
On GPU Pass-Through Performance for Cloud
Gaming: Experiments and Analysis

Ryan Shea
Simon Fraser University

Burnaby, Canada
Email: rws1@cs.sfu.ca

Jiangchuan Liu
Simon Fraser University

Burnaby, Canada
Email: jcliu@cs.sfu.ca

Abstract—Cloud Gaming renders interactive gaming applica-
tions remotely in the cloud and streams the scenes back to the
local console over the Internet. Virtualization plays a key role
in modern cloud computing platforms, allowing multiple users
and applications to share a physical machine while maintaining
isolation and performance guarantees. Yet the Graphical Pro-
cessing Unit (GPU), which advanced game engines heavily rely
upon, is known to be difficult to virtualize. Recent advances have
enabled virtual machines to directly access physical GPUs and
exploit their hardware’s acceleration.

This paper presents a experimental study on the performance
of real world gaming applications as well as ray-tracing applica-
tions with GPUs. Despite the fact that the VMs are accelerated
with dedicated physical GPUs, we find that the gaming appli-
cations perform poorly when virtualized, as compared to non-
virtualized bare-metal base-line. For example, experiments with
the Unigine gaming benchmark run at 85 FPS on our bare-metal
hardware, however, when the same benchmark is run within a
Xen or KVM based virtual machine the performance drops to
less than 51 FPS. In contrast, ray-tracing application fares much
better. Our detailed performance analysis using hardware profil-
ing on KVM further reveals the memory bottleneck in the pass
through access, particularly for real-time gaming applications.

I. INTRODUCTION

Fueled by reduced costs and unparalleled scalability, cloud
computing is drastically changing the existing operation and
business models of the IT industry. Specifically, it has turned
the idea of Cloud Gaming into a reality. Cloud Gaming, in
its simplest form, renders an interactive gaming application
remotely in the cloud and streams the scenes as a video
sequence back to the player over the Internet. This is an
advantage for less powerful computational devices that are
otherwise incapable of running high quality games.

Virtualization plays a key role in modern cloud comput-
ing platforms, allowing multiple users and applications to
share a physical machine while maintaining isolation and
performance guarantees. Today, virtualization has been well
implemented for most of the computer resources, in particular,
the general-purpose CPU for computation. Offloading the core
tasks from the local console, cloud gaming clearly demands
intensive computation in the cloud too, particularly for such
high-complex operations as 3D rendering. Yet state-of-the-art
game engines not only rely on the general purpose CPU for
computation, but, more heavily, on the Graphical Processing
Unit (GPU). A GPU is a specialized electronic circuit designed
to rapidly manipulate and alter memory to accelerate the

creation of images in a frame buffer intended for output to
a display. In applications requiring massive vector operations,
the computational power of the highly parallel pipelines in a
GPU can yield several orders of magnitude higher performance
than a conventional CPU. This makes many advanced gaming
with ultra-realistic scenes possible. Beyond graphics, GPUs
have been harnessed to accelerate such other game elements
as physics engines in today’s modern gaming systems, and
general purpose GPUs (GPGPUs) are now empowering a
wide range of matrix- or vector-based computation tasks for
scientific or other applications.

While GPUs cards have been virtualized to some degree in
modern virtualization systems, their performance has generally
been poor [1]. This is because the high-memory bandwidth
demands and difficultly in multi-tasking make a virtualized
GPU a poor performer when multiple VMs attempt to share a
single GPU. However, recent advances in terms of both hard-
ware design and virtualization software design have allowed
virtual machines to directly access physical GPUs and exploit
the hardware’s acceleration features. This access is provided
using hardware, and grant a single VM a one-to-one hardware
mapping between itself and the GPU. These advances have
allowed the cloud platforms to offer virtual machine instances
with GPU capabilities. For example, Amazon EC2 has added
a new instance class know as “GPU instances”, which have
dedicated Nvidia Tesla GPU for GPU computing.

This paper presents a experimental study on the perfor-
mance of real world gaming applications with GPUs as
well as ray-tracing applications with GPGPUs. We measure
the performance of these applications running in virtualized
environments as well as our non-virtualized bare-metal base-
line. Despite the fact that our VMs are accelerated with
direct access to a dedicated GPU, we find that the gaming
applications perform very poorly when run inside the VM.
For example, Doom 3 by ID software achieved a frame rate
of approximately 40 frames per second (FPS) when virtualized
in both KVM and Xen. In contrast, our bare-metal baseline
achieved over 120 FPS, when run on the same hardware. Our
experiment with the Unigine gaming engine shows similar
results falling from nearly 85 FPS when run on bare-metal
to less then 51 when run in a virtualized system. Despite
the poor performance of the virtualized gaming applications,
we find that the GPGPU ray-tracing application fares much
better when virtualized, achieving near identical performance

to our base-line. However, when virtualized, the ray-tracing
application does consume far more systems resources such as
processor cycles and cache. To help uncover the root cause
of the performance degradation in these virtualized gaming
systems, we perform a detailed performance analysis using
hardware profiling on KVM. Our analysis reveals the memory
bottleneck in the pass-through access, particularly for real-time
gaming applications.

II. BACKGROUND AND RELATED WORK

We first offer an overview of different classes of virtual-
ization technologies used in today’s cloud computing environ-
ment, followed by related works on device pass through, in
particular, GPU pass through.

A. Virtualization Solutions

Computer virtualization can be roughly separated into two
major classes, namely, Paravirtualization and Hardware Virtu-
alization.

Paravirtualization(PVM) is one of the first adopted versions
of virtualization and is still widely deployed today. It requires
no special hardware to realize virtualization, instead relying
on special kernels and drivers. The kernel sends privileged
system calls and hardware access directly to a hypervisor,
which in turn decides what to do with the request. The use of
special kernels and drivers means a loss of flexibility in terms
of choosing the operating systems. In particular, PVM must
use an OS that can be modified to work with the hypervisor.
Typical PVM solutions include Xen and User Mode Linux.
Amazon [2], the current industry leader in cloud computing,
heavily uses Xen [3] to power its EC2 platform.

Hardware Virtual Machine (HVM) is the lowest level of
virtualization, requiring special hardware capabilities to trap
privileged calls from guest domains. It allows a machine to
be fully virtualized without the need for any special operating
systems or drivers on the guest system. Most modern CPUs
are built with HVM capabilities, often called virtualization ex-
tensions. They detect if a guest VM tries to make a privileged
call to a system resource. The hardware intercepts this call and
sends it to a hypervisor which decides how to handle the call. It
has been noticed however that HVMs can also have the highest
virtualization overhead and as such may not always be the
best choice for a particular situation[4]. Yet paravirtualization
I/O drivers can alleviate such overhead; one example of a
paravirtualization driver package is the open source VirtIO [5].
Representative HVM solutions include VMware Server, KVM,
and Virtual-Box.

B. GPU Virtualization and Pass Through

Using PVM and HVM, most of the computer resources have
been well virtualized. There have also been initial attempts to
virtualize GPU in VMWare [1]. Yet, full virtualization of GPU
remains difficult. This difficulty is due to the fact that GPU
accelerated applications require fast access and high transfer
rates between the GPU and main memory, something which is
difficult to implement in software. Further, unlike the CPU the
GPU is notoriously bad at multi-tasking with multiple GPU

intensive applications, even when run on a bare-metal system.
Thus, multiple GPU intensive VMs will also have very low
performance if they attempt to use the same shared GPU.

Recent hardware advances have allowed virtualization sys-
tems to do a one-to-one mapping between a device and a
virtual machine guest. This technology is designed to allow
hardware devices that do not virtualize well to still be used
by a VM. Examples of devices commonly passed in include
the Network interface card (NIC) and the GPU. Both Intel
and AMD have created hardware extensions, which allow this
device pass through. Both Intel’s implementation, named VT-
D, and AMD’s implementation, named AMD-Vi, work by
making the processors input/output memory management unit
(IOMMU) configurable by the systems hypervisor. The new
extensions allow the hypervisor to reconfigure the interrupts
and direct memory access (DMA) channels of a physical
device so they map directly into one of the guests. In Figure 1a
we show the simplified architecture enabling a Hypervisor
to access a shared device to a VM. As can be seen data
flows through DMA channels from the Physical device into
the memory space of the VM host. The hypervisor then
forwards the data to a virtual device belonging to the guest
VM. The virtual devices interacts with the driver residing in
the VM to deliver the data to the guest virtual memory space.
Notifications are sent via interupts and follow a similar path.
Figure 1b shows how a 1-1 device pass-through to a VM is
achieved. As can be seen the DMA channel can now flow
data directly from the physical device to the VMs memory
space. Also, interrupts can be directly mapped into the VM.
This feature is made possibly through the use of remapping
hardware, which the hypervisor configures for the guest VM.

The performance implications and overhead of pass-through
have been examined for various pass-through devices, e.g,
network interface controllers [6][7][8]. The potential bot-
tleneck for pass-through devices created by the input/output
memory management unit (IOMMU) TLB was closely ana-
lyzed in [9]. There have also been recent studies on enabling
multiple VMs to access CUDA enabled GPUs [10][11], as
well as performance analysis of CUDA applications using a
GPU pass through device in Xen [12]. Also, there has been
much research on latency and QoE issues in cloud gaming
systems [13][14][15]. Despite these pioneering efforts, the
suitability of GPU pass-through devices for cloud gaming has
seldom been explored.

III. VIRTUALIZATION AND APPLICATION SETUP

Our test system was a modern mid-range server with an
AMD Phenom II 1045t six core processor running at 2.7 Ghz.
We enabled AMD-V and AMD-Vi in the BIOS as they are
required for Hardware Virtual Machines (HVM) support and
device pass-through. The PC was equipped with 16 GB of
1333 MHz DDR-3 SDRAM and a 500 GB 7200 RPM hard
drive with 16MB cache. The physical network interface is a
1000 Mb/s Broadcom Ethernet adapter attached to the PCI-
E bus. The host and Virtual Machine guests used Debian
Wheezy as their operating system. Our GPU is an ATI based
Sapphire HD 5830 Xtreme with 1 GB of DDR5 memory.

(a) Shared Device (b) Pass-through Device

Fig. 1: Shared vs Pass-through Device Simplified Architecture

We test 3 systems: our bare metal Linux host, KVM with
its optimal paravirtualized drivers, and Xen running in HVM
mode. HVM mode is required in Xen since the GPU pass-
through requires hardware virtualization extensions. Next, we
give detailed configuration details on our system.

A. Xen Setup

We installed the Xen 4.0 Paravirtualization Hypervisor on
our test system, following closely the Debian guide. To config-
ure networking we created a bridged adapter and attached our
primary interface and Xen’s virtual interfaces to it. Xen virtual
machines received an IP address from the DHCP running on
our gateway. For disk interface, we used a flat file attached to
Xen’s optimized paravirtualization disk interface. To install a
base system into the image, we used the utility xen-tools,
which automates the install procedure. We set the number of
virtual CPUs (VCPU) to 6 and the amount of RAM to 8048
MB. The virtual machine host ran the 3.2.0-4-Xen kernel. We
pass in the GPU using linux PCI-Stub driver and Xen’s PCI-
Back pass-through module.

B. KVM System Setup

We downloaded KVM 1.2.0 from the official Debian reposi-
tory and installed it on our test system. Once again the virtual
machine was given access to all 6 processor cores as well
as 8048 MB of memory. The disk interface was configured
as a flat file on the physical host’s file system. Networking
was configured once again as a bridge between the virtual
machine’s interface and the system’s physical NIC. To enable
best performance, we configured KVM to use the VirtIO
drivers [5]. Debian kernel 3.2.0-4-amd64 was used in the
virtual machine to stay consistent with the other tests. Once
again we use the Linux PCI-Stub driver to pass the physical
GPU into our virtual machine.

1) Non-Virtualized ‘Bare metal‘ System Setup: Finally, as
the baseline for comparison, we had a Bare-metal setup with
no virtualization running, i.e., the system has direct access

to the hardware. The same drivers, packages and kernel were
used as in the previous setup. This configuration enabled us
to calculate the minimal amount of performance degradation
that our system can experience.

C. Gaming Applications and Benchmark Setup

We chose three different complex applications to test our
GPU performance. We selected two game engines, both of
which have cross platform implementation, and run natively
on our Debian Linux machine. The first is Doom 3, which
is a popular game released in 2005, and Utilizes OpenGL
to provide high quality graphics. Next, we chose to test
the Unigine Sanctuary benchmark, which is an advanced
benchmarking tool that runs on both Windows and Linux.
The Unigine engine uses state-of-the-art OpenGL hardware
features to provide rich graphics that are critical to many
state-of-the-art games. Finally, we use the LuxMark ray-tracing
benchmark, which is to test applications written in OpenCl to
see if there were any performance difference between games
and GPGPU applications such as ray tracing.

IV. EXPERIMENTAL RESULTS WITH GPU PASS THROUGH

For each of the following experiments, we run each bench-
mark 3 times and graph the average. For Doom3 and Sanctuary
we give the results in frames per second (FPS) and for
Luxmark we provide the results in terms of number of rays
and samples calculated per second. We also provide amount
of CPU consumed by each system, which we measure through
the Linux top command for KVM and the bare-metal system.
For Xen we use the equivalent Xen Top command. Top reports
data in terms of percentage of CPU used. For example, 80%
means the equivalent to 0.8 cores is being consumed by the
system and 200% means 2 cores are currently being occupied.

A. Doom 3 Results

In Figure 2 we describe the results of the time demo
Doom 3 benchmark, measured in Frames Per Second (FPS),

 0

 20

 40

 60

 80

 100

 120

 140

Bare-Metal Xen KVM

F
ra

m
e

s
 P

e
r

S
e

c
o

n
d

 (
F

P
S

)

Doom 3 (FPS)

 0

 20

 40

 60

 80

 100

 120

 140

Bare-Metal Xen KVM

F
ra

m
e

s
 P

e
r

S
e

c
o

n
d

 (
F

P
S

)

126.2

39.8 39.2

Fig. 2: Doom 3 Performance

 0

 20

 40

 60

 80

 100

Bare-Metal Xen KVM

F
ra

m
e

s
 P

e
r

S
e

c
o

n
d

 (
F

P
S

)

Sanctuary (FPS)

 0

 20

 40

 60

 80

 100

Bare-Metal Xen KVM

F
ra

m
e

s
 P

e
r

S
e

c
o

n
d

 (
F

P
S

)

84.5

51

44.3

Fig. 3: Unigine Sanctuary Performance

running on our Bare metal system as well as on the virtualized
systems Xen and KVM. The Bare metal system performs
at 126.2 FPS, while Xen and KVM perform at 39.8 FPS
and 39.2 FPS respectively. In terms of CPU consumption the
KVM system consumed 200% CPU, Xen consumed 208%
and finally KVM consumed 207%. It is interesting to note
that although all systems consumed nearly identical CPU
resources both Virtualized systems provided far less than half
the performance of the bare-metal system. It is clear that for
Doom 3 the tested virtual machines are very poor performers.

B. Unigine Sanctuary Results

In Figure 3 we describe the results of the Unigine bench-
mark on our systems, the advanced 3D game engine bench-
mark. Our Bare metal system performs at 84.5 FPS, while
Xen performs at 51 FPS and KVM performs at 44.3 FPS.
Xen achieves only slightly better than half the performance of
the Bare metal system, while KVM achieves slightly worse
than half the performance. The CPU consumption on this test
was 252% for the bare metal system, approximately 200%
for Xen and 223% for KVM. In this experiment the both
virtualized systems consume considerably less CPU then the
previous Doom 3 benchmark. However, this should perhaps
not be too surprising as they are processing frames at nearly
half the rate of the Bare-metal machine. Interestingly, although
performance of the VMs is still far below the bare-metal
machine, they is a much smaller decrease when compared
to the Doom 3 benchmark. We conjecture that this may be
due to the fact that unlike the Doom 3 time demo benchmark,
which simply renders a preset number of frames as fast as it

 0

 1000

 2000

 3000

 4000

 5000

 Bare-Metal Xen KVM

(R
a

y
s
/S

a
m

p
le

s
)

T
h

o
u

s
a

n
d

s
 P

e
r

S
e

c
o

n
d

Samples
Rays

 0

 1000

 2000

 3000

 4000

 5000

 Bare-Metal Xen KVM

(R
a

y
s
/S

a
m

p
le

s
)

T
h

o
u

s
a

n
d

s
 P

e
r

S
e

c
o

n
d

266 258 240

2297 2255 2207

Fig. 4: LuxMark Ray Tracing Benchmark

 0

 1000

 2000

 3000

 4000

 5000

 Bare-Metal Xen KVM

D
a

ta
 B

a
n

d
w

id
th

 i
n

 M
B

/s

Host to Device

Device to Host

 0

 1000

 2000

 3000

 4000

 5000

 Bare-Metal Xen KVM

D
a

ta
 B

a
n

d
w

id
th

 i
n

 M
B

/s

2252

1323 1245

2570

1567
1462

Fig. 5: Memory Bandwidth by System

can, the Unigine Sanctuary demo not only renders frames but
also process some game logic such as in-game physics. This
means that this benchmark is not simply trying to move data
for processing on the GPU as fast as possible, as it must also
coordinate game logic with the CPU.

C. LuxMark Results

The results of our systems running the LuxMark Ray Trac-
ing benchmark are shown in Figure 4. This application uses
the graphical technique ray tracing to draw a scene. The Bare
metal system performs at 266 thousand samples per second
and 2297 thousand rays per second. The virtualized system
Xen performs at 258K samples per second and 2255k rays
per second, and KVM performs at 240k samples per second
and 2207k rays per second. Interestingly, for this application
the Bare metal and the two virtualized systems perform
almost identically. However, in terms of CPU consumption
the virtualized systems consumed far more resources when
compared to the bare-metal system. The bare-metal system
consumed 78%, Xen consumed 146% and KVM 108%. When
we compare the LuxMark’s near native performance while
virtualized to our Doom 3 and Unigine Sanctuary benchmarks
abysmal virtualized performance it is obvious that there is
some difference in the requirements of these different appli-
cations. Next, we discuss a major contributing factor, which
leads to much poorer performance for our gaming applications
when virtualized.

D. Discussion and Memory Bandwidth

We conjecture the reason why the performance remains high
during the LuxMark benchmark for our virtualized system is
because unlike the two game benchmark’s, LuxMark moves
much less data across the PCI-E bus from main memory to the
GPU. This is because once the ray-tracing scene is transfered
to the GPU only the resultant picture and status updates
are sent back to the VM CPU and main memory. Unlike
Doom 3 and Unigine Sanctuary benchmarks that are constantly
moving data on to the GPU for processing. To motivate this
conjecture we ran a simple memory bandwidth experiment
written in OpenCl by Nvidia (Code is available in the Nvidia
OCL SDK at: http://developer.nvidia.com/opencl). We tested
three different copy operations, from host’s main memory
(DDR3) to the GPU device’s global memory (GDDR5), from
the devices global memory to the host’s main memory and
finally from the devices global memory to another location
on the devices global memory. We give the results for host
to device and device to host experiments in Figure 5. As can
be seen the bare-metal system far out performs the VMs in
terms of memory bandwidth across the PCI-E bus to the GPU.
In terms of Host to Device performance both KVM and Xen
achieve less than 59% of the performance of the bare-metal
system, which is using the same hardware. Also, in terms of
Device to Host memory transfer both virtualized systems only
achieve 61% of the bandwidth of the non-virtualized bare-
metal host. Interestingly, all systems achieved a near identical
device to device copy throughput of just over 66400 MB/s.
This indicates that once data is transfered from the virtual
machine to the GPU, commands that operate exclusively on
the GPU are much less susceptible to overhead created by
the virtualization system. Next, we took a deeper look into
the performance of these systems using software profiling
techniques.

V. DETAILED PROFILING

Based on the performance variation experienced by our
virtualized systems, we decided to use advanced hardware pro-
filing techniques to further explore the systems and discover
the route cause of the performance degradation. KVM was
chosen as our representative hypervisor-based virtualization
system to profile. The reason for this is that KVM runs on the
unmodified Linux kernel, and is compatible with the standard
performance profiling tools; Xen on the other hand, has a
specialized kernel, and may have compatibility problems with
these tools.

We use the Linux hardware performance analysis tool Perf
and hardware counters to collect system level statistics such
as processor cycles consumed, cache references, and processor
context switches. For each experiment, we instruct Perf to
collect samples during the duration of the experiment and then
average them.

We present information on the performance of these plat-
forms by calculating the Instructions Per Cycle (IPC), Stalled
Cycles per Instructions, Cache-Miss percentage, and finally
processor context switches. Before moving onto the results

Bare-Metal KVM
Instructions/Cycle (IPC) 0.84 0.64

Stalled Cycles/Instruction 0.47 0.82
Cache Miss Percentage 1.5% 3.71%

Context Switches 586/Sec 1588/Sec

TABLE I: Doom 3 Perf Results

Bare-Metal KVM
Instructions/Cycle (IPC) 1.03 0.54

Stalled Cycles/Instruction 0.26 1.24
Cache Miss Percentage 1.60% 2.85%

Context Switches 7059.3/Sec 12028/Sec

TABLE II: Sanctuary Perf Results

we will briefly provide a high-level description of each of the
calculated metrics. Instructions Per Cycle (IPC) is a metric
that is often used to compare the efficiency of an appli-
cation/algorithm implementation on a specific architecture.
Higher IPC is generally considered better as it implies that
each clock cycle is processing more instructions and not
waiting for memory or a shared device such as the processor’s
ALU. Stalled Cycles per Instruction indicate how many cycles
the average instruction is stalled for while it is being pipelined
through the processor. Stalls are often due to waiting on
memory, or shared device contention. Next, we provide Cache-
Miss percentage, which is the percentage of cache references
which fail to find the data in the processor L2 and L3 cache.
Finally, we measure Context Switches, which happen anytime
a running thread voluntarily releases, or is forced to relinquish,
control of a processing core so another thread can run.

Using the same system setup and applications given in
Section III we profiled both the bare-metal system and our
KVM virtual machine. The results and our analysis are given
below.

A. Profiling Results

Table I shows the results of the Doom 3 Profiling, which
yielded some interesting results with the Virtualed KVM
system being far worse in every measured metric. The IPC
performance for KVM fell by over 20% and its Stalled
Cycles/instruction nearly doubled. This is likely due to the fact
that KVM’s virtual CPU is having to wait many extra cycles
to process the Doom 3 game data before sending it across the
PCI-E bus to the GPU. The KVM system also suffers from
over double the Cache Miss percentage. Further, the number
of context switches experienced by KVM are over 2.5 times
higher. The large increase in context switches are likely due

Bare-Metal KVM
Instructions/Cycle (IPC) 0.59 0.57

Stalled Cycles/Instruction 0.57 0.96
Cache Miss Percentage 3.68% 11.45%

Context Switches 16863.6/Sec 12028/Sec

TABLE III: LuxMark Perf Results

to the fact that virtualized system such as Xen and KVM must
switch on the hypervisor to complete some privileged requests.
It is likely that the increase in Context switches comes from
memory access requests that the VMs currently do not have
the mapping for. Also, some of the context switches may be
caused by the fact that, due to a security issue in the x86
architecture, the hypervisor must be involved in answering
some hardware interrupts [7].

Next, we focus on Unigine Sanctuary benchmark profiling,
which can be seen in Table II. Similar to Doom 3 the Sanctuary
game engine when run inside the KVM VM performed much
worse in every metric when compared to the bare-metal
hardware. The IPC for the benchmark now stumbles over 47%
from 1.04 to 0.54. An even more profound increase can be
found in the stalled cycles per instruction, which increase from
the bare-metal baseline of 0.26 to 1.24, an increase of over
four times for our KVM host. As stated before the decrease
in IPC and increase in stalled cycles is likely due to the games
logic being starved of needed data to render the scene. Like
our Doom 3 profiling we also see a large increase in terms of
both cache misses and context switches. Both are likely due
to the impact of the hypervisor being constantly switched on
to help with privileged requests from the benchmark and the
VMs operating system.

Finally, we look at the LuxMark profiling results, which can
be seen in Table III. In terms of IPC, the KVM benchmark did
much better with the ray tracing application than the games,
achieving only slightly worse performance than the bare-metal
system. Stalled cycles increase from the bare metal baseline
of 0.57 to 0.96 and increase of over 68%. Cache misses
in KVM have the most significant increase yet, increasing
from 3.68% to 11.45%. It is interesting to note that despite
the decrease in performance due to both stalled cycles and
poorer cache performance, we saw in Section IV-C that KVM
performed nearly as well as the bare-metal system in this
benchmark. Although this may seem surprising we conjecture
that this is not unexpected, since our benchmark actually
calculates performance based on the number of samples and
rays processed by the GPU per second. The CPU has very little
to do with this benchmark after the data is sent from main
memory to the GPU. So although the operations performed
in main memory and on the CPU may be degraded, they
likely make up only a small amount of the work done in this
benchmark.

VI. FURTHER DISCUSSION AND CONCLUSION

We are actively working on research into Cloud gaming,
and plan on exploring strategies to help improve the under-
standing of GPU accelerated systems and ways to improve
performance. For a future work we are working on comparing
the Intel VT-D and AMD-Vi implementation of the IOMMU
device pass-through hardware. Also, a comparison of different
operating systems and GPU features may reveal interesting
insights such as Windows and its Direct X graphic standards.
Further, the recent addition of cloud gaming enabled GPUs
such as the Geforce Grid still need to be explored [16]. This
paper primarily focused on the performance of the cloud based

GPU, which is a critical component of a cloud gaming system.
However, in a future work other critical systems such as video
encoding and real-time streaming methods need to be explored
in terms of suitability and performance for virtualized cloud
gaming applications.

In this paper we investigated the possibility of using virtual
machines with GPU pass-through devices to power cloud
gaming platforms. However, our analysis shows that there
are significant performance issues still to be addressed and
explored before the widespread adoption of this architecture.

ACKNOWLEDGMENT

This research is supported by a Canada NSERC Discovery
Grant, an NSERC Strategic Project Grant, a Swedish STINT
Initial Grant, and a China NSFC Major Program of Interna-
tional Cooperation Grant (61120106008).

REFERENCES

[1] M. Dowty and J. Sugerman, “Gpu virtualization on vmware’s hosted i/o
architecture,” ACM SIGOPS Operating Systems Review, vol. 43, no. 3,
pp. 73–82, 2009.

[2] Amazon Elastic Compute Cloud, http://aws.amazon.com/ec2/.
[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-

bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,” in
Proceedings of the nineteenth ACM symposium on Operating systems
principles. ACM, 2003, pp. 164–177.

[4] K. Ye, X. Jiang, S. Chen, D. Huang, and B. Wang, “Analyzing and
modeling the performance in xen-based virtual cluster environment,”
in 2010 12th IEEE International Conference on High Performance
Computing and Communications, 2010, pp. 273–280.

[5] R. Russell, “virtio: towards a de-facto standard for virtual i/o devices,”
SIGOPS Oper. Syst. Rev., vol. 42, pp. 95–103, July 2008.

[6] J. Liu, “Evaluating standard-based self-virtualizing devices: A per-
formance study on 10 gbe nics with sr-iov support,” in Parallel &
Distributed Processing (IPDPS), 2010 IEEE International Symposium
on. IEEE, 2010, pp. 1–12.

[7] A. Gordon, N. Amit, N. Har’El, M. Ben-Yehuda, A. Landau, A. Schus-
ter, and D. Tsafrir, “Eli: bare-metal performance for i/o virtualization,”
ACM SIGARCH Computer Architecture News, vol. 40, no. 1, pp. 411–
422, 2012.

[8] Y. Dong, X. Yang, J. Li, G. Liao, K. Tian, and H. Guan, “High
performance network virtualization with sr-iov,” Journal of Parallel and
Distributed Computing, vol. 72, no. 11, pp. 1471–1480, 2012.

[9] N. Amit, M. Ben-Yehuda, and B.-A. Yassour, “Iommu: Strategies for
mitigating the iotlb bottleneck,” in Computer Architecture. Springer,
2012, pp. 256–274.

[10] L. Shi, H. Chen, J. Sun, and K. Li, “vcuda: Gpu-accelerated high-
performance computing in virtual machines,” Computers, IEEE Trans-
actions on, vol. 61, no. 6, pp. 804–816, 2012.

[11] C. Reaño, A. J. Peña, F. Silla, J. Duato, R. Mayo, and E. S. Quintana-
Orti, “Cu2rcu: Towards the complete rcuda remote gpu virtualization
and sharing solution,” in High Performance Computing (HiPC), 2012
19th International Conference on. IEEE, 2012, pp. 1–10.

[12] C.-T. Yang, H.-Y. Wang, and Y.-T. Liu, “Using pci pass-through for gpu
virtualization with cuda,” in Network and Parallel Computing. Springer,
2012, pp. 445–452.

[13] M. Jarschel, D. Schlosser, S. Scheuring, and T. Hoßfeld, “An evaluation
of qoe in cloud gaming based on subjective tests,” in Innovative Mobile
and Internet Services in Ubiquitous Computing (IMIS), 2011 Fifth
International Conference on. IEEE, 2011, pp. 330–335.

[14] K.-T. Chen, Y.-C. Chang, P.-H. Tseng, C.-Y. Huang, and C.-L. Lei,
“Measuring the latency of cloud gaming systems,” in Proceedings of
the 19th ACM international conference on Multimedia. ACM, 2011,
pp. 1269–1272.

[15] M. Claypool, D. Finkel, A. Grant, and M. Solano, “Thin to win?
network performance analysis of the onlive thin client game system,” in
Network and Systems Support for Games (NetGames), 2012 11th Annual
Workshop on. IEEE, 2012, pp. 1–6.

[16] Nvidia Grid White Paper, http://www.nvidia.com/content/PDF/kepler/NVIDIA-
Kepler-GK110-Architecture-Whitepaper.pdf.

