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Abstract—As the tremendous momentum cloud computing has
grown, the modern data center networks are facing challenge to
handle the increasing traffic demand among virtual machines
(VMs). Simply adding more switches and links may increase
network capacity but at the same time increase the complexity
and infrastructure cost. Thus, intelligent VM placement has been
proposed to reduce the intra-DC traffic. Prior solutions model the
traffic-aware VM placement problem as a Balanced Minimum
K-cut Problem (BMKP). However, the assumptions of “once-for-
all” VM placement on physical servers with equal VM slots are
often not realistic in practical data centers, and thus the naive
BMKP model may lead to suboptimal placement solutions.

In this work, we revisit the problem by considering the
server heterogeneity and propose an incremental traffic-aware
VM placement algorithm. Given that the BMKP model cannot
be directly applied, we make a number of transformations to
re-establish the model. First, by introducing pseudo VM slots
on physical servers with less VM slots, we allow the number
of available VM slots of each server to be different. Second,
pseudo edges with infinite costs are added between existing VMs,
and thus previously deployed VMs on the same physical server
will still be packed together. Third, a change on the number
of pseudo VM slots is applied, so that existing VMs placed on
different physical servers will still be separated. In this way, we
reduce the problem to a new BMKP problem, which results in
a much better solution. The evaluation results show that DVMP
can reduce up to 28%, 39% and 55% traffic compared with
naive BMKP model, greedy VM placement and random VM
placement, respectively.

I. INTRODUCTION

With the proliferation of cloud computing, more and more

applications are deployed in the data centers. Moreover, the

cloud applications are usually bandwidth hungry, for example,

MapReduce [1], HDFS [2], which shuffle a large amount of

data for computation. One of the challenges that the data center

operators face is the increasing traffic demand among VMs,

i.e., the ‘east-western’ traffic within the data center. In the past

few years, numerous efforts have been spent to address this

challenge in both industry and academia. Advanced network

topologies with more switches and links are designed to

expand the network capacity, such as BCube [3], Fat-Tree [4],

VL2 [5] and FiConn [6], with an extra infrastructure cost.
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In-network computation [7] and in-network caching [8], [9]

solutions are also proposed to reduce the traffic pressure

to the network, which require modifications to the switch

functionalities and thus is hard to deploy.

Complimentary to these fundamental changes discussed

above, the traffic-aware virtual machine (VM) placement was

suggested to optimize the bandwidth utilization given the

available resources without increasing the CAPEX [10], [11].

In today’s data center, the basic computation unit for resource

allocation is a VM with virtualized CPU and memory re-

sources. Data center operators have high flexibility in choosing

the physical server to place the VMs in order to achieve a

diverse set of goals, such as consolidating multiple VMs in a

physical server to improve resource multiplexing, migrating

VMs to different physical machines for load balance, etc..
Traffic-aware VM placement is one way to assign VMs to

minimize the total bandwidth consumption. More specifically,

some VMs have more traffic between them, so placing them

into the same physical server or physically closer servers can

help reduce the total amount of traffic carried by the network.

Prior work models the traffic-aware VM placement problem

as a balanced minimum k-cut problem (BMKP) [10], [11].

In this model, the VMs of a job are divided into k groups,

each of which is mapped to a physical server with equal

number of VMs. However, the hidden assumption of the naive

BMKP model may be broken in practical data centers, which

brings considerable challenges to solve the problem. First, the

naive BMKP model assumes a “once-for-all” VM placement

problem. In other words, it assumes that the requests for all

the VMs and their traffic matrixes in the entire data center are

given at once as input, and then we use the BMKP algorithm

to find the optimal placement. In reality, the computation

jobs dynamically arrive one after another, and the “once-for-

all” placement approach may lead to suboptimal placement

result. On one hand, it does not consider VM slots taken

by the existing jobs. On the other hand, the new job may

go beyond communicating among the VMs of itself, and

may communicate with the previously deployed VMs. For

instance, the new VMs need to read data from and write data

to the existing distributed file system. As we will show in

Section II-B, the traffic volume between new VMs and existing

VMs can be even larger than that within new VMs, and thus

cannot be ignored.

Second, the naive BMKP model supposes that all the physi-

cal servers have the same number of VM slots. But in practice,



the number of VM slots in the physical servers can be quite

different due to two reasons. On one hand, VM slots in some

physical servers can be partially occupied by existing jobs.

On the other hand, due to the purchase from different vendors

and rapid hardware innovations, data center servers are usually

equipped with different hardware configurations [12], [13] and

different capacities to host VMs. Both the factors result in

different numbers of available VM slots in physical servers

when placing the VMs for a job, which challenges the naive

BMKP model too.

In this paper, we revisit the traffic-aware VM placement

problem by breaking the assumptions on prior models and

supporting incremental traffic-aware VM placement on het-

erogeneous servers in data centers, and the new algorithm is

called DVMP. Given that servers are heterogeneous and the

naive BMKP model cannot be directly applied, DMVP makes

a number of transformations to re-establish the model. First,

pseudo VM slots are added on physical servers with less VM

slots, so as to make the physical servers equivalent. Second,

pseudo edges with infinite costs are added between existing

VMs, and thus previously deployed VMs on the same physical

server will still be packed together. Third, a change on the

number of pseudo VM slots is applied, so that existing VMs

placed on different physical servers are still separated. In this

way, we formulate this problem to a new variant of BMKP

problem which improves the results of traditional method.

We conduct extensive simulations to study the performance

of DVMP, which is compared to random placement, greedy

placement and state-of-the-art naive BMKP placement. Results

suggest that DVMP can save up to 55% traffic relative to

random placement, 39% relative to greedy placement and 28%

relative to state-of-the-art naive BMKP placement. Besides,

simulations with other parameters also prove the effectiveness

of DVMP in practical scenarios.

The rest of this paper is organized as follow. Section II

states the problem. Section III describes the solution for the

problem. Section IV evaluates the effectiveness of the solution

by simulation. Related work is discussed in section V and

section VI concludes the paper.

II. BACKGROUND AND PROBLEMS

In this section, we introduce the problem with existing

model and discuss the two unrealistic assumptions we identify

in this work.

A. Existing Models

In the traffic-aware VM placement problem, the input is

the set of VMs to place and the amount of traffic between

VM pairs, while the output is the mapping from VMs to the

physical servers. The problem is modeled as a graph partition

problem in prior works [10], [11]. Specifically, the VMs and

their communications form a graph G, where the nodes rep-

resent VMs of a job, and the edges represent communication

between VMs. The weight of each edge indicates the traffic

demand between two VMs. Placing the VMs onto m physical

servers is equivalent to partitioning G into m subgraphs. The

Fig. 1. Example to demonstrate the problem with pure BMKP-based VM
placement. New VM A∼F are waiting to be placed on two servers. Denote
ξ(·) as the traffic demand between new and existing VMs (dashed line),
ξ(B,X) = ξ(F,X) = ξ(C, Y ) = ξ(E, Y ) = 1GB. (a) pure BMKP-
based VM placement ignoring ξ(·). The total network traffic is 2.1GB. (b)
An optimal solution. The total network traffic is 0.9GB.

optimization goal is to minimize the total weight of edges

across subgraphs. Several available graph partition models in

the literature [14], [15] can be used to formulate this problem.

(1) Minimum K-cut Problem (MKP): Finding a set of

edges, after removing them, G is partitioned into k
subgraphs: g1, g2, ..., gk, and the sum of the weights

of these removed edges is minimized. Note that there

is no constraint on the size of each subgraph, i.e.,
1 ≤ |gi| ≤ |V | − k + 1, 1 ≤ i ≤ k.

(2) Balanced Minimum K-cut Problem (BMKP): a constraint

is added to MKP, i.e., sizes of subgraphs are strictly

equal: |gi| = |V |
k , 1 ≤ i ≤ k.

(3) (k,ν)-BMKP: This model is similar to BMKP, but it

relaxes the constraint for subgraph sizes. For the k
partitioned subgraphs g1, g2, ..., gk, only an upper-bound

constraint is introduced to make them roughly equal:

|gi| ≤ ν |V |
k (1 ≤ i ≤ k, ν ≥ 1). Note that BMKP is a

special case of (k,ν)-BMKP where ν = 1.

Prior works [10], [11] abstracted the traffic-aware VM

placement problem as a pure BMKP problem. In what follows,

we argue that there are two hidden assumptions used in the

model which may not be valid in practical data centers.

B. Assumption 1: “Once-for-All” VM Placement

Existing traffic-aware VM placement schemes depend on a

“once-for-all” assumption. But in a public cloud, a tenant may

incrementally request for new VMs to dynamically expand

his/her computing capacity. The new VMs to deploy not only

communicate among themselves, but may also communicate

with existing VMs. The problem is even more common in a

private data center, where many dynamically assigned jobs

could belong to the same user/group and hence cross-job

communications exist. Our investigation of a workload from

Facebook data center shows that the traffic between new VMs

and existing VMs are even more than the traffic between new

VMs themselves (refer to Section IV for the detail), and hence

the problem is unneglectable.



Fig. 2. Example to demonstrate the problem with greedily placing VMs close
to data source. New VM A∼D are waiting to be placed on two servers. Denote
ξ(·) as the traffic demand between new and existing VMs (dashed line),
ξ(A,X) = ξ(B, Y ) = ξ(D,Y ) = 1GB, ξ(C,X) = 2GB. (a) Greedily
placing VMs close to data source. The total network traffic is 4GB. (b) An
optimal solution. The total network traffic is 2GB.

As stated in Section I, rerunning the BMKP algorithm on

all the VMs again whenever a new request arrives incurs

unaffordable cost, while using the pure BMKP model to place

the new VMs without considering their traffic with the existing

VMs can result in suboptimal result. We use one example to

illustrate the problem in Fig. 1. In this example, 6 VMs are to

be placed and 2 VMs are already placed. The traffic demand

between them are shown in the figure. The left solution is

an outcome from running the pure BMKP algorithm directly

on the new VMs. As we can see, it results in 2.3 times more

network traffic compared to the right solution which is optimal.

One may argue that the new VMs can be greedily put close

to the data sources in existing VMs, as many MapReduce tasks

do, i.e., putting a mapper to the server with the data [16].

However, the simple greedy based approach does not consider

the global optimization and may lead to suboptimal solution

as well. Fig. 2 demonstrates an example in which the greedy

method generates 2 times more traffic than the optimal one.

As a result, in order to get a desired VM placement solution,

we need to simultaneously consider the traffic between new

VMs as well as the traffic between new and existing VMs.

C. Assumption 2: Equal Number of VM Slots in Servers

Prior works also assume that the servers have equal number

of VM slots, and thus BMKP can be applied. However,

heterogeneous configuration widely exists among data center

servers due to two reasons. First, hardware innovation is

rapid. It has been shown that data center owners usually

incrementally purchase servers quarterly or yearly [17] to

accommodate the service expansion. It is common that the

servers bought at different times have different hardware pro-

files. The heterogeneity lies in the number of CPU cores, the

memory space, etc. Second, for cost consideration, data center

operators can buy servers from different vendors, which can

also result in servers’ hardware heterogeneity. The impact of

server heterogeneity on data center architecture design has also

been noticed in recent works [13], [12]. Given heterogeneous

Fig. 3. An example scenario of placing n = 10 new VMs to 4 heterogeneous
servers. The total number of VM slots on each server is 8, 6, 6, 4, respectively;
and the number of existing VMs on each server is 4, 2, 3, 1, respectively.

hardware profile of physical servers, the number of VM slots

residing in servers can be different.

Moreover, as described above, computation jobs are usually

incrementally deployed in data centers. When placing VMs of

a new job onto the physical servers, some VM slots of the

available servers may already be occupied by existing jobs.

To achieve multiplexing gains, it is a common practice to mix

VMs of different tenants on the same physical machine. In

such cases, it leads to unequal number of available VM slots

in the physical servers when placing VMs of a new job.

Both factors result in server imbalance in VM placement,

i.e., the varied number of VM slots, which violates the

assumptions of the pure BMKP model too.

III. DVMP DESIGN

In this section, we design the DVMP algorithm to in-

crementally place VMs on heterogeneous servers, with the

optimization goal of minimizing overall network traffic. The

major notations used in this section is listed in Table I.

TABLE I
NOTATIONS

n Number of new VMs to place
m Number of physical servers
Y Number of previously deployed VMs that new VMs commu-

nicate with
vi The i-th new VM to place, vi ∈ V = {v1, v2, ..., vn}
pj The j-th physical server, pj ∈ P = {p1, p2, ..., pm}
ei The i-th previously deployed VM, ei ∈ E =

{e1, e2, ..., eY }
Ci Number of VMs slots provided by server pi
Ti Number of occupied slots on server pi
Si Number of available slots on server pi
Bi Number of marked nodes corresponding to server pi
L Number of dummy nodes
Z Size of each subgraph (group) in the translated BMKP

problem
Fij Size of traffic interaction between VM vi and ej .
Mij Size of traffic from VM vi to VM vj



A. Model Selection

We first take Fig. 3 as an example, where 10 new VMs are

waiting to be deployed on 4 physical servers and the new VMs

have communications with 10 previously deployed VMs in the

servers. In order to encompass all the new VMs and existing

VMs (with traffic interaction to new VMs), we get a graph G
with 20 nodes. A desired VM placement scheme corresponds

to a partition of G into 4 subgraphs: g1, g2, g3 and g4, with

|g1| ∈ [4, 8], |g2| ∈ [2, 6], |g3| ∈ [3, 6] and |g4| ∈ [1, 4].
Besides, each existing VM ei(1 ≤ i ≤ Y ) should still remain

in its original server π(ei). We discuss the possible models in

the literature that may be applied to this problem.

1) MKP: The minimum K-cut model is not suitable for our

problem, since it has no constraint on the size of subgraphs

at all. As a result, G may be partitioned into subgraphs with

undesired sizes, which does not fit the number of VM slots of

each physical server.

2) BMKP: Assume the naive BMKP model is applied to

our problem, i.e., partitioning G into 4 subgraphs with each

containing 5 nodes. It does not work either, since server 4 only

has 4 VM slots.

3) (k, ν)-BMKP: We then check the (k, ν)-BMKP model,

in which a single upper-bound constraint on all the subgraph

sizes is enforced. The first question is how to appropriately set

the upper bound, i.e., |gi| ≤ ν |V |
k , 1 ≤ i ≤ k, ν ≥ 1. If we set

the upper bound as ν |V |
k = 5, it will be the same as BMKP,

which is inappropriate. If setting ν |V |
k ≥ 6, it also fails for

server 4.

In a word, all the three models above cannot be directly

applied to solve our problem. To seek for an optimal solution,

we have to make transformations of the problem to make

an existing model applicable. Noting that MKP and (k, ν)-

BMKP suffer from indeterminate size of subgraphs, which

may be invalid when mapping them to physical servers, we

focus on converting our problem to BMKP. The subgraph sizes

of BMKP is (
|V |
k ), as described in section III-C.

B. Design Challenges

We need to address the following challenges in model

transformation.

Making the Number of Nodes in the Graph Equal: This

challenge is straightforward. The numbers of available VM

slots in the physical servers are different but we need to make

equal number of nodes in the graph of the new BMKP model.

Packing Existing VMs on the Same Server in the Same
Subgraph: A general graph partition algorithm treats all nodes

equally, and only focuses on finding a k-cut with minimum

weight. So existing VMs on the same physical server may

be partitioned into different subgraphs, making it infeasible to

map the resulting subgraphs to physical servers. However, in

the new BMKP model, all existing VMs {ei|π(ei) = pt, 1 ≤
i ≤ Y } on the same server pt(1 ≤ t ≤ m) should be packed

together in the same subgraph.

Separating Existing VMs on Different Servers into Dif-
ferent Subgraphs: Due to the same reason above, a general

Fig. 4. An example of how to deal with server heterogeneity: adding pseudo
slots occupied by pseudo VMs for each physical server without affecting
placement of new VMs. The pseudo VMs are regarded the same as existing
VMs except that they don’t have any traffic.

Fig. 5. By applying a change on the number of pseudo slots (VMs), we can
always separate existing VMs on different servers into different subgraphs.

graph partition algorithm may also lead existing VMs on

different servers being merged into the same subgraph, which

violates the requirement, too. The new model should tackle

this problem and separate existing VMs on different servers

into different subgraphs.

C. Problem Transformation

Besides the new VMs to deploy and existing VMs, we

introduce two concepts to help transform the problem.

Pseudo Slot and Pseudo VM: For each server (pi, 1 ≤ i ≤
m) with Si available VM slots and Ti occupied slots, we can

just regard it as a server with Si available slots and Bi ≥ Ti

occupied slots. Note that this transformation does not affect

the placement of new VMs, since there are still Si available

slots on pi. The extra Bi−Ti slots are imagined and in fact do

not exist, so we call them pseudo slots. Correspondingly, the

imagined VMs occupying these pseudo slots are called pseudo



VMs, which can be regarded as existing VMs except that they

do not send or receive any traffic. In this way, we can change

the number of VM slots on physical servers without affecting

the optimal placement solution for the new VMs.

Pseudo Edge: To help transform the problem we also add

imaginary additional edges between VMs and these edges are

called pseudo edges. Note that the pseudo edges added should

not affect the optimal VM placement solution.

Dummy VM: When the overall available slots (
∑m

i=1 Si)

are more than the new VMs, i.e., n ≤ ∑m
i=1 Si, we need to

choose n from the available slots for the new VMs, and this

can be difficult in practice due to the abundance of optional

choices. As an alternative way, we introduce dummy VMs to

avoid this problem. A dummy VM is regarded as a new VM

to deploy except that it does not send or receive any traffic.

By introducing L =
∑m

i=1 Si − n dummy VMs, we place∑m
i=1 Si VMs on

∑m
i=1 Si slots, and the optimal placement

solution is equivalent to that without them, as a result of their

“dummy” feature. For the example in Fig. 3, we add 4 dummy

VMs and regard them as new VMs (Fig. 4).

By introducing pseudo slots, pseudo VMs and dummy

VMs, DVMP addresses the three challenges above in the

following ways. First, we add pseudo slots to each server to

make them hold equal number of VM slots. Fig. 4 shows an

example of this. By adding 2, 2, 4 pseudo slots for server 2,

3 and 4 respectively, servers are made equivalent to enable

BMKP’s applicability. For pseudo VMs added to server pi,
we mark them with i (see Fig. 4) to show that they should be

mapped to pi however the new VMs are placed. Similarly, the

existing VMs that are previously deployed on server pi should

be mapped to it as well. In the translated problem, pseudo

VMs are regarded as existing VMs, thus hereafter we make

no distinction between them, and uniformly regard them as

existing VMs marked with the corresponding server identity.

Consequently, we can gracefully deal with the first challenge.

To address the second challenge and prevent graph partition

algorithms from partitioning existing VMs on the same server

away, we connect the existing VMs on each server with

pseudo edges with the weight of ∞ (the topology of them

is a tree for simplicity, as shown in Fig. 4), hence the graph

partition algorithms would never cut them away. Otherwise,

the corresponding k-cut will have a weight of ∞, which will

not be the desired solution.

The problem of merging existing VMs on different servers

may occur only when the total number of nodes with mark

i and j (1 ≤ i, j ≤ m) is within the subgraph size. Take

Fig. 4 for example, the numbers of nodes with mark i = 1
and j = 2 are both 4, and the subgraph size is 8, hence it’s

possible for the 8 marked nodes to be merged into the same

subgraph. To solve this problem, we apply a change (i.e., δ)

on the number of pseudo slots for each server in the translated

problem. Shown by Fig. 5, if we increase the number of pseudo

slots only by one (δ = 1), the problem is solved. The subgraph

size is 9 while the total number of nodes with mark 1 and

2 is 10, so the 1-marked nodes and 2-marked nodes cannot

be merged into the same subgraph. The following theorem

Fig. 6. An example of Alg. 2’s output.

guarantees that we can always find a feasible δ to handle this

challenge.

Theorem 1. In the translated problem, if δ = 2Smax−Cmax+
1 ≤ 0, we can always separate existing VMs on different
servers into different subgraphs, where Cmax is the maximum
number of VM slots provided by the servers. Otherwise, by
adding δ extra pseudo slots for each server, the same goal
can be achieved.

Proof: In the translated problem, pseudo slots are added for

each server to make them hold equal number of slots, i.e.,
Cmax. We can prove the theorem by contradiction.

1) δ ≤ 0: In this case, the size of each subgraph is Cmax,

including Si available slots and Bi occupied slots (existing

VMs). If existing VMs on server pi and pj (1 ≤ i, j ≤ m)

are in the same subgraph, the size of the resulting subgraph

is at least Bi + Bj . We can have Cmax ≥ 2Smax + 1 from

δ ≤ 0. Hence, there is Bi+Bj = 2Cmax−Si−Sj = Cmax+
(Cmax−Si−Sj) ≥ Cmax+(Smax−Si)+(Smax−Sj)+1 >
Cmax. In other words, the size of the resulting subgraph is

even larger than Cmax, which leads to a contradiction. Hence,

it’s impossible for existing VMs on different servers to be

merged into the same subgraph.

2) δ > 0: By adding δ extra pseudo slots for every server,

the number of slots on them is still identical. Denote the

consequent subgraph size as Z, we have Z = Cmax + δ =
2Smax + 1. Similarly, we have Bi + Bj = 2Z − Si − Sj =
Z+(Z−Si−Sj) = Z+(Smax−Si)+(Smax−Sj)+1 > Z.

As a result, the existing VMs on different servers can never

be merged into the same subgraph.

By successfully transforming the problem of incremental

VM placement on heterogeneous servers into a new BMKP

model, we can use typical balanced minimum k-cut algorithms

such as [14] to find a desired solution.

D. Algorithm

We then describe the DVMP algorithm. Alg. 1 shows the

overall process. First, a graph G is constructed by Alg. 2

(line 1), which enforces the mechanisms discussed previously.

Second, the BalancedMinKCut(.) algorithm is invoked to

partition G into m equal sized subgraphs {g1, g2, ..., gm}
(line 2), while minimizing the weight of edges connecting



Algorithm 1 DVMP Algorithm

Input: V ={v1,v2,...,vn}:new VMs

E={e1,e2,...,eY }:existing VMs

P={p1,p2,...,pm}:physical servers

Si:Number of available slots on pi
Ti:Number of relevant existing VMs on pi
M :Mij is the traffic from vi to vj
F :Fij is the traffic between vi and ej

Output: φ(VM placement scheme)

1: G ← CreateGraph(V,E, P, Si, Ti,M, F );
2: {g1, g2, ..., gm} ← BalancedMinKCut(G,m);

3: for k ← 1 to m do
4: ID ← −1;

5: for each node w ∈ gk do
6: if w is marked then
7: ID ← w.mark;

8: break;

9: end if
10: end for
11: for each node w ∈ gk do
12: if w ∈ {v1, v2, ..., vn} then
13: φ(w) ← pID;

14: end if
15: end for
16: end for
17: return φ

different subgraphs. Third, each subgraph is mapped to a

specific physical server, by the mark of existing VMs within

it. Since our mechanisms ensure that only one type of existing

VMs exist in gk(1 ≤ k ≤ m), by getting the mark of

them (ID in line 7), we map gk to physical server pID. In

this way, the total amount of traffic brought by new VMs is

minimized. The computing complexity of DVMP is dominated

by BalancedMinKCut(.), which is adapted from [14]. The

time complexity of BalancedMinKCut(.) is O(|G|4), and its

approximation ratio is m−1
m |G|.

Alg. 2 shows the creation of graph G. First, G is initialized

as a graph of new VMs and existing VMs (line 1). Existing

VMs are marked with their hosting server identities to indicate

that they should be mapped back to their original servers

(line 2-4). Second,
∑m

i=1 Si − n dummy VMs are added to

G as isolated nodes (line 5). Third, we unify the number of

slots on each server to Cmax by adding pseudo slots, then

apply a change (i.e., δ, if δ > 0) on the number of pseudo

slots to deal with the third challenge (line 6-17). For server

pi(1 ≤ i ≤ m), AddPseudoVMs(.) is invoked to add Bi − Ti

pseudo slots, which are occupied by Bi − Ti pseudo VMs

(marked with i). Pseudo VMs are regarded as existing VMs

for server pi(1 ≤ i ≤ m), and ConnectExistingVMs(.) adds

pseudo edges with weight of ∞ to connect them with existing

VMs on pi: {ej |π(ej) = pi, 1 ≤ j ≤ Y }. Fig. 6 is an example

of Alg. 2’s output graph G, in which new VMs, existing

VMs, dummy VMs and the pseudo VMs are the nodes. The

Algorithm 2 CreateGraph

Input: V ={v1,v2,...,vn}:new VMs

E={e1,e2,...,eY }:existing VMs

P={p1,p2,...,pm}:physical servers

Si:Number of available slots on pi
Ti:Number of relevant existing VMs on pi
M :Mij is the traffic from vi to vj
F :Fij is the traffic between vi and ej

Output: G(The graph to be partitioned)

1: G ←InitializeGraph(V ,E,M ,F );

2: for each existing VM ej ∈ E do
3: ej .mark ← π(ej).ID;

4: end for
5: G ←AddDummyVMs(G,

∑m
i=1Si − |V |);

6: Cmax ← max{Si + Ti}, 1 ≤ i ≤ m;

7: Smax ← max{Si}, 1 ≤ i ≤ m;

8: δ ← 2Smax − Cmax + 1;

9: for i ← 1 to m do
10: Bi ← Cmax − Si;

11: if δ > 0 then
12: Bi ← Bi + δ;

13: end if
14: G ← AddPseudoVMs(G, Bi − Ti, i);
15: G ← ConnectExistingVMs(G, i,∞,“tree”);

16: end for
17: return G

pseudo edges, communication relationship among new VMs,

communication relationship between new VMs and existing

VMs all together form the edges of new graph G’.

IV. EVALUATION

A. Simulation Setup

We compare DVMP with the following VM placement

schemes.

• Random Placement: VMs are tightly placed into the

available physical servers, without considering the net-

work traffic among them, as existing capacity planning

tools have done, e.g., VMware Capacity Planner [18] and

IBM WebSphere CloudBurst [19].

• Greedy Placement: VMs are tightly placed into the

available physical servers in a greedy way, i.e., VMs with

higher traffic demands are put into the same server with

higher priority.

• Naive BMKP Placement: VMs are placed based on

the naive BMKP model (prior traffic-aware VM place-

ment [10], [11]), without considering the communication

traffic with existing VMs. When the available VM slots

are unequal in physical servers, our mechanisms are used

to translate the problem, as discussed in Section III.

For the traffic among VMs, we use the same traffic pat-

tern as [11], which is collected from a private data center

testbed [20]. The communication among VMs is sparse and

skewed, i.e., the majority VMs have traffic size of 10∼100
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Fig. 7. Network traffic of the four schemes against size of communication
traffic with existing VMs.
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Fig. 8. Network traffic of the four schemes against server heterogeneity ratio.

KB, while about 4% VMs have 1.5∼2.5 MB. At any time,

only 15∼20% VMs communicate with each other, i.e., at

most 4% of all to all communication pairs. Considering the

sparsity of inter VM communication, we set the percentage of

communicating VMs to be 4% for each VM. Unless otherwise

specified, the new job has 150 new VMs waiting to be

placed on 64 physical servers. Due to server heterogeneity,

the number of VM slots (Ci) for each server ranges from 24

to 32. For server pi, the number of relevant existing VMs

varies in [0, 1
4Ci], 1 ≤ i ≤ m.

B. Impact of Traffic Size with Existing VMs

According to the survey in section II-B, traffic with existing

VMs is on average 4 times the size of traffic among new

VMs. We test the impact of traffic with existing VMs on

the four VM placement schemes, and the traffic size with

existing VMs is set as 0, 2, 4, 6, 8 and 10 times that among

new VMs, respectively. For simplicity, we call this factor the

incremental factor. When the incremental factor is 0, it means

there is no traffic with existing VMs, and larger incremental

factor means more communication traffic with existing VMs.

The network traffic of the four VM placement schemes with

different incremental factors is shown in Fig. 7.

We can find that the network traffic caused by new VMs

increases with more communication traffic with existing VMs.

When the incremental factor is 0 (i.e., there is no com-
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Fig. 9. Network traffic of the four schemes against percentage of occupied
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Fig. 10. Network traffic of the four schemes against number of new VMs.

munication with existing VMs), DVMP acts the same way

as naive BMKP. However, with the increase of incremental

factor, DVMP saves more and more network traffic compared

with other schemes, because it considers both types of traffic

and optimizes jointly. Greedy placement and naive BMKP

placement cause less traffic compared with random placement,

since they are traffic-aware and place VMs with large mutual

communication demand on the same physical server.

C. Impact of Server Heterogeneity

We then explore the impact of server heterogeneity on the

four VM placement schemes. We denote the maximum and

minimum number of VM slots of servers as Cmax and Cmin,

then define the server heterogeneity ratio as r = Cmax−Cmin

Cmax
.

Hence, the number of VM slots for each physical server

ranges from (1− r)Cmax to Cmax. Larger heterogeneity ratio

indicates more imbalanced physical servers. We compare the

network traffic of the four VM placement schemes with r
being 0%, 20%, 40%, 60% and 80%, respectively, as shown

in Fig. 8. The result tells that the network traffic slightly

increases with higher server heterogeneity ratio. The reason

is as follow. Since the minimum number of slots for each

physical server is Cmin = (1− r)Cmax, servers will possibly

have fewer slots with higher r. Hence, more physical servers

are needed to place VMs, and the network traffic across servers

increases accordingly. When r = 0%, physical servers are
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homogeneous, but the problem is still imbalanced due to

previously deployed VMs. Besides, it can be concluded from

Fig. 8 that DVMP always saves the most network traffic under

various server heterogeneity conditions.

D. Impact of Percentage of Occupied Slots

As analyzed previously, server imbalance is caused by both

server heterogeneity and previously deployed VMs. Next we

explore the impact of previously deployed VMs on the place-

ment performance and compare the four placement schemes

with different numbers of existing VMs. The percentage of

occupied slots on each physical server is set to 0%, 20%,

40%, 60% and 80%, respectively. Results are shown in Fig. 9.

Network traffic of random placement slightly rises when

more slots are occupied by existing VMs. It is because the

number of available slots on each physical server reduces

when more slots are occupied, thus more physical servers

are needed to accommodate new VMs, resulting more traffic

across servers. On the other hand, greedy placement, naive

BMKP placement and DVMP are barely influenced, due to

the consideration of network traffic and VMs with high mutual

traffic demand are placed on the same server with high priority.

E. Impact of the Number of New VMs

In the incremental VM placement scenario, some VMs of

the tenant have been deployed previously, and n new VMs
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are requested to expand the computing capacity. We validate

the effectiveness of DVMP in reducing overall network traffic

with different numbers of new VMs requested, i.e., n = 50,

100, 150, 200 and 250, respectively. Then we place these new

VMs according to the four schemes, and calculate the network

traffic caused by new VMs, as shown in Fig. 10.

It is observed that DVMP outperforms state-of-the-art VM

placement schemes, since it considers both types of traffic and

maximally localizes overall network traffic. Random place-

ment scheme poses the most traffic to data center networks,

because it is traffic-oblivious and simply consolidates VMs

onto as fewer physical servers as possible. Greedy placement

and naive BMKP placement are traffic-aware, but fail to

consider the communication traffic with existing VMs, hence

may generate suboptimal solutions. With more new VMs

to place, network traffic caused by the four VM placement

schemes increases, as the total traffic demand increases while

only a part of it is localized.

F. Impact of the Number of VM Slots on Servers

Due to server heterogeneity, the maximum number of VMs

that each server can accommodate may be different. With the

evolvement of hardware technologies, data center servers are

more powerful, and it’s common practice to simultaneously

run tens of VMs on a single physical server [21]. Denoting

Cmax as the maximum number of VMs a server can accom-

modate, we show the impact of server hardware profiles on

VM placement performance, i.e., Cmax=8, 16, 24, 32 and 64,

respectively.

Intuitively, with more powerful physical servers (i.e., more

VM slots on each server), there is more room for VMs with

high traffic demand to coexist on the same server to save

traffic. Simulation results demonstrate this idea, as shown in

Fig. 11, network traffic decreases with the increase of Cmax.

For instance, the traffic of DVMP decreases by 32.78% when

Cmax increases from 8 to 64. Random placement benefits the

least due to its random nature, high traffic demand among

VMs may not be localized.



G. Impact of Traffic Skewness

Data center network traffic is quite skewed and sparse [10],

[11], [22]. The traffic demand for the majority of VMs is

roughly the same, while a small portion of VMs have very

large traffic demand. We denote the skewness index as the

percentage of VMs with large traffic demand. According to the

survey on Bing data centers [22], 0.1% of VMs generate 60%

of all traffic and 4.8% of them causes 99% of overall traffic.

Similar results are observed in [10], [11], and the skewness
index is about 4%. In order to test DVMP’s performance in

the general situations, we compare the four VM placement

schemes with different skewness indexes, i.e., 1%, 2%, 4%,

6%, 8% and 10%, respectively.

Fig. 12 shows the corresponding simulation results. First,

when skewness index increases, there are more overall network

traffic among VMs, and the resulting network traffic across

physical servers is much more. Second, the gap between

DVMP and the other schemes grows with higher skew index.

Given the practice of 4% skewness index, in real data centers

DVMP can save 48.2%, 22.4% and 19.6% network traffic

compared with random placement, greedy placement and naive

BMKP placement, respectively.

H. Impact of Traffic Sparsity

In practical data centers, traffic among VMs is quite sparse,

and not each VM communicates with every one else [11].

At any time, there are only about 15% to 20% of VMs

communicating with each other. We denote traffic sparsity
index as the percentage of communicating VMs. With lower

sparsity index, the communication among VMs is sparser.

We compare the four VM placement schemes with different

sparsity index, as shown in Fig. 13.

We observe that the network traffic increases for all VM

placement schemes, while DVMP causes the least network

traffic all the time. Besides, the gap between DVMP and

random placement reduces with more inter VM communica-

tions, since there is less room for traffic-aware VM placement

schemes to localize network traffic. According to [11], the

sparsity index in practical data centers is about 4%, in which

case DVMP can save 54.2%, 21.5% and 18.3% traffic com-

pared with random placement, greedy placement and naive

BMKP placement, respectively.

V. RELATED WORK

Many prior VM placement works [23], [24], [25], [26], [27]

focus on consolidating VMs on physical servers to improve

resource utilization (e.g., CPU, memory, disks), while at the

same time satisfying constraints of server resources. In these

works, VM placement is usually modeled as a constrained

optimization problem, which targets at minimizing the number

of physical servers used. Actually, some commercial softwares

are currently available for deciding the placement location

of new VMs, e.g., VMware Capacity Planner [18] and IBM

WebSphere CloudBurst [19]. Since physical server resources

include not only CPU, memory and disks, but also the network

bandwidth, which is neglected by the previously mentioned

traffic-oblivious works. When VM pairs with high mutual

traffic demand are unfortunately placed on remote physical

servers, the consequent communication may result in great

burden for the network infrastructure.

Motivated by the drawback of traffic-oblivious works,

traffic-aware VM placement schemes are proposed to reduce

the traffic burden of networks. Wang et al. [28] minimize

the number of servers with dynamic bandwidth demand when

placing VMs, they formulate the VM placement as a Stochastic

Bin Packing problem and propose an online packing algo-

rithm. Meng et al. [10] improve the scalability of data center

networks with traffic-aware VM placement, by making the

traffic pattern among VMs better aligned with communication

distance between them, i.e., VMs with large mutual bandwidth

are assigned to close hosting machines. A key phase of their

algorithm is the balanced minimum k-cut, which minimizes the

amount of network traffic posed to the network. Compared to

DVMP, they don’t consider the traffic interaction with existing

VMs, and thus may generates suboptimal solutions in practice.

Fang et al. [11] propose VMPlanner, a framework for

reducing power costs of network elements in data centers.

The basic idea is reducing traffic posed to the network by

balanced minimum k-cut, then greedy bin packing is applied to

consolidate flows into as fewer switches and links as possible

to save network power. They assume physical servers are

homogeneous, which may be impractical in practice. Besides,

the traffic interaction with existing VMs is also neglected.

Alicherry et al. [16] reduce the data access latency for data

intensive cloud applications in data centers. Given the location

of data sets, they place new VMs with optimization goal of

minimizing data access latency while satisfying server capacity

constraints. This is similar to the placement of mappers and

reducers in a data-local manner. When it’s infeasible to place

VMs exactly on the same server with data, servers close to

them are preferentially chosen. As demonstrated previously,

this greedy placement may also lead to suboptimal solution,

as a result of neglecting inter-VM communication.

Jiang et al. [29] exploit joint routing and VM placement to

optimize their network performance (e.g., bisection bandwidth,

throughput) and cost (e.g., power consumption). By leveraging

and expanding Markov approximation technique, a limited

number of VM migrations is needed to achieve their goals.

Cohen et al. [30] focus on the bandwidth-constrained VM

placement problem, and the goal is to maximize the benefit

from the overall communication sent by the VMs to a single

designated point in the data center when considering a storage

area network of applications with intense storage requirements.

Their polynomial time constant approximation algorithm show

great performance in the simulation using traces from real

production data centers.

Guo et al. [31] propose a shadow routing based VM

placement scheme in large heterogeneous data centers or

server clusters and show the good performance, robustness

and adaptability of it. By appropriately dealing with VM-

to-PM packing constraints, they produce an asymptotically

optimal solution and show the computational feasibility in



practical implementations. Dong et al. [32] focus on energy

saving VM placement problem of optimizing both physical

server resources utilization and network resources utilization

simultaneously. They propose a VM placement scheme that

meets multiple resource constraints, including physical server

side(CPU, memory, storage, bandwidth, etc.) and network link

capacity. Wen et al. [33] explore the opportunity to address

the continuous congestion via optimizing VM placement in

virtualized datacenters and propose VirtualKnotter, an efficient

online VM placement algorithm to reduce congestion with

controllable VM migration traffic as well as low time com-

plexity.

VI. CONCLUSION

This paper presents a novel method (DVMP) for reducing

the traffic amount posed to the network by intelligent VM

placement in virtualized data centers. With optimized place-

ment scheme, both communication traffic among new VMs

and that with existing VMs are maximally localized. Server

imbalance due to hardware heterogeneity and partial deploy-

ment are also considered. We make a number of mechanisms

and algorithms to translate the new problem to a variant of

BMKP problem and develop an efficient algorithm to get the

solution. Evaluation results show that DVMP indeed saves

considerable network traffic compared with state-of-the-art

VM placement schemes.
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