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ABSTRACT

Base stations play a key role in today’s cellular networks. Their
reliability and availability heavily depend on the electrical power
supply. Modern power grid is known to be highly reliable, but still
suffers from outage due to severe weather or human-driven acci-
dents, particularly in remote areas. Most of the base stations are
thus equipped with backup battery groups. Given their limited
numbers and capacities, they however can hardly sustain a long
power outage without a proper allocation strategy. A deep dis-
charge will also accelerate the battery degradation and eventually
contribute to a higher battery replacement cost.

In this paper, we closely examine the power outage events and
the backup battery status from a one-year dataset of a major cellu-
lar service provider, including 4206 base stations distributed across
8400 square kilometers and more than 1.5 million records on bat-
tery activities. We then develop BatAlloc, a battery allocation frame-
work to address the mismatch between the battery supporting abil-
ity and diverse power outage incidents. We build up a deep leaning
based approach to accurately profile battery features and present
an effective solution that minimizes both service interruption time
and the overall cost. Our trace-driven experiments show that BatAl-
loc cuts down the average service interruption time from 5 hours
to nearly zero with only 88% of the overall cost compared to the
current practical allocation.
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1 INTRODUCTION

Wireless mobile networks, particularly wide-area cellular net-
works, have seen deep penetration and broad coverage in the past
decades. Base stations play a key role in today’s cellular networks.
Their reliability and availability heavily depend on the electrical
power supply, for such modules as transceivers, air conditioners,
monitoring system are all power hungry. Modern power grid is
known to be highly reliable in urban areas, but still suffers from
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outage due to severe weather (e.g., storm, heavy rain, hurricane,
fire, earthquake) or human-driven accidents (e.g., vandaflism or
theft) [3, 9]. In many rural areas, the outage can be quite frequent,
no matter in developing or developed countries.

To avoid service interruptions, most base stations are equipped
with energy-storage battery groups as the backup power. These
batteries are usually kept in the float charge state. When a power
outage happens, they will be activated to maintain cellular services
until the electrical grid recovers or diesel generators are launched.
The capacity of a backup battery group is limited, which typically
lasts 10 to 12 hours during power outage. For remote areas or dur-
ing extreme weather, however, the power recovery can take a long
time (e.g., during the severe windstorm in March 2010, the power
outage in southwestern Connecticut as well as parts of Long Is-
land and New Jersey lasted way over ten hours, and in some of
the rural communities the outage lasted as long as 6 days [1]), so
for technicians to arrive at the base station with diesel generators,
not to mention that many base stations would be affected at the
same time. As such, a long power outage without timely rescue
will inevitably drain the backup battery, resulting in service inter-
ruption during the extended power outage. This in turn seriously
affects the user experience and undermines the telecom operators’
service commitments, particularly considering the clients’ high re-
liance on the network during the incident.

Moreover, different from batteries for phones or electrical ve-
hicles which regularly experience full charge/discharge cycles, a
deep discharge of an energy-storage battery group (typically lead
acid) will severely affect its internal structure, reducing its capacity
and lifetime. Given the long time interval between regular mainte-
nances (typically three months [3]), the poor working condition of
the battery after a deep discharge will further accelerate its degra-
dation. In the worst case, an overdischarge can permanently dam-
age the battery. Considering the transportation and labor costs,
an emergent battery replacement and maintenance can be prohib-
itively expensive, particularly for remote areas.

In this paper, we closely examine the power outage events and
the backup battery activities from a one-year dataset (from July-
28-2014 to July-28-2015) of a branch of China Mobile (the biggest
cellular service provider in China), including 4206 base stations
and more than 1.5 million records on battery activities. These base
stations are distributed over an area of 8400 square kilometers with
over 10,616,000 clients. Our analysis of the data reveals the inef-
fectiveness of existing battery allocation strategies during power
outages. In particular, there is a clear mismatch between the bat-
tery supporting ability and the diverse power outage events.



Table 1: Statistics on number of battery groups for more
than 4200 base stations.

number | 1 2 3 4
65.9% 27.5% 4.7% 1.6%

>4
0.1%

percent

Based on the logs of batteries, we further identify the impact of
power outages on the conditions of the battery groups, and esti-
mate the battery lifetime and reserve time (indicating the duration
a battery group can support). Most researches [7, 10, 11, 16, 17, 19]
have been proposed to estimate the battery state and lifetime
based on the electrochemical theory of batteries, while some re-
cent works [12, 13] are based on large scale data analysis. Differ-
ent from those works, we build up a deep learning based model
considering the impacts among multiple battery groups. We ac-
cordingly develop BatAlloc, a battery allocation framework that
allocates proper numbers of battery groups to each base stations
to address the mismatch between the battery supporting ability
and the diverse power outage incidents. We present an effective
solution that minimizes both the service interruption time and the
overall cost. Our trace-driven experiments show that BatAlloc re-
duces the average service interruption time from 5 hours to almost
zero (i.e., nearly full service availability) with only 88% of the over-
all cost, as compared to the current real deployment.

2 BACKGROUND AND DATA ANALYSIS

In this section, we discuss the collected dataset from a branch of
China Mobile and the related observation on the base stations and
backup battery groups. The dataset consists of more than 1.5 mil-
lion records on battery activities, including such information as
the base station locations, battery voltages and event records (e.g.,
power outage, low voltage alert, high voltage alert, etc.), which are
used to analyze the current situation of base stations.

2.1 Base Station Power Supply

In practice, base stations use 48v (24 2v cells installed in series)
lead acid battery groups as backup power. The rated capacity of
a battery group is usually 500AH and it can support about 10-12
hours (i.e., the battery reserve time is 10-12 hours). We observe
the number of battery groups from more than 4200 base stations
and show it in Tab. 1. We find that about 93.4% of base stations are
equipped with one or two battery groups while only very few base
stations have more.

The electrical grid in many regions is not always reliable and
power outages occur sometimes. For instance, grid transmission
lines can be cut off in case of extreme weather (e.g., storm, hurri-
cane and heavy snow). Then the monitoring system in base sta-
tions will report the power outage to the maintenance center and
an emergent maintenance should be scheduled according to priori-
ties of different base stations. It usually takes a long time for main-
tenance engineers to take diesel generators as well as other neces-
sary devices to the corresponding base stations in rural places or
very remote regions, especially during a severe weather. So the
power recover time is quite uncertain and can not be guaranteed.

Fig. 1 extracts power outage situations of all the base stations
and shows the statistics of power outages, from which we can find
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Figure 1: Statistics of power outage duration each time for
all base stations.
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Figure 2: The comparison of two battery cells under
different discharge situations.

that quite a few power outages last very long time. However, ac-
cording to the current battery allocation in Tab. 1, base stations
with inefficient backup batteries are not able to sustain the long
time power outage without timely emergent maintenance, which
can lead to service interruptions and cause serious consequences.

2.2 Backup Battery Activities

Batteries are connected to the electrical grid and kept in float charg-
ing state to compensate the capacity loss due to the slow self-
discharging process. When there is a power outage, the backup
batteries begin to discharge to support base station services. The
battery discharging process can be divided into three regions: the
coup-de-fouet region [18], the linear region [19] and the hyper-
bolic region [15] (see details in Appendix A.1).

During a long power outage, the backup batteries may need to
discharge to a deep level , which furthers exert an impact on the
battery conditions. Fig. 2 presents a comparison of the voltage
change between two battery cells that one was in good condition
and the other suffered from several deep discharges. We can see
that the cell suffered from deep discharges degrades quickly with
the float voltage showing a clear decreasing trend where the fast
battery degradation contributes to a high battery replacement cost.



In base station power management, a low voltage disconnect
(LVD) strategy is applied for battery protection. Base stations have
a low LVD settings to prolong the backup power supply, yet actu-
ally the deep discharge before LVD has already exerted an impact
on battery degradation process (see details in Appendix A.2).

3 BATALLOC FRAMEWORK

Our real trace-driven data analysis clearly reveals that in the bat-
tery allocation strategy currently used in practice, there exists a
mismatch between the supporting ability of backup batteries and
the power outage situations in each base station. The mismatch
can lead to serious problems in base stations, such as poor service
guarantee, fast battery degradation and high maintenance cost.

One solution is to allocate as many battery groups as possi-
ble for every base station, yet such an overprovision will cause
a large waste of resources and dramatically increase the overall
cost. To this end, we propose BatAlloc, a battery allocation frame-
work to carefully address this mismatch by allocating an appropri-
ate amount of backup battery groups for each base station.

Our BatAlloc framework consists of three major stages. First,
we extract the features of base stations from massive data, includ-
ing the practical distribution of base stations, numbers of battery
groups equipped in base stations, power outage situations, etc. Sec-
ond, we conducts a solid analysis on the battery features, so that
battery capacity, battery lifetime and battery degradation under
different levels of discharges can be accurately estimated. We de-
velop a deep learning based approach to well model the compli-
cated relationships between different real world events and vari-
ous battery conditions, which will serve as a key component for
the battery allocation optimization. At last, based on the feature
profiling results of previous two stages, the battery allocation can
then be formulated as an optimization problem. This problem in-
volves multiple optimization goals, e.g., to minimize the service
interruptions and minimize the overall cost.

4 BATTERY ALLOCATION SOLUTIONS

In this section, we present how we formulate this battery allocation
problem and solve it effectively. A list of notations can be found
in Appendix A.3.

4.1 Problem Formulation

Current base stations are mostly equipped with one or two bat-
tery groups, which are often insufficient to provide uninterrupted
backup power during a long power outage. Assume that we as-
sign ng battery groups for a particular base station s € N, where
N is the set of all base stations. We then need to calculate how
long the ng battery groups can support this base station during a
power outage. To protect the battery, we disconnect it from the
workload when the battery discharges to the end of linear region.
To this end, we denote rst’ns as the total reserve time for station s
with ng battery groups at time t.

We denote the time duration from the beginning of power out-
age to electrical grid recovery or diesel generator launch in station
sas og = {o?,oé2 ~--o§i }, where t; is a time-based index. Once
the duration exceeds the battery reserve time, there will be a ser-
vice interruption. We assign importance factor ws to represent the
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service interruption severity (e.g., the service interruptions in core
station have more serious consequences). Thus, we have our first
optimization objective, which minimizes the total service interrup-

tion time:

Min: T = Z I
seN seN

where 7 is the time-based index range of the considered period.
We use Ts . as denominator for normalization(e.g., representing
annual service interruption time).

Besides achieving as short service interruption time as possible,
telecom operators may also want to reduce the overall cost, which
includes the battery replacement cost and emergent maintenance
cost. Battery degradation contributes to battery replacement cost.
Besides, when there is a long power outage that the battery capac-
ity is not sufficient enough, engineers may be scheduled an emer-
gent maintenance to the corresponding base station for power gen-
eration. We denote c;, as the replacement cost of a single battery
group of base stations and ¢y, s as the emergent maintenance cost
of station s. Then we have our second optimization objective, i.e.,
minimizing the overall cost C,;; for telecom operators:

Min : Cyyp Cp +Cm
Z nscy + Yrer (Xiem,s)
seN Ts.ns

ws Y rer [max(0, Oé - rst,ns)]
Ts,ns

(1)

()

where x! is a binary variable indicating whether there is an emer-
gent maintenance for a power outage.

In practice, there may be other requirements that limit the num-
ber of battery groups being installed at a base station. Then we
have the following constraint:

©)
Telecom operators usually want to control the overall cost
within a give upper budget limit 8. So we also have:

Ca1 <8

Vs,np < nsg < ny,ns € Nt

4)
4.2 Deep Learning Based Battery Profiling

In order to solve the optimization problem on battery allocation,
we first need to model the lifetime and reserve time of the batter-
ies in a base station. We develop a deep learning based approach
that utilizes the deep neural network (DNN) to accurately model
the voltage trend based on historical events and voltages with the
consideration of multiple battery groups.

We first filter out the noise voltage data generated during bat-
tery activities (e.g., charging and discharging) and only extract
the effective float voltage data. Given a time series of float volt-
ages for battery i, we divide them into a number of time seg-
ments where the length of each segment is I. For each segment
k, we fit the voltage decreasing trend by linear regression and
obtain the voltage change slope sll.C as well as the initial volt-
-
{(vilf,sil), (vizf,siz) e (vf.},s{.‘)}.

term as the rate of change on voltage slope for a battery. Then

age value v Then each time segment can be represented as

We define voltage degradation

we have battery degradation d;‘ as following:

df = sF -5k )



For each segment, the battery voltage degradation is ascribed to
the battery activities, which are directly reflected by the event logs.
We define e;* = {el].fl, el].fQ, e el].fm} as the input events for battery
i in time segment k, where m is the number of event categories.
When a base station is equipped with multiple battery groups, the
impact of activities is actually shared by all these batteries. Then

the impact on each single battery should be proportionally reduced.

k
€i
n—s to the

Thus, we can build up a learning model from events
battery degradation df in segment k, where ng is the number of
battery groups in base station s.

Formally, the inputs are the event sets associated with related
segments. Let & denote the input space of the historical events and
we have & = {<L n :Z R %} with N examples. The outputs are
voltage degradations for each segment. Let O denote the output
space of voltage degradation and we have D = {dy,d2,---dn}.
The modeling process is actually a mapping from & to D.

We build up a DNN to model the battery degradation process.
Each node in the input layer is associated with one kind of events
and output layer has one node for degradation estimation. Assum-
ing the base station’s situations keep statistically consistent every
year, we can then obtain the voltage degradation utilizing our deep
learning model. Given that the target time ¢ falls in segment k + 1
and vlfl is the initial voltage value, the float voltage can be calcu-

lated as follows:

f_vtf+Z

With the domain knowledge, a battery is judged in poor quality
when its float voltage is below a pre-defined threshold 8. Then we
can obtain the lifetime of battery i in station s if the float voltage
falls below 6 at segment k + 1:

—of -5k (@ 5]

derl + sf

D @ R @ -k (9)

T = + kI @)

When there is a power outage, the batteries begin to discharge
to provide backup power. According to the electrochemistry
knowledge of base station battery features [20], there is a voltage
drop from the float charge state to the plateau discharging state
mostly due to the cell internal resistance and polarization. We de-
note the voltage drop as € and we can calculate the plateau dis-
charging voltage as vt = vf i€

Let 7 denote the rated battery reserve time of a new battery be-
fore the end voltage. The reserve time rst,ns can be calculated as

follows (where the estimation of ® is described in Appendix A.4):

®

t t
s.n, = Ths P

s

r

4.3 Battery Allocation Algorithm

With the profiling results of base station features and battery fea-
tures, we now analyze the characteristics of this optimization prob-
lem. Intuitively, given the same external incidents happening to
a base station, the base station can sustain longer power outages
when equipped with more battery groups. The total service in-
terruption time is thus reduced. Meanwhile, since the emergent
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maintenance is accompanied with service interruptions, fewer ser-
vice interruptions also cut down the cost of emergent maintenance.
Thus in our allocation model when the battery group number
keeps increasing, both the service interruption time and the emer-
gent maintenance cost will monotonously decrease until no service
interruption occurs.

However, the battery replacement cost is different, where the
process can be divided into two stages: In the first stage, when the
battery group number of a base station increases, the additional
backup power helps the base station sustain long power outages
and reduce deep discharging of batteries. In the second stage, if we
continue to increase the battery group number, the extra backup
power becomes redundant due to enough power supply. Then the
service interruption time remains unchanged or decreases very lit-
tle, while the battery replacement cost increases due to the un-
avoidable battery degradation process.

Therefore, there are three situations of the battery replacement
cost depending on the different conditions of the corresponding
base station, i.e., the cost first drops and then rises (both in stage
1 and stage 2), the cost keeps decreasing (only in stage 1), and the
cost keeps increasing (only in stage 2). As the sum of battery re-
placement cost and emergent maintenance cost, the overall cost
can also have these characteristics when the battery replacement
cost dominates, which is further verified by our real data-driven
experiments in §5.

Based on the above analysis, it is easy to see that the two ob-
jectives in our model are conflicting and multiple Pareto optimal
solutions may exist. Considering the practical situation of telecom-
munication industry, the most important objective for telecom op-
erators is to provide more reliable cellular communication services.
So we utilize a lexicographic method [14] to rank the multiple ob-
jectives in the order of importance. We first consider minimizing
the service interruption time when the overall cost has an upper
limit 8. Then we strive to minimize the overall cost without in-
creasing the service interruption time.

We design out heuristic algorithm to divide the solving process
into two stages. In the first stage, for each base station we keep
increasing the battery group number until the overall cost begins
to rise. We thus stop and record the battery allocation results in
the first stage.

In the second stage, the two objectives are conflicting because
the battery replacement cost begins to rise. As aforementioned,
we consider reducing the service interruption time when the over-
all cost does not exceed the budget limit. To better balance the
tradeoff between them, we define Gain as the ratio of the weighted
service interruption decrease and the overall cost increase:

Is("s) - Is(”s + 1)
Cs,ani(ns +1) = Cs ani(ns)
We each time select the base station with the maximum Gain and
add one battery group to it until we reach the budget. By utilizing

such a greedy approach we guarantee to reduce the most service
interruption time with the least cost increase for each step.

©)

Gain =

5 EVALUATION

In this section, we present the evaluation of our BatAlloc frame-
work based on real trace-driven experiments. We first evaluate
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Figure 4: Various metrics for a typical base station.

our battery feature profiling process and compare the predicted
results with ground truth. Based on the base station and battery
profiling results, we present the performance evaluation on the
overall BatAlloc framework.

5.1 Experiment Setup

We conduct data processing on our dataset (about 320GB) from
China Mobile and extract useful features on base stations and
backup batteries. We construct the deep learning based model us-
ing Keras [2], which is a neural network library on top of Tensor-
Flow [5] and Theano [6].

The parameter settings of our experiments are extracted from
our dataset as well as adopted from the typical settings based on
the domain knowledge. The normal float voltage is 2.25v and the
plateau discharging voltage vp is set as 2.08v for a new battery
cell. In our experiments, we set the importance factor wg based on
the population that a base station covers, which is normalized to a
value between 0 and 1. The rest of parameters are set according to
the real world market [3, 4].
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5.2 Experiment Results

We first evaluate the performance of our deep learning based bat-
tery profiling model. We use the data of the first 240 days as the
training set and the data of the next 120 days as the testing set. The
results shows the RMS error of our deep learning based predicting
model is less than 0.01v compared with ground truth. With the
domain knowledge of battery features, we can obtain the battery
lifetime and reserve time used for the battery allocation optimiza-
tion in the BatAlloc framework, which will be evaluated next.

For comparison, we extract the current battery deployment as
a baseline from the real world dataset and use the Original allo-
cation to represent it. Fig. 3 plots the annual average service in-
terruption time with different budget limit B, where, for ease of
comparison, the budget limit is normalized by the baseline budget
(i-e., 100% means the budget limit is equal to 100% of the original
baseline budget). The service interruption time drops observably
as the budget limit increases and we can achieve nearly full ser-
vice guarantee with only 88% of the baseline budget. These results
demonstrate that our BatAlloc framework is capable of providing
much more reliable service with a remarkably reduced cost.

We conduct a case study in Fig. 4 when a station is equipped
with different numbers of battery groups. As the number of battery
groups increases from 1 to 4, the emergent maintenance cost and
the service interruption time decrease monotonously due to more
sufficient backup power. On the other hand, the battery replace-
ment cost achieves minimum when the number of battery groups
is 2 since the additional battery group can drastically reduce the
impact of overdischarging and prolong the battery lifetime. If we
keep increasing battery groups, the extra battery power contin-
ues to reduce the service interruption time, while the battery re-
placement cost rises largely mostly due to the unavoidable battery
degradation.

We put some more intermediate results of experiments in Ap-
pendix A.5.

6 CONCLUSION

Current cellular communication base stations are facing serious
problems due to the mismatch between the power outage situa-
tions and the backup battery supporting abilities. In this paper,
we proposed BatAlloc, a battery allocation framework to address
this issue. We first conducted a systematical analysis of a massive
dataset of base stations and batteries. Then we built up a deep
learning based model to precisely capture the battery conditions
and further profile the battery features. With the profiling results,
we formulated this battery allocation issue as a multi-objective op-
timization problem and designed an efficient algorithm to solve it.
Our real trace-driven experiments showed that compared to the
current practical deployment, our framework can remarkably re-
duce the service interruptions as well as the overall cost.
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A APPENDIX

A.1 Battery Discharge Process

Fig. 5 illustrates a typical discharging curve for a lead acid cell. The
coup-de-fouet region appears at the start of battery discharging,
where the battery voltage first falls quickly below its open circuit
voltage and then rises to a higher plateau voltage in a short time.
This kind of voltage change is a special characteristic usually ob-
served from lead acid batteries. Then the discharging process goes
into a long linear region, where the voltage drop has an approxi-
mately linear relationship with the discharging time. The discharg-
ing characteristic is robust to variations in operating conditions as
well as battery conditions, such as the discharging mode (constant
current or constant power), ambient temperature, battery degrada-
tion condition [19], etc. A battery will release most of its electrical
energy during the linear region. In the last hyperbolic region, the
voltage falls very fast while it can only release a very small fraction
of power.
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Figure 5: Typical discharge voltage versus time
characteristics.
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and voltage drop.
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Figure 7: The battery allocation result by BatAlloc.

The conditions of lead acid batteries are largely dependent on
the depth of discharge (DoD). If a lead acid battery frequently dis-
charges to high DoDs, the lead in the negative plate will form large
lead sulfate crystals adhered to the negative plate and further ac-
celerate the battery sulfation. This degradation process is accu-
mulative, which as a result greatly reduces the capacity and life-
time of lead acid batteries. Therefore, it is not desirable to allow a
battery group to discharge completely, because the battery group
will be permanently damaged and become incapable of being fully
recharged to its rated capacity again. According to the industry
standard, a battery should be replaced once its capacity falls below
the 80% of the rated capacity.

A.2 Low Voltage Disconnect Strategy

When the battery voltage falls below a first pre-defined threshold,
the lead acid battery groups will be disconnected from the sec-
ondary devices and only provide backup power to primary com-
munication devices. When the voltage continues to drop below a
second predefined threshold, power system cuts off all the loads to
avoid the battery groups from being drained. Fig. 6 plots the rela-
tionship between the power outage duration and the voltage drop
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(to eliminate the impact of battery group numbers, we only choose
those base stations with one battery group). We observe that the
discharge voltage could fall below 1.75v during a long power out-
age, which in fact will seriously damage the battery condition.

A.3 Notation of BatAlloc Model

Table 2: Notations

ns | number of battery groups at base station s
rs”ns the reserve time for station s at ¢ with ng battery
groups
ol duration from power outage to grid recovery or
generator launch for stations s at ¢
ws | the importance factor of station s on service inter-
ruption severity
Ts,n, | the expected lifetime of each battery group when
stations s is equipped with ng battery groups
I the normalized total service interruption time
7 | the time-based index range
N | the set of all the base stations
cp the replacement cost of a battery group
Cp | normalized total cost on battery group replacement
x! | a variable indicating whether station s needs an
emergent maintenance at ¢
Cm,s | emergent maintenance cost for station s
Cm | the normalized total emergent maintenance cost
Cgai1 | the normalized overall cost
ng | lower limit of battery group number in a station
ny | upper limit of battery group number in a station
B | the budget limit
vl(} float voltage of battery i in k-th segment
slk voltage slope of battery i in k-th segment
oll].C degradation of battery i in k-th segment
e{.‘ the event set for battery i in k-th segment
& the event set
D | the degradation set
€ the voltage drop at start of discharging
®! | percentage of remaining capacity of a battery
group
vf the plateau discharging voltage of battery i at ¢
vg | the end discharging voltage in linear region
vp | plateau voltage at the beginning of discharging
T the rated reserve time before end voltage

A.4 State of Charge Estimation

The battery discharge characteristics can be utilized to estimate the
battery state of charge (SOC) and battery reserve time [8, 19] in the
linear region. The scaled discharge curves of batteries with differ-
ent degradation keep highly consistent, and the plateau discharge
voltage drops with the degradation level. Thus we can build the
mapping from the plateau discharge voltage to the corresponding
capacity in the linear region. Let vg denote the end voltage and vp
is the plateau voltage of discharging phase for a new battery cell.
We use ®! to represent the percentage of remaining capacity of a
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Figure 8: The comparison of battery lifetime.

battery group in the linear region at t. Then we can calculate ®%
based on the discharging voltage v} :
t
vt —v
o= ——F (10)
Up — UE

A.5 Additional Experiment Results

Fig. 7 compares the different allocation results on battery group
number between the original allocation scheme and our BatAlloc
framework. The original battery allocation result is largely skewed
that over 65% base stations are equipped with only one battery
group. Our framework considers both the base station situations
and battery features, allocating 2 battery groups to most base sta-
tions and 3 or 4 battery groups to those with prolonged power
outages.

We also investigate the impact of different battery allocation
strategies on battery lifetime. As shown in Fig. 8, in the original
allocation the average battery lifetime is only around 1.5 years and
far less than expected. After using the BatAlloc to allocate suitable
numbers of battery groups for base stations, the average battery
lifetime has achieved to 4.5 years, roughly 2 times longer than that
of the original allocation. The results indicate that our framework
can also better protect base station batteries and significantly pro-
long their average lifetimes.
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