and 8, their LUT utilization is fairly close to 70%. For the designs with higher dimensions,

they are limited by the placement and routing issue and we have to relax the target resource

utilization, i.e., the 𝛼 value. For the design with D=16, we have to relax 𝛼 to 65%; for the designs

with D=32, 64, and 128, we have to relax 𝛼 to 50%. Note the constant 10% BRAM usage in CHIP-

KNNv2 is due to the Vitis shell. For most of the designs, especially CHIP-KNNv2 designs, we

have achieved 225MHz or higher frequency; in occasional cases where the design did not achieve

225MHz, their frequency is also very close to 225MHz.

Table 3 also lists the number of PEs and the number of HBM banks used by the PEs in the design.

In most cases, each PE uses one HBM bank with 512-bit AXI port, except two corner cases when

D=2 and D=128 in CHIP-KNNv1. In those two cases, our automation tool decides that the best

performance could be achieved when each PE uses 256-bit AXI port and two PEs share one HBM

bank in CHIP-KNNv1. For our CHIP-KNNv2 designs, with the more resource efficient single-PE

design as discussed in Section 4.4 and integration with TAPA/AutoBridge as discussed in Section 3.5,

they instantiate more PEs and utilize more HBM banks in parallel, especially for designs with D=32,

64, and 128.

4.6.2 Bandwidth Utilization. To analyze the off-chip bandwidth utilization, we compute the

throughput as the total amount of input data, divided by the kernel execution time. The achieved

throughput is the key to CHIP-KNN performance, and is optimized according to the analytical

performance model from 3.7. As described in Section 3.6, the maximum practically achievable

throughput is 421.6 GB/s. We see that the CHIP-KNNv2 floating-point designs are capable of

achieving a throughput of up to 342 GB/s, when using 30 HBM banks. This is improved from

CHIP-KNNv1, which achieves a maximum throughput of 296 GB/s, when using 28 HBM banks.

The lowest throughput is achieved at designs with D=2 and D=128, and in the worst of these cases

CHIP-KNNv2 is able to achieve 162 GB/s throughput when using 14 HBM banks, while CHIP-

KNNv1 achieves 98 GB/s throughput with 9 HBM banks. These designs achieve lower throughput
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because each PE requires more resources, and therefore we are unable to utilize as many HBM

banks.

4.6.3 Performance Balancing. Table 4 summarizes the automation tool’s performance model out-

puts, alongside the cycle latencies of each stage - 𝐿𝑜𝑎𝑑_𝐵𝑢𝑓 , 𝐷𝑖𝑠𝑡_𝐶𝑎𝑙 , and 𝑇𝑜𝑝_𝐾_𝑆𝑜𝑟𝑡 - for each

PE in our designs. As shown, the design’s latencies are very well-balanced in most cases. For designs

with higher dimensions, the 𝐿𝑜𝑎𝑑_𝐵𝑢𝑓 stage takes more cycles, thus we relax the 𝑑𝑖𝑠𝑡_𝐼 𝐼 for the

𝐷𝑖𝑠𝑡_𝐶𝑎𝑙𝑐 stage. For the designs with lower dimensions, the 𝐿𝑜𝑎𝑑_𝐵𝑢𝑓 stage takes fewer cycles

and thus we have to increase the 𝑑𝑖𝑠𝑡_𝑓 𝑎𝑐𝑡𝑜𝑟 and 𝑠𝑜𝑟𝑡_𝑓 𝑎𝑐𝑡𝑜𝑟 . Notice that the 𝑇𝑜𝑝_𝐾_𝑆𝑜𝑟𝑡 stage

sometimes takes fewer cycles than the other two stages, especially when D is 16 and higher; this

is because the 𝑆𝑜𝑟𝑡_𝐹𝑎𝑐𝑡𝑜𝑟 is constrained (i.e., its smallest value is 1), and we cannot reduce the

resource usage of the sorting unit to slow it down further.

Comparing between the CHIP-KNNv1 and CHIP-KNNv2 implementations, we see that the

outputs of the performance model—specifically, 𝑆𝑜𝑟𝑡_𝐹𝑎𝑐𝑡𝑜𝑟—are different. This is alluded to the

difference in the achieved II of the sorting unit, shown in Equations 8 and ?? in Section 3.7. In this

table, we see the ramifications - the sort factor for CHIP-KNNv1 is higher, which is the result of the

achieved II being 3 instead of 2. Each sort unit requires a few more cycles to execute, and therefore

we instantiate more sorting units by increasing 𝑆𝑜𝑟𝑡_𝐹𝑎𝑐𝑡𝑜𝑟 . The distance factor is different only

in the 2-D configurations, and this is because the CHIP-KNNv1 design used a port width of 256 bits.

The 𝑑𝑖𝑠𝑡_𝐼 𝐼 also diverges slightly at the 64-D and 128-D designs. This is once again due to the sort

unit’s II - in order to balance the latency between top-K sort and distance calculation, the required

𝑑𝑖𝑠𝑡_𝐼 𝐼 diverges between the two versions.

Dimension Version

Dist

II

Dist

Factor

Sort

Factor

Load_Buf

Cycle latency

Dist_Calc

Cycle latency

Top_K_Sort

Cycle latency

2

v1 1 4 12 64,725 63,450 63,855

v2 1 8 16 37,462 37,491 37,505

4

v1 1 4 12 71,904 67,072 67,360

v2 1 4 8 49,942 49,987 49,985

8

v1 1 2 6 98,900 93,396 92,321

v2 1 2 4 83,893 83,952 83,935

16

v1 1 1 3 167,536 162,282 155,548

v2 1 1 2 155,351 155,458 155,393

32

v1 2 1 3 387,144 395,523 178,353

v2 2 1 1 279,628 279,764 279,669

64

v1 3 1 1 1,150,464 1,037,824 802,816

v2 4 1 1 645,288 645,468 645,347

128

v1 12 1 1 4,316,160 4,361,216 3,021,824

v2 8 1 1 1,677,740 1,678,008 1,258,383

Table 4. Automation tool outputs and execution cycles for CHIP-KNN designs on Alveo U280 FPGA with
different dimensions, at N=4M, K=10, Euclidean distance, and single-precision floating-point data.

5 RELATEDWORK
5.1 KNN Acceleration on FPGA
HLS-based KNN acceleration. In [35], Song et al. presented an HLS-C based KNN accelerator

that is adaptive to all key KNN parameters. It supports low-precision data representation and

PCA-based approximate KNN algorithm. However, their design is not fully optimized and only
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uses 11.9% of the available off-chip bandwidth. In [26], Liu implemented an OpenCL-based KNN

accelerator, which uses bitonic sort to sort the nearest neighbors. However, they only tested their

design under small datasets and utilized 7% of the off-chip bandwidth. In [32], Pu et al. implemented

an OpenCL-based KNN accelerator, which features a high-speed parallel sorting algorithm based

on bubble sort. However, their design only supports a fixed KNN configuration and utilizes 11.1% of

the off-chip bandwidth. As summarized in Table 5, we are the first to optimize the memory access

of KNN accelerators on datacenter FPGAs and can utilize up to 81.3% of the off-chip bandwidth of

the Xilinx Alveo U280 FPGA.

Design BW

(GB/s)

[35] [26] [32] CHIP-KNNv1

CHIP-KNNv2

(float)

CHIP-KNNv2

(all datatypes)

Max. Achieved BW 9.1 1.8 1.4 296 342 374

Theoretical BW 76.8 25 12.8 460 460 460

BW utilization 11.9% 7% 11.1% 64.3% 74.3% 81.3%

Table 5. Bandwidth comparison of FPGA acceleration.

Acceleration for KNN-based classifier system. In [20], Hussain et al. developed an HDL-

based KNN classifier to speed up the ensemble classification on FPGA through dynamic partial

reconfiguration that achieves 5x speedup. However, their design only supports small datasets that

can be stored on chip using FIFOs. In [36], Vieira et al. proposed a flexible HDL-based streaming KNN

classifier design for embedded FPGA-SoCs and compared performance results with a single-core

ARM Cortex-A9 processor. However, they did not exploit the abundant parallelism in the distance

calculation and sorting, nor did they fully optimize the off-chip memory access. Lastly, while their

framework generates user configured designs, the performance cannot be guaranteed to be optimal

for the device. For accelerating KNN on embedded FPGA SoC platforms, Gorgin et al. proposed

kNN-MSDF [16], a HDL-based design which uses binary signed digit representation to minimize

the hardware cost for implementing the distance computing logic and performs early termination

to save energy consumption. Different from our work, their accelerator is only evaluated on rather

small datasets (i.e., average dataset size less than 16k and data dimension less than 20). Besides,

it does not provide the automatic design generation and the comprehensive user configurable

parameters as CHIP-KNN. In [33], Samiee et al. proposed a reduced-rank local distance metric for

the KNN classifier mainly to improve the classification accuracy. Their work mainly focused on the

final classification accuracy using the proposed distance metric. The author presented performance

result for a fixed benchmark without detailed explanation.

Acceleration for approximated nearest neighbour search. Previous work [1, 13, 25] have

explored hardware acceleration of the algorithms involved in approximated nearest-neighbour

search (ANNS). In [6], Tavakoli et al. proposed an OpenCL-based FPGA accelerator for the KNN

algorithm that primarily focuses on scaling down high-dimensional sample data using random

projection and providing users a way to trade accuracy for performance. In [13], Danopoulos et

al. accelerated the vector indexing stage of an approximate KNN method used in the Facebook

Faiss [23] framework. In [1], Abdelhadi et al. designed a specialized FPGA-based accelerator that

exploits the low latency on-chip memory for accelerating Product-Quantization (PQ) based ANNS.

Lastly, in [25], Lee et al. proposed a specialized architecture for accelerating compression-based

ANNS algorithms used in Facebook Faiss [23] and Google ScaNN [19], based on an in-depth analysis

on the inefficiency of executing the ANNS on CPU/GPU. These ANNS-based acceleration work are

orthogonal to our work where we focus on the exact KNN algorithm.
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5.2 KNN Acceleration on CPU
In [42], Yu et al. accelerated the KNN kernel on a x86 CPU by combining the distance calculation and

sorting into a single operation to better utilize the memory bandwidth. As a result, they achieved

over 4x performance speedup compared to other existing methods of the time. In [4, 5], Arya et al.

proposed an optimized algorithm and developed a library to approximate KNN searching on a CPU.

5.3 KNN Acceleration on GPU
Besides the FAISS GPU implementation [23] that we have compared against in Section 4.3, there are

a couple more GPU acceleration studies. In [29], Matsumoto et al. used the GPU to accelerate the

distance calculation and the CPU to perform the sorting. Thus, their performance is limited by the

sorting stage. In [14, 15], Garcia et al. developed several CUDA implementations of the KNN kernel

and updated their GitHub source code in 2018 (https://github.com/vincentfpgarcia/kNN-CUDA).

Their implementation assumes a batch of input queries are processed concurrently. For the distance

calculation, they exploit the abundant parallelism among different queries, search space points,

and feature dimensions. For distance sorting, they only exploit the parallelism among queries; the

sorting remains sequential within the processing for each query.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we have designed and implemented a configurable and high-performance KNN

accelerator called CHIP-KNN. Given a user configuration of key KNN parameters, our tool can

automatically generate the optimal KNN accelerator design, which best utilizes the available

resources and off-chip bandwidth. We present two designs: CHIP-KNNv1, a buffer-based design;

and CHIP-KNNv2, a streaming-based design. Both designs are capable of consuming data as fast as

it can load data, through load-balancing techniques. To take advantage of this, we optimize the off-

chip memory access by identifying an optimal memory access port width and target frequency. We

also build an analytical performance model to guide our automation tool to find the optimal design

with balanced execution of all stages. CHIP-KNNv2 improves upon CHIP-KNNv1 in architectural

design, user configurability, and floorplanning. With CHIP-KNNv2, we have added support for

TAPA/AutoBridge [8, 18] to improve our achievable frequency. We also added support for user-

configurable datatype. Finally, we have conducted a wide range of experiments. Compared to a

48-thread CPU version, we achieve between 6x and 45x performance speedup across different

configurations. CHIP-KNNv1 is open-sourced at: https://github.com/SFU-HiAccel/CHIP-KNN, and

we plan to open-source CHIP-KNNv2 soon.
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