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Lecture 8 - Tidal forces 
 
What's Important: 
• tidal forces 
• Roche limit 
Text: Carroll and Ostlie, Sec. 18.2 
 
 
Tidal forces 
 
Those of us living in coastal cities are aware of the effect of the gravitational pull of the 
Moon in creating ocean tides, although we may puzzle about why there are two high 
tides every day, rather than one.  Tidal forces arise because of the distance 
dependence of the gravitational force, so that the gravitational attraction to an object like 
the Moon is stronger on one side of the Earth than the other.  In this lecture, we find an 
approximate expression for tidal forces appropriate to planetary systems, although our 
interest is less in the motion of water than in the ability of tidal forces to tear apart 
satellites like the Moon. 
 
According to Newton's law of gravity, the force between two masses is inversely 
proportional to the square of the distance between them.  Using "planet" and "moon' to 
indicate the relative masses of the objects, we write 
 F = GMplanetmmoon / r 2. 
 
This means that the gravitational force of a moon on a planet has the schematic 
appearance 
 
 
 
 
 
 
 
 
 
The force vectors on the far side of the planet are shorter than on the near side to the 
moon.  Further, the vectors point towards the planet-moon axis. 
 
The moon has been deliberately placed close to the planet to emphasize the direction of 
the force vectors.  This picture would intuitively lead to the "one tide" prediction. 
 
However, what's important for tides is the gravitational force compared to the force at 
the center of the planet, as the entire planet experiences the force, not just its surface.  
Subtracting the force at the center from the above diagram leaves us with a force 
difference: 

planet moon 
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Once we see the pattern of the relative force, the cause of the "two tide" behaviour is 
obvious. 
 
Let's calculate the force algebraically, following Carroll and Ostlie.  We consider two 
points on the planet, labelled C and P, as in the diagram: 
 
 
 
 
 
 
 
 
 
Resolving into components along the x and y axes: 
 
 FC,x = GMpmm / r 2  FC,y = 0 
 
 FP,x = (GMpmm / s 2) cosφ FP,y = − (GMpmm / s 2) sinφ  
 
The difference in the force is 

ΔF = FP - FC, 
or 
 ΔFx = GMpmm (cosφ /s 2 - 1/r 2) ΔFy = − (GMpmm / s 2) sinφ  (8.1) 
 
These expressions are exact, but inconvenient in part because they are written in terms 
of φ and we would prefer θ of the planet.  Further, they can be simplified because φ is 
small (although θ is not). 
 
x-component: 
From trig, s 2 = (r - Rcosθ)2 + (Rsinθ)2 = r 2 + R 2 (cos2θ + sin2θ) - 2Rrcosθ, 
 --> s 2 = r 2 + R 2 - 2Rrcosθ.   (cosine rule) 
Here, r >> R, so 
 s 2 ≅ r 2 [1 - 2(R /r) cosθ] 
and 
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Substituting Eq. (8.2) into (8.1) yields (when φ is small and cosφ  ≅ 1) 
 ΔFx ≅ GMpmm (2Rcosθ/r 3), 
or 
 ΔFx ≅ 2(GMpmmR /r 3)cosθ .       (8.3a) 
 
 
The second term involves sinφ / s 2.  To the same order of approximation,  
 1/s 2 ≅ 1/r 2  from (8.2) 
and 
 sinφ ≅ (R sinθ) / r, 
so 
 !Fy = "GMpmm

1

r
2

R sin #

r
 

or 
 ΔFy ≅ - (GMpmmR /r 3)sinθ .       (8.3b) 
 
We see that Eq. (8.3) has the expected behaviour as a function of θ: 
 ΔFx elongates the planet at the equators, with the appropriate change in sign 

a θ = ±π/2. 
 ΔFy compresses the planet at the poles θ = ±π/2 and changes sign at θ = 0 and π. 
 
 
Tides and synchrony 
 
One can see from the motion of the ocean, that tidal forces can be dissipative, causing 
a loss of kinetic energy over time.  In the case of the Earth-Moon system, tidal effects 
have already slowed the rotation of the Moon so that it co-rotates with the position of the 
Earth (the lighter rocks of the lunar surface are thicker on the far side of the Moon, the 
near side has a thinner layer of light rock).  Tides are causing the rotational speed of the 
Earth to decrease at a rate of 0.0016 seconds per century. 
 
The slowing of the Earth has a direct effect on the motion of the Moon.  As the angular 
rotation ω of the Earth decreases, so too must its rotational angular momentum L.  By 
conservation of angular momentum, the orbital angular momentum of the Moon must 
increase correspondingly.  The Moon accomplishes this by moving further from the 
Earth, thus increasing its moment of inertia with respect to the Earth.  Thus, the Moon is 
receding from the Earth at 3-4 cm per year. 
 
Note: whether a satellite spirals inward or outward to compensate for changing angular 
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momentum depends upon its orbital radius relative to the "synchronous" orbit (stationary 
with respect to an equatorial location).  Satellites inside the synchronous orbit will spiral 
inward and crash (depends on whether the satellite leads or trails a planetary bulge; see 
Carroll and Ostlie). 
 
Roche limit 
 
Eq. (8.3) demonstrates that the tidal force scales like r -3: the smaller the orbit the larger 
the force.  Is it physically possible for the tidal force to become so strong that it tears a 
satellite apart?  This would happen if the gravitational force were less than the tidal 
force.  We use Gmm

2/Rm
2 as a crude measure of the gravitational binding force of the 

moon, and set (Rm on rhs, not Rp, because tidal force is at the moon) 
 Gmm

2/Rm
2  <  2GMpmmRm / r 3 

or 
 mm/Rm

3  <  2Mp / r 3. 
 
Reworking this a little to make the terms look like densities gives 
 mm/Rm

3  <  2 (Mp /Rp
3) • (Rp

3 /r 3).      (8.4) 
 
Now, the mean density of a spherical object is 
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so Eq. (31.4) can be written 
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or 
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The factor of 21/3 = 1.26 is a little crude; Edouarde Roche considered this problem 
around 1850, finding that the correct prefactor is 2.456: 
 r < 2.456(! p /! m)

1/3
Rp    Roche limit   (8.5) 

 
Example Suppose that a planet and its satellite have the same mean density.  
Then, 
 [Roche limit] = 2.456 Rp. 
 
It is interesting to note that many (but not all) of the rings of the Jovian planets lie within 
the this equal-density planetary Roche limit, perhaps indicating the origin of some of the 
ring material. 


