Assignment \#1

PHYS 490 - Relativity and Gravitation

Problems:

1. Carroll 1.4

2. Useful formulas:

a) Show that $\Gamma_{\alpha \beta}^{\beta}=\partial_{\alpha} \ln \sqrt{g}$, where $g=\operatorname{det}\left(g_{\mu v}\right)$.
b) If V^{μ} is a vector, show that

$$
{V^{\mu}}_{; \mu}=\frac{1}{\sqrt{g}} \partial_{\mu}\left(\sqrt{g} V^{\mu}\right)
$$

c) If $F^{\mu v}$ is an antisymmetric tensor, show that

$$
\begin{gathered}
F_{\mu v ; \lambda}+F_{\lambda \mu ; v}+F_{v \lambda ; \mu}=F_{\mu v, \lambda}+F_{\lambda \mu, v}+F_{v \lambda, \mu} \\
F_{; v}^{\mu v}=\frac{1}{\sqrt{g}} \partial_{v}\left(\sqrt{g} F^{\mu v}\right) \\
F_{; \mu v}^{\mu v}=0
\end{gathered}
$$

(These provide a way to write Maxwell's equations without explicit use of Christoffel symbols.)
d) If $T^{\mu v}$ is a symmetric tensor, show that

$$
T_{\mu ; v}^{v}=\frac{1}{\sqrt{g}} \partial_{v}\left(\sqrt{g} T_{\mu}^{v}\right)-\frac{1}{2} T^{\alpha \beta} \partial_{\mu} g_{\alpha \beta}
$$

3. Carroll 3.3
4. Carroll 3.5
5. Carroll 3.8 (Hint: Calculate components of $R^{\alpha \beta}{ }_{\mu v}$, it will make contractions easier. I will show you later how to do this kind of calculation using computer algebra software, but you have to do this once in your life by hand.)
