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Abstract

The recent claim by Hurley, Hurley and Hurley to have proved the circulant Hadamard
matrix conjecture is mistaken.

A Hadamard matrix of order m is an m×m matrix with entries in {1,−1} satisfying HHT =
mIm, where Im is the m ×m identity matrix. A circulant matrix is an m ×m matrix for which
each row except the first is a cyclic permutation of the previous row by one position to the right.
The circulant Hadamard matrix conjecture [4, p.134] states that an m × m circulant Hadamard
matrix exists only for m = 1 and m = 4. This conjecture has an equivalent formulation in terms of
cyclic difference sets, and implies the Barker sequence conjecture [6] (see [2], [3], [5], for example,
for background).

Hurley, Hurley and Hurley recently claimed [1] to have proved the circulant Hadamard matrix
conjecture. We recap the necessary definitions from [1] and then present a counterexample to the
claimed proof.

A 2-block is a matrix of the form D =
[
i j
j i

]
for i, j ∈ {1,−1}, and is even if i = j and odd

if i = −j. Given a 2-block D =
[
i j
j i

]
, define the 2-block D̃ :=

[
j i
i j

]
. A 4-block is a matrix

of the form B =
[
D1 D2

D̃2 D1

]
, where D1 and D2 are 2-blocks. Given a 4-block B =

[
D1 D2

D̃2 D1

]
,

define the 4-block B̃ :=

[
D̃2 D1

D̃1 D̃2

]
. The proof of the main theorem of [1, p.9] asserts that the

equation BiB
T
i = B̃i

(
B̃i

)T
, where Bi is a 4-block, implies that Bi consists of four even 2-blocks.

The 4-block Bi =


+ − + +
− + + +
+ + + −
+ + − +

 (using + for 1, and − for −1) is a counterexample: this 4-block
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satisfies BiB
T
i = B̃i

(
B̃i

)T
= 4I4, but consists of two even blocks and two odd blocks.

The error in [1] arises from a mistaken application of the following result. Let B =
[
D1 D2

D̃2 D1

]
and C =

[
D3 D4

D̃4 D3

]
be 4-blocks. Then Lemma 3.3 of [1] states that BC = B̃C̃ if and only if both

D1 and D2 are even or both D3 and D4 are even. Application of this lemma with B = Bi and
C = BT

i would require the equation BiB
T
i = B̃i(̃BT

i ) to hold, whereas what is established is that

BiB
T
i = B̃i

(
B̃i

)T
(which is just an identity); and in general (̃BT

i ) 6=
(
B̃i

)T
.
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