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Abstract We examine the evolutionary foundations of risk attitudes in age-
structured populations. The effect of idiosyncratic risk concerning fertility or
mortality rates is captured by the corresponding mean fertility or mortality rate.
The effect of aggregate risk, relative to the mean, varies with the type of risk
and age. We establish conditions under which aggregate risk in fertility rates at
young ages increases the population growth rate (compared to the corresponding
mean fertility), but such risk in fertility rates at old ages reduces the growth
rate. On the other hand, aggregate risk in mortality at young as well as old
ages leads to increased growth rates. JEL codes B52 and D81.
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Idiosyncratic and Aggregate Risk in Age-Structured Populations

1 Introduction

A fruitful approach to sharpening our understanding of preferences is to consider
their evolutionary foundations (see Robson and Samuelson [19] for a survey). We
consider in this paper how aggregate and idiosyncratic risks may have distinct
implications for risk aversion.

1.1 Idiosyncratic and Aggregate Risk

Robson [17] drew attention to evolutionary foundations by demonstrating that
evolution may select for greater aversion to aggregate (correlated) risk than
to idiosyncratic (independent) risk. To illustrate his argument, suppose that in
each period each individual takes a draw from a random variable generating x ∈
{0, 1, . . . , X} offspring with probability m(x) and then dies. If these draws are
independent across agents—the case of idiosyncratic risk—and the population
is sufficiently large, then the law of large numbers will ensure that the average
number of offspring each period is close to x =

∑X
x=0 xm(x). The size N(t) of

the population at time t will then be approximately

N(t) = N(0)xt

and the population growth rate will be given by

lim
t→∞

lnN(t)

t
= lnx.

Evolution will then select for preferences that maximize the expected number
of offspring x. We summarize this result by saying that idiosyncratic risks to
the number of offspring are evolutionarily neutral.

Now suppose that in each period, the draws governing offspring are perfectly
correlated across agents—the case of aggregate risk. Then the size N(t) of the
population at time t will be

N(t) = N(0)

X∏
x=0

xt(x),

where t(x) is the number of periods (from among 1, 2, . . . , t) in which x is the
number of offspring drawn. Then the growth rate is

lim
t→∞

lnN(t)

t
= lim
t→∞

X∑
x=0

t(x)

t
lnx =

X∑
x=0

m(x) lnx,

with the final equality again following from the law of large numbers. In this
case, evolution will select for lotteries that maximize the expected log of off-
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spring, building risk aversion to aggregate risks into preferences.1 Aggregate
risks to numbers of offspring are thus disadvantageous, in the sense that a pop-
ulation subject to such risk will grow more slowly than an analogous population
in which the number of offspring is fixed at the mean of the aggregate risk.

To interpret the argument concerning growth rates in terms of individual
choices, suppose, for example, that an individual faces a choice between two
lotteries over consumption. Suppose that expected offspring is a function of
consumption given by u(c) for each consumption level c. In either of these
lotteries, there is probability p of receiving bundle c1, and probability 1 − p of
c2. In the first lottery, the risk is idiosyncratic, independent across individuals
in each period; in the second lottery, the risk is aggregate, so all individuals
receive the same consumption outcome. The growth rate of a population whose
members all choose the idiosyncratic lottery is then ln[pu(c1) + (1 − p)u(c2)],
which (since ln is concave) is higher than the growth rate of a population whose
members all choose the aggregate lottery, namely p lnu(c1) + (1 − p) lnu(c2).
Hence, evolution will select for preferences that are more averse to lotteries that
entail aggregate risk than to those that entail idiosyncratic risk. More generally,
it follows that the coefficient of absolute risk aversion for aggregate risks is given

by RA(c) + u′(c)
u(c) > RA(c) where RA(c) = −u

′′(c)
u′(c) is the coefficient of absolute

risk aversion for idiosyncratic risks.2

Robatto and Szentes [16] casts a surprising and revealing light on these
results. Suppose the population is described by a continuous rather than discrete
time process. To keep things simple, at each integer point in time, a growth
rate is drawn from {λ0, . . . , λX} according to probabilities m(0), . . . ,m(X), and
the entire population—in the case of aggregate risk—grows continuously at this
rate until the next draw. Then the size N(t) of the population at time t will be

N(t) = N(0)

X∏
x=0

eλxt(x),

where t(x) is the number of periods (from among 1, 2, . . . , t) in which growth
rate λx is drawn. Then the growth rate is

lim
t→∞

lnN(t)

t
= lim
t→∞

∞∑
x=0

t(x)

t
λx =

X∑
x=0

m(x)λx.

Hence, evolution will select for preferences that maximize the expected growth
rate, even in the face of aggregate risk.

1Robson [17] presents a more general argument, including the possibility of extinction. (See
also Sinn and Weichenrieder [20].) Robson and Samuelson [18] extend this simple model to
allow a more general age structure, showing that aggregate shocks to mortality can generate
a higher pure rate of time preference than can be derived from idiosyncratic mortality alone.

2Evolution will select among aggregate risks to as to maximize the expected value of
ln(u(c)) =: U(c), and

−
U ′′(c)

U ′(c)
= −

u′′(c)

u′(c)
+
u′(c)

u(c)
= RA(c) +

u′(c)

u(c)
.
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Suppose, for example, an individual faces a choice between an idiosyncratic
lottery or an aggregate lottery. Each of these entails either a rate of consumption
given by c1, with probability p, or a rate of consumption c2, with probability 1−
p. For the idiosyncratic lottery, the outcomes are independent across individuals;
for the aggregate lottery, the outcomes are the same across individuals in a given
period. Suppose that the rate of production of expected offspring is u(c) for each
rate of consumption, c. In either case, the growth rate induced is pu(c1) + (1−
p)u(c2), so the individual should have identical attitudes to idiosyncratic and
aggregate risk.

Robatto and Szentes [16] establish a quite general version of this result,
showing that in continuous-time models, evolution selects for preferences that
are neutral with respect to aggregate risk. Although aggregate risk generates
a growth path that is observably different from that of idiosyncratic risk, the
corresponding long-run growth rates are identical, and evolution should then
select individuals to have identical attitudes to aggregate and idiosyncratic risk.

A key observation is that the mathematical reason for the difference in these
results is not whether the growth process is cast in continuous or discrete time,
nor is there any conflict between these results. The relevant difference lies in
how the risk is described, which determines the riskless default to which the
risk is compared. To see this, suppose the population grows continuously. At
each integer time, a random draw occurs that determines the growth of the
population until the next draw. In one description, each random draw chooses
equiprobably between the growth rates λ1 and λ2, with the population growing
at this rate until the next draw, at which point the population is either eλ1 or
eλ2 times its current size. Then Robatto and Szentes’ [16] analysis ensures that
evolution will select for preferences that maximize the expected growth rate,
and hence aggregate uncertainty concerning growth rates is neutral.3

In an equivalent description, the random draw chooses between the growth
factors Λ1 and Λ2 (where Λk = eλk), with the population being either Λ1

or Λ2 times its current size after one period. Then Robson’s [17]) analysis
ensures that evolution will select for preferences that maximize the expected
log of the growth factor, and hence aggregate uncertainty concerning growth
factors is disadvantageous.4 But these are the same lotteries and hence the
same preferences. It is simply a matter of whether we describe the risks in
terms of factors or rates.

Despite these observations, Robatto and Szentes’ [16] continuous time for-
mulation naturally and forcefully directs attention to rates. Their striking result
is then that as long as we consider continuous-time models with a simple age
structure and focus on risks to rates, aggregate risks (like idiosyncratic risks) are
evolutionarily neutral. The present paper shows, nevertheless, that a distinction

3In this case, the salient riskless mean is a growth rate of 1
2

(λ1 + λ2). Since eλ1eλ2 =

e
1
2
(λ1+λ2)e

1
2
(λ1+λ2), it follows that it is irrelevant whether the population switches between

growth at rates λ1 and λ2, where these are equally likely, or grows risklessly at the mean rate.
4Now, the salient riskless mean is a growth factor 1

2
(Λ1 + Λ2). Since Λ1Λ2 < [ 1

2
(Λ1 +

Λ2]2, the population facing aggregate uncertainty grows more slowly than population growing
risklessly at the mean rate.
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between aggregate and idiosyncratic risk reappears in a continuous-time model
with a richer age structure. For a simple example, suppose that mortality is
constant across all ages, but fertility is zero before menarche at age M > 0 and
constant thereafter. Idiosyncratic risk to fertility rates again yields the same
growth rate as does the mean fertility rate. However, a population whose after-
menarche fertility rates are perfectly correlated but random generates a lower
long-run growth rate than that generated by the mean fertility rate. Intuitively,
the lag built into the period length in discrete time is mirrored as the lag from
birth to menarche in continuous time.5

1.2 Preview

Section 2 examines the effect of idiosyncratic risk in a continuous-time setting,
culminating in the Euler-Lotka equation, which provides the central tool for our
analysis. Appendix 6.1 provides a rigorous foundation for this continuous-time
approach. We consider a discrete-time setting with finite numbers of agents
facing independent risks to fertility and mortality. We take an appropriate
limit to obtain the continuous-time Euler-Lotka equation in which fertility and
mortality can be interpreted as means of idiosyncratic distributions. In the
process, we confirm the property (built into the model of Section 2) that in
general, idiosyncratic shocks to fertility and mortality rates are captured by the
mean fertility and mortality rates.

Section 3 turns to aggregate risk. Analyzing the effect of age-varying aggre-
gate shocks to demographic parameters is complex. We accordingly develop an
approximation, based on the assumption that shocks to population parameters
are rare. Formally, population parameters are determined by an underlying
state that follows an ergodic Markov process with rare transitions. We use the
resulting approximation to show that the effect of aggregate risk, relative to the
mean, varies with the type of risk and age. Rare aggregate transitions in fertil-
ity rates at young ages are advantageous (compared to the corresponding mean
fertility), but such shocks to fertility rates at old ages are disadvantageous. On
the other hand, rare aggregate transitions in mortality at young as well as old
ages are advantageous.

We are ultimately interested in attitudes toward risk in economic variables.
Section 4 therefore develops the model further by supposing that both fertility
and mortality are driven by a stream of economic resources. In equilibrium,
resources are optimally allocated so that variations in resource “income” show

5A referee raised the question of how our analysis related to the capital asset pricing model,
where random returns of individual securities (like idiosyncratic risks) have no effect, while
market risk (like aggregate risk) does, all in the absence of an age structured or discrete time
framework. The CAPM begins by assuming that individuals maximize the expectation of the
discounted present value of a strictly concave utility function, thus building into the model risk
attitudes that we seek to derive from evolutionary considerations. Given these risk preferences,
risks to individual securities do not matter because the investor can diversify them, in much
the same way that idiosyncratic risks to fertility or mortality are fully diversified from an
evolutionary point of view. Non-diversifiable market risk plays a role because the utility
function according to which they are evaluated is assumed to exhibit risk aversion.
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up only as variations in fertility.6 Since resource transitions are then reflected as
fertility transitions, the model implies that evolution will select for preferences
that seek aggregate risk to income at young ages, but become averse to it as
age increases. Hence, we might expect people to ease out of the stock market
in their later years, a result that is empirically plausible but is not an obvious
consequence of standard economic theory.

The body of Robatto and Szentes’ [16] paper works with a population with-
out an age structure, yielding results consistent with those of the current paper.
In an online appendix, Robatto and Szentes’ [16] examine a more general model,
allowing arbitrary age structures, and suggest there is still a sense in which ag-
gregate risks are neutral. Appendix 6.4 explains how their analysis relates to
that in the current paper.

2 Idiosyncratic Risk

This section examines a population subject to idiosyncratic risk. The number of
offspring that a surviving individual has at each age, and whether the individual
continues to survive, are determined by random variables that are independent
across individuals.

We consider a population growing in continuous time. We assume that a
law-of-large-numbers argument, applied to the random fertility and mortality
draws, ensures that the population growth is governed by the mean fertility and
mortality rates. We examine the steady-state growth path for the population, in
which the population grows at a constant rate and the age distribution remains
constant over time. We summarize this steady-state growth path with the Euler-
Lotka equation given in (5) below.

Appendix 6.1 provides a foundation for the model, replacing our law-of-
large-numbers intuition and our implicit assumption that a steady-state growth
path exists with rigorous arguments. Section 6.1.1 constructs a discrete-age
and discrete-time branching process in which the idiosyncratic randomness in
mortality and fertility appears explicitly. This section culminates in Proposi-
tion 5, showing that the population may suffer extinction, but that conditional
on survival, the population converges (as time progresses) to a steady-state
growth path in which the growth rate is constant and the age distribution re-
mains constant over time. This steady state is a function of the mean fertility
and mortality rates, and is characterized by a growth factor that satisfies the
discrete version of the Euler-Lotka equation, given in (22). Section 6.1.2 then
examines the limit of the discrete model as the length of a period approaches
zero. Proposition 6 shows that the discrete version of the Euler-Lotka equation
given by (22) converges to the Euler-Lotka equation given by (5).

6We assume there is a linear technology for converting resources to increased fertility, but
a convex technology for converting resources to reduced mortality.
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2.1 The Model

We consider a population of agents, each of whom is characterized by an age
a ∈ [0, A] where A is finite. We could extend the analysis to infinite A at the
cost of additional technical complication, and we simplify the calculations in
some examples by letting A be infinite. At each time t, the age structured

population is Na(t), where the total population is then N(t) =
∫ A

0
Na(t)da. At

time 0, there is an initial age-structured population Na(0).
The mean fertility rate is given by the continuous function µa which is as-

sumed positive for a ∈ (M,A), for some M ∈ [0, A).7 The rate of offspring
production at time t is then Na(t)µa. The mean mortality rate is given by the
continuous function ρa on [0, A], so that ρa is the rate at which agents of age a
die. The probability of survival to age a is then given by the decreasing function
pa, where

pa = e−
∫ a
0
ρãdã. (1)

Given these fertility and mortality rates, the basic equations governing the
population are twofold. First, for any age a > 0 and time t ≥ a, the number of
agents of age a at time t equals the number who were born at time t − a and
have survived until time t, or

Na(t) = N0(t− a)pa, (2)

assuming for simplicity that t ≥ a.8 Next, for any time t, the number of agents
born (i.e, of age 0) at time t is given by

N0(t) =

∫ A

0

Na(t)µada. (3)

Each pair of fertility and mortality functions (µa, ρa) is associated with a
steady-state growth path, in which the relative age structure of the population
remains constant over time, with the population as a whole characterized by a
growth rate λ. Our analysis focusses on these steady-state growth rates.

In the steady state, we must have, for all a and t > τ

Na(t) = eλ(t−τ)Na(τ).

This captures the steady-state notion that the number of agents of each age a at
time t is the growth factor eλ(t−τ) times the number of such agents at time t−τ .
As a special case of this steady-state condition, we have N0(t) = eλaN0(t− a).
We can insert this into (2) to obtain the steady-state age distribution

Na(t)

N0(t)
= e−λapa. (4)

7It is without much loss of generality to assume that agents do not live beyond the end of
fertility. Such extended life, that is, has no effect on the growth rate.

8It is straightforward to allow for the initial range where t < a.
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This implies that if λ > 0 and hence the population is growing, then as we move
through older agents, the proportion of such agents in the population declines
for two reasons. The first is that age-a agents were born at time t− a, and the
population has since grown by factor eλa, and the second is that only pa of the
original cohort survives.

We can now insert the expression (4) for the steady-state age distribution
into (3), describing the number of agents born at time t, to obtain

N0(t) =

∫ A

0

N0(t)e−λapaµada.

Canceling the term N0(t) from both sides, we have

1 =

∫ A

0

e−λapaµada. (5)

This relationship, known as the Euler-Lotka equation, gives the population
growth rate as a function of the age distributions µa of fertility and pa of survival.
This will be our basic tool for examining risk preferences.

2.2 Risk Preferences

A first implication of (5) is intuitive. Increases in mean fertility increase the
population growth rate, as do decreases in mean mortality.

To see the implications for risk preferences, suppose that at each age, each
individual in the population must choose between lotteries over fertility and
mortality rates. In keeping with our focus on idiosyncratic risk, these lotteries
are independent across individuals. We can think of two equivalent ways in
which these choices might be implemented. Evolution might endow agents with
utility functions, with the agents then choosing utility-maximizing lotteries.
In this case, we are interested in characterizing the utility functions, and in
particular the attendant risk attitudes, selected by evolution. Alternatively,
evolution might simply hard-wire the appropriate choices. In this case, we are
interested in the utility function that a revealed-preference analyst would use
to describe the hard-wired choices.

Of course, evolution does not purposefully design agents, with either utility
functions or choices. Instead, a process of random mutations introduces agents
with different utility functions or different sets of hard-wired choices into the
environment. The different utility functions or choice functions induce different
rates of growth, leading to a process of selection ensuring that the environment
will eventually be dominated that the utility function or choice function inducing
the largest steady-state growth rate. Hence, evolution will select for the utility or
choice function that leads to the fertility and mortality schedules that maximize
the growth rate determined by (5).9

9This result is an implication of the Fundamental Theorem of Natural Selection (Hofbauer
and Sigmund [12, p. 15]), and is implicit in Robson [17] and Robatto and Szentes [16].
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The important observation now is that the growth rate determined by (5)
is maximized by choosing between lotteries over fertility so as to maximize
mean fertility, and choosing between lotteries over mortality so as to minimize
mean mortality. Hence, evolution will select for risk neutrality with respect to
idiosyncratic risk in fertility and mortality. Of course, we rarely think of people
choosing directly between lotteries over fertility rates, and our ultimate interest
is in risk attitudes over economic variables such as income. These are derived
from the underlying risk attitudes over fertility and mortality, a link to which
we turn in Section 4.

3 Aggregate Risk

We now incorporate aggregate risk concerning the demographic variables into
the model. We invoke the results of Section 2 and assume that all idiosyncratic
demographic variables are replaced by deterministic rates set at their means.

If a population subject to aggregate risk in a random variable grows faster
than would an equivalent deterministic population where the aggregate random
variable has been replaced by its mean, then we say that aggregate risk in that
variable is advantageous. If a population subject to aggregate risk in a random
variable grows more slowly than would an equivalent deterministic population
where the aggregate random variable has been replaced by its mean, then we
say that aggregate risk in that variable is disadvantageous. If neither is the case,
then aggregate risk is neutral.

3.1 An Approximation

To capture aggregate risk, we assume that at time t, the environment is char-
acterized by a state ωt drawn from the set of states Ω. The state determines
the fertility and mortality schedules µa and ρa applicable to the population.
In each state, the mean fertility rate is given by the continuous function µa
which is positive for a ∈ (M,A), and the mean mortality rate is given by the
continuous function ρa on [0, A]. The state is determined by a continuous-time
Markov process which admits an ergodic distribution. For technical simplicity,
we assume Ω is finite.

We simplify the analysis by focussing on the case in which changes in the
state are rare. In this case, the system will spend a small fraction of time in
short run adjustments of the population age structure in response to changes in
the state. The population will spend most of its time characterized by (or, more
precisely, very closely approximated by) an age structure that would prevail if
the current state had always been the state. The overall growth rate will then
be approximately the expectation λ∗ of a random growth rate λ, where each
realization of λ is derived from a system in which there is no aggregate risk and
whose parameters correspond to one of the states in Ω. This is the analog of
Robson and Samuelson’s [18] focus on the case in which aggregate shocks are
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frequent, but arbitrarily small. Ben-Porath, Dekel and Rustichini [4] examine a
similar approximation.

For example, suppose that the population is characterized by one of two sets
of demographic parameters, that prevail in states 1 and 2, respectively. Suppose
that a population always in state 1 would have long-run growth rate λ1, and
that a population always in state 2 would have long-run growth rate λ2. Let us
further suppose that state 1 arises with ergodic probability p1 and state 2 with
probability p2. If changes between states happen frequently, then the population
may often be growing at rates that are not close to either λ1 or λ2. However, if
changes between states are rare, then in most periods the population will have
been in its current state for a very long time, and will have a growth rate very
close to either λ1 or λ2, depending on which is the current state. In that case,
the total size of the population at time t will be given approximately by

N(t) = N(0)(eλ1)t1(eλ2)t−t1 ,

where t1 ∈ [0, t] is the total length of time that the first state is in effect and
N0 is the initial population size. The rate of growth of this expression, denoted
by λ∗, satisfies

lnN(0)

t
+
t1
t
λ1 +

t− t1
t

λ2 −→ p1λ1 + p2λ2 = λ∗

with convergence as t → ∞. The approximation in this limiting growth rate
becomes more precise as we look at state distributions with rarer transitions.

More formally, let the states in Ω be denoted by 1, . . . , N and indexed by
n or m. The state evolves according to an irreducible continuous-time Markov
chain with the instantaneous rate of transition from state m to n given by pmn
for all m,n ∈ Ω = {1, . . . , N}, m 6= n. These transition rates generate an
invariant distribution given by {πn}Nn=1 which satisfies, for each state n (Durret
[6, Theorem 3.2, p. 170])

∑
m,m 6=n

πmpmn =

 ∑
m,m 6=n

pnm

πn.

We now capture our interest in rare transitions by letting the instantaneous
transition probabilities be given by pmn/k, where k ≥ 1, so that transitions
become rarer as k increases. This rescaling of the transition probabilities has
no effect on the invariant distribution {πn}Nn=1. However, each time the process
enters state n, the length of its “sojourn” in state n is given by a random variable
τ̃n whose expected value is 1/(

∑
m,m 6=n

pnm
k ). Hence, as k increases, transitions

between states become increasingly rare. The random variables τ̃n are scaled
upwards, and sojourn lengths become longer.10

10The rate at which a sojourn in state n ends is given by
∑
m,m 6=n(pnm/k). Conditional on

being in state n at time 0, the probability of not having left state n by t is e−(
∑
m,m6=n(pnm/k))t

and the expected sojourn is 1/(
∑
m,m 6=n(pnm/k)).
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Let λn be the dominant eigenvalue (cf. Section 6.1) for a hypothetical pop-
ulation permanently in state n, and hence subject to no aggregate uncertainty,
and let π be the stationary distribution of the states inducing the aggregate
uncertainty. Appendix 6.2 proves:

Proposition 1 For any given ε > 0, there exists a K > 0 such that if k ≥ K,
then the growth factor P (T ) = N(T )/N(0) of the population at time T almost
surely satisfies

lim
T→∞

1

T
lnP (T ) ∈

[∑
n

πnλn − ε,
∑
n

πnλn + ε

]
, (6)

The key implication of this result is that if we let

λ∗ =
∑
n

λnπn, (7)

then in the limit, as transitions between states become arbitrarily rare, the
long-run growth rate of the population is given by λ∗.

Robatto and Szentes [16] derive a general expression for the growth rate of
a population subject to aggregate risk. The criterion given by (7) is the special
case of their criterion applicable to the limit of arbitrarily rare transitions.

3.2 Preferences Over Aggregate Risk

To see the implications for risk preferences, we once again suppose that at
each age, each individual in the population must choose between lotteries over
fertility and mortality rates. In this case, however, we assume the lotteries are
perfectly correlated.

We again assume that a process of random mutations introduces agents
with different utility functions or different sets of hard-wired choices into the
environment. The different utility functions or choice functions induce different
rates of growth, leading to a process of selection ensuring that the environment
will eventually be dominated by the utility function or choice function inducing
the largest steady-state growth rate. In this case, a lottery specifies fertility and
mortality schedules for each state n ∈ {1, . . . , N}, with probabilities π1, . . . , πN
reflecting the ergodic distribution over states. These lotteries in turn give rise
to growth rates λ1, . . . , λN , and are evaluated according to (7), with evolution
selecting for choices that maximize (7).

We then gain insight into the effects of aggregate risk by examining how the
growth rate λ, associated with a population subject to no risk, varies as the
underlying demographic parameters vary. Applying Jensen’s inequality to (7)
allows us to conclude that if λ is concave in a parameter, then (rare) aggregate
variation in that parameter will be disadvantageous. In that case, evolution
will select for utility or choice functions that exhibit risk aversion with respect
to aggregate risk in the parameter. If λ is convex in a parameter, then (rare)
aggregate variation in that parameter will be advantageous, and evolution will
select for utility or choice functions that are risk seeking in the parameter.

10



3.3 An Example

To illustrate the effect of aggregate risk in age-structured populations, consider
a population in which there is always constant mortality at rate ρ > 0. The
rate of fertility is 0 up to an age of menarche given by M , after which the rate
of fertility is a constant µ > 0, until a terminal age A at which fertility ceases.

The Euler-Lotka equation for a population subject to no aggregate risk,
which uniquely determines the growth rate λ, is

1 =

∫ A

M

µe−(λ+ρ)ada.

Performing the integration, we obtain λ as the implicit solution of

µ =
λ+ ρ

e−(λ+ρ)M − e−(λ+ρ)A
. (8)

Clearly, the population growth rate must be increasing in the fertility rate µ
and decreasing in the mortality rate ρ.

We now introduce aggregate risk by supposing that the fertility rate µ, or
the mortality rate, ρ, is subject to rare random shocks. Considering mortality
first, note that the sum λ+ρ is determined once we fix the value of µ. It follows

immediately that dλ
dρ = −1 and hence, d2λ

dρ2 = 0, and so aggregate shocks to

(constant across ages) mortality are neutral.
When examining fertility we simplify the notation by considering the case

in which ρ = 0. This sacrifices no generality, given the previous paragraph’s
observation that the sum λ+ ρ is determined by µ—the implications of aggre-
gate variations in µ for λ when ρ is fixed at zero are identical to those arising
when ρ is fixed at a positive level. We must only remember to interpret the vari-
ables appropriately when constructing numerical estimates of the coefficients of
relative risk aversion.

We identify an aggregate state ω with a fertility rate µ(ω). We are then
interested in the expected growth rate λ∗ =

∑
ω∈Ω λ(µ(ω))π(ω), where λ(µ) is

given by (8) (with ρ = 0) and is the growth rate of a population whose fertility
rate is (permanently) fixed at µ. As we have noted, evaluating the effect of
aggregate fertility risk on this growth rate involves assessing the curvature of
the function λ(µ).

First, suppose that the population has a particularly simple age structure,
in which M = 0 and A = ∞, so that maturation is immediate and there is
no terminal age for fertility. Then equation (8) (with ρ = 0) gives the linear
function λ(µ) = µ. In this case, aggregate risk in the fertility rate µ is also
neutral—a population subject to rare shocks in the fertility rate µ grows at
the same rate as would a population subject to no aggregate risk and with the
fertility rate fixed at the mean fertility rate. Aggregate shocks to mortality and
fertility rates are evolutionarily neutral as in Robatto and Szentes [16].

Now suppose that M > 0 but A = ∞. The implicit definition (8) of the
population growth rate now becomes

µ = λ(µ)eλ(µ)M . (9)

11



We can differentiate this expression and simplify to obtain

dλ

dµ
=

λ

µ(1 + λM)
.

Of course, dλ/dµ > 0—a population with a higher fertility rate grows faster.
Differentiating again and rearranging yields

µ(1 + λM)
d2λ

dµ2
= − λM dλ

dµ
− µM

(
dλ

dµ

)2

and hence (using our solution for dλ/dµ)

d2λ

dµ2
=
−λM λ

µ(1+λM) − µM
(

λ
µ(1+λM)

)2

µ(1 + λM)
.

The right side is clearly negative, and hence λ is concave in µ. In this case,
aggregate risk is disadvantageous—rare aggregate variations in µ give a popu-
lation growth rate lower than the growth rate of a population whose fertility is
always given by the corresponding mean of µ. Intuitively, the lag to menarche
has an effect akin to the lag dictated by a discrete time formulation.11

How risk averse are the induced preferences over aggregate variations on
fertility? Equation (9) does not give rise to an explicit solution for λ(µ), but
we can use our expressions for the first and second derivatives to calculate
the Arrow-Pratt measure of relative risk aversion RR(µ), giving (after some
simplification)

RR(µ) = −µ
d2λ
dµ2

dλ
dµ

=
λM

(1 + λM)

(
2 + λM

1 + λM

)
. (10)

This result has intuitively appealing features—RR(µ) is 0 when M = 0, as
discussed before, giving results analogous to those of Robatto and Szentes [16].
It also increases in M , converging to 1 as M grows to infinity.12 That is, in this
limiting case the criterion corresponds to the logarithmic criterion derived by
Robson [17].13

What numerical implications does (10) have? Suppose, for example, that
M = 15 and that µ = 0.1, as is roughly consistent with poorer modern soci-
eties.14 It follows from (9) that λ = 0.048.15 It follows that RR(µ) = 0.66, a

11Appendix 6.3 presents a discrete-time example, confirming that a delay in reaching repro-
ductive age increases aversion to aggregate risk in that setting as well.

12In the limit as M →∞, (9) implies that λ→ 0 and λM →∞.
13However, the criterion here is defined over growth rates and that in Robson [17] is over

offspring levels.
14This is based on a total fertility rate, of 6, that is, 6 lifetime offspring. Of these offspring,

3 are female. We also suppose the rate of reproduction is constant over 30 years, from age 15
to age 45. Attention is limited to females, since they are the scarce factor in reproduction.
Assuming A =∞ does not have a huge effect, since this end of life is heavily discounted.

15This (calculated) value of λ may appear excessive when applied to the bulk of human
evolutionary history, but the value of 0.048 is the sum λ+ρ of the population growth rate and
the mortality rate. This estimate is then consistent with evolutionarily plausible population
growth rates and mortality rates.
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plausible value.
Alternatively, suppose that M = 0 but A is finite. The implicit definition

(8) of the population growth rate is now

µ =
λ(µ)

1− e−λ(µ)A
. (11)

A straightforward calculation shows that d2µ/dλ2 > 0, so λ is a concave function
of µ.16 Once again, aggregate risk is disadvantageous—rare aggregate variations
in µ give a population growth rate lower than the growth rate of a population
whose fertility is always given by the corresponding mean of µ. We can again
derive the Arrow-Pratt measure of relative risk aversion, but the lack of realism
in assuming M = 0 renders its numerical value of less interest.17

Of these two simple cases (the first with M > 0 and A =∞, and the second
with M = 0 and A < ∞), the first is more relevant. That is, with population
growth, it is numerically more crucial when reproduction starts than when it
finishes, or even whether it finishes at all. To obtain an explicit economic
interpretation, suppose then the individual faces risk over consumption streams
c that are constant over [M,∞). Suppose the rate of production of expected

16In particular, we have

dµ

dλ
=

1− e−λA − λAe−λA

(1− e−λA)2
=

1− (1 + λA)e−λA

(1− e−λA)2
> 0.

The second derivative is

d2µ

dλ2
=

(1− e−λA)2[(1 + λA)Ae−λA −Ae−λA]− [1− (1 + λA)e−λA]2(1− e−λA)Ae−λA

(1− e−λA)4

=
Ae−λA[(1− e−λA)λA− 2(1− (1 + λA)e−λA)]

(1− e−λA)3
.

The sign of dµ2/dλ2 is given by the sign of
(1− e−λA)λA− 2(1− (1 + λA)e−λA). Letting λA = z, this expression is

z − ze−z − 2 + 2e−z + 2ze−z = z + ze−z + 2e−z − 2,

which is positive, and hence λ is a concave function of µ.
17If we write µ = f(λ), then we have 1 = f ′(dλ/dµ), and hence dλ/dµ = 1/f ′. Dif-

ferentiating 1 = f ′(dλ/dµ), we have 0 = f ′′(dλ/dµ)2 + f ′(d2λ/dµ2), which we solve for
d2λ/dµ2 = −f ′′(dλ/dµ)2/f ′ = −f ′′/(f ′)3. We thus have

−
d2λ
dµ2

dλ
dµ

=
f ′′

(f ′)2
=

d2µ
dλ2(
dµ
dλ

)2 =
d2µ

dλ2

(
dµ

dλ

)−2

=
Ae−λA[(1− e−λA)λA− 2(1− (1 + λA)e−λA)]

(1− e−λA)3

(
(1− e−λA)2

1− (1 + λA)e−λA

)2

Hence, since µ(1− e−λA) = λ, the coefficient of relative risk aversion is

RR(µ) = −µ
d2λ
dµ2

dλ
dµ

=
λAe−λA[(1− e−λA)λA− 2(1− (1 + λA)e−λA)]

(1− (1 + λA)e−λA)2
.
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offspring is given by u(c) for each c. If the consumption is specified by an
idiosyncratic lottery c̃, the rate of growth λ(Eu(c̃)) is determined by the expected
rate of reproduction Eu(c̃). If the lotteries are aggregate, on the other hand,
the appropriate criterion is the mean growth rate Eλ(u(c̃)). Since λ is concave,
it follows that the individual is more averse to aggregate risk than to precisely
comparable idiosyncratic risk. It follows, indeed, that the coefficient of absolute
risk-aversion for aggregate risks is given by

RA(c)− λ′′(u(c))u′(c)

λ′(u(c))
> RA(c),

where RA(c) = −u
′′(c)
u′(c) is the coefficient of absolute risk aversion for idiosyncratic

risks.18

More generally, Appendix 6.3 shows that when M > 0 and A <∞, aggregate
risk in fertility is disadvantageous. Some intuition as to why a limited range of
fertility leads to aversion to aggregate risk, in contrast to Robatto and Szentes
[16], is as follows. Suppose fertility is µa = ε̃

A−M 1a∈[M,A], where 1 denotes
the set indicator function. Fertility is subject to an aggregate shock, ε̃, as in
Robatto and Szentes, but over a limited age range. In the limit as A ↓ M ,
fertility becomes ε̃d(a −M), where d(a −M) is the Dirac delta function. It
then follows readily that the growth rate of the line of descendants of a single
individual is 1

ME ln(ε̃) < 1
M lnE(ε̃), by a calculation analogous to that required

in discrete time. In this limit, individuals are averse to aggregate risk, with the
logarithmic criterion of Robson [17].

This example shows that overall risk aversion to aggregate risk does not
neatly decompose across age ranges. Consider the case that M = C > 0 and
A = ∞ and the case that M = 0 and A = C < ∞, for a given C > 0. These
two subranges partition [0,∞). Nevertheless, despite strict aversion to aggre-
gate risk over constant fertility defined over either subrange, with zero fertility
outside that subrange, there is risk neutrality with respect to aggregate shocks
to fertility over [0,∞). That is, the effect of aggregate risk at a particular set
of ages depends crucially on what occurs outside that set. Similarly, Proposi-
tion 2 below shows that shocks to fertility that are sufficiently concentrated are
advantageous at young ages, while Proposition 3 shows that sufficiently concen-
trated shocks to mortality are advantageous at all ages, even in this example,
where there is risk neutrality with respect to aggregate shocks to fertility and
mortality over [0,∞).

3.4 Age and Risk Attitudes

We are especially interested in how risk attitudes vary by age. Hence, instead
of examining the effects of aggregate risk that affects the fertility of every age,
as in Section 3.3, we would like to examine a shock that affects the fertility or
mortality only of agents of some age b.

18Note that, by (10), −λ
′′

λ′ = λM
µ(1+λM)

(
2+λM
1+λM

)
, increases in growth λ or menarche M

increase risk aversion.
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3.4.1 Rare Aggregate Shocks to Fertility

We consider a population fertility schedule µ(·) : [0, A]→ R+, where A is finite,
given by

µa + εδ(a, b, c),

where the continuous function δ ≥ 0 has the following properties∫ b+c

b

δ(a, b, c)da = 1 and δ(a, b, c) = 0 whenever a ≤ b or a ≥ b+ c.

Thus ε is an aggregate shock to the fertility rate of agents in the population
of ages [b, b + c]. We are interested in how the effects of shocks to fertility at
different ages compare, and so consider a narrow range of ages [b, b + c]. The
integrated magnitude of the fertility shock is ε, regardless of b or c.

As explained in Sections 3.1–3.3, we now identify a state with the value of the
shock ε, and view ε ∈ Ω as being governed by a Markov process with rare transi-
tions and ergodic distribution π. Let λ(ε) denote the growth rate of population
facing a fixed value of ε. We then fix the ergodic distribution π and examine
cases in which transitions between states become arbitrarily rare, allowing us
to rewrite the long-run growth rate λ∗ given by (7) as λ∗ =

∫
Ω
λ(ε)dπ(ε). We

then examine the second derivative of λ(ε) with respect to ε. We sharpen the
results by focussing on the case of small shocks, implemented by evaluating the
second derivative at ε = 0. We further simplify the resulting expression by
taking the limit as c→ 0. The technique is equivalent to subjecting fertility to
an aggregate shock at age b so that the fertility schedule becomes

µa + εd(a− b),

where d is the Dirac delta function. Although µa+εδ(a, b, c) is a continuous and
bounded function, for all c > 0, the Dirac delta function is not. Nevertheless,
this limit is formally useful to sharply characterize how risk attitudes vary with
age.

Our first task is then to examine λ(ε). The appropriate Euler-Lotka equation
is

1 =

∫ A

0

[µa+εδ(a, b, c)]pae
−λada =

∫ A

0

µapae
−λada+ε

∫ b+c

b

δ(a, b, c)pae
−λada.

Taking the derivative of the Euler-Lotka equation with respect to ε gives

−dλ
dε

∫ A

0

aµapae
−λada−dλ

dε
ε

∫ b+c

b

δ(a, b, c)apae
−λada+

∫ b+c

b

δ(a, b, c)pae
−λada = 0.

(12)
To make this derivative easier to interpret, we consider its value at ε = 0, giving

−dλ
dε

∫ A

0

aµapae
−λada+

∫ b+c

b

δ(a, b, c)pae
−λada = 0.
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Finally, we take the limit as c→ 0 to obtain

−dλ
dε

∫ A

0

aµapae
−λada+ pbe

−λb = 0.

Notice that dλ
dε > 0, giving the expected result that increases in fertility increase

the growth rate.
We apply the same technique to derive a useful expression for the second

derivative of λ. That is, we return to the expression in (12), take the derivative
with respect to ε, then evaluate this derivative at ε = 0, and take the limit as
c→ 0. This yields

−d
2λ

dε2

∫ A

0

aµapae
−λada+

(
dλ

dε

)2 ∫ A

0

a2µapae
−λada− 2

dλ

dε
bpbe

−λb = 0.

Evaluating the derivative at ε = 0 gives us a sharper conclusion which holds
as long as the shocks to fertility are not too large, leading to the qualification
“small” in Proposition 2. Taking the limit as c→ 0 corresponds to focussing on
an increasingly narrow range of ages that are affected by the aggregate fertility
shock. This simplifies the expression, and makes clear the meaning of referring
to fertility shocks “at age b.”

After some algebra, it can be shown that

λ′′

λ′
=

pbe
−λb

(
∫ A

0
aµapae−λada)2

(∫ A

0

a2µapae
−λada− 2b

∫ A

0

aµapae
−λada

)
. (13)

It follows immediately from this expression that λ′′

λ′ > 0 for b < b̄ =∫A
0
a2µapae

−λada

2
∫A
0
aµapae−λada

, but λ′′

λ′ < 0 for b > b̄. Hence, we have established:

Proposition 2 There exists an age b̄ > 0 such that small, rare aggregate shocks
to fertility at age b < b̄ are advantageous, while small, rare aggregate shocks to
fertility at age b > b̄ are disadvantageous.

If evolution has shaped our risk preferences in light of these considerations, then
we can expect people to be averse to aggregate risk to fertility at older ages,
but to seek such risk at younger ages.

Suppose, for example, that µa = µ, so that the fertility rate is constant,
that pa = e−ρa, where the mortality rate ρ is also constant, and A = ∞. It
can then readily be shown that b̄ = 1

ρ+λ , which is the average age of the steady
state population. Hence rare aggregate shocks to fertility are advantageous at
any age younger than the average age, and are disadvantageous at any age older
than the average age.

To build some intuition for Proposition 2, let us continue with this special
case. If fertility is subject to shocks at ages in the range [b, b + c], then the
Euler-Lotka equation becomes

1 =

∫ ∞
0

µe−(λ+ρ)ada+ ε

∫ b+c

b

δ(a, b, c)e−(λ+ρ)ada,
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which becomes, in the limit as c→ 0,

ρ+ λ(ε) = µ+ ε(ρ+ λ(ε))e−(ρ+λ(ε))b. (14)

The function nb(ε) = (ρ + λ(ε))e−(ρ+λ(ε))b describes the effect on population
structure of the shock ε at age b.

It is obvious that the growth rate λ is an increasing function of ε—higher
fertility leads to faster growth. Suppose first (and counterfactually ) that nb(ε)
were constant in ε. Then it is apparent from (14) that λ(ε) would increase lin-
early in ε, and hence aggregate shocks to fertility at age b would be evolutionarily
neutral. Instead, however, nb(ε) is an increasing function of ε when b < b̄ and a
decreasing function if b > b̄. This reflects the fact that faster growth increases
the relative number of young individuals and decreases the relative number of
old individuals. It follows that λ(ε) is convex in ε when b < b̄, and so aggregate
variations in fertility at age b < b̄ are advantageous. On the other hand, λ(ε)
is concave in ε, when b > b̄ and so aggregate variations in fertility at age b > b̄
are disadvantageous.19

We can examine the magnitude of the risk aversion induced by the variations
in fertility examined here. In Section 3.3, when examining variations in a con-
stant fertility rate µ or mortality rate ρ, the coefficient of absolute risk aversion
has the same dimension as 1/µ or 1/ρ, and we examined coefficients of relative
risk aversion in order to obtain a dimensionless measure. In the current case,
the factor ε has no population or time (or other) dimension. The coefficient of
absolute risk aversion is similarly already dimensionless, and hence is a suitable
measure. Continuing with our simple case of constant fertility, µ, and constant
mortality, ρ, it follows readily from (13) that20

RA(µ, b) = −λ
′′

λ′
= 2e−(λ+ρ)b(b(λ+ ρ)− 1). (15)

This gives RA(µ, 0) = −2 so that there is noticeable degree of risk seeking at
b = 0. The maximum of RA(µ, b) obtains at b = 2/(λ + ρ) where it has the
value 2e−2 < 1, giving risk aversion, at less dramatic rates, when b > b̄.

19These results follow from writing (14) as ρ+ λ(ε) = µ+ εnb(ε), and then noting that

dλ

dε
= nb(ε) + ε

dnb(ε)

dε
and

d2λ

dε2
= 2

dnb(ε)

dε
+ ε

d2nb(ε)

dε2
= 2

dnb(ε)

dε
if ε = 0.

20Apply the results
∫∞
0 e−(λ+ρ)ada = 1/(λ + ρ),

∫∞
0 ae−(λ+ρ)ada = 1/(λ + ρ)2, and∫∞

0 a2e−(λ+ρ)ada = 2/(λ+ ρ)3 to obtain

−
λ′′

λ
= −

e−(λ+ρ)b

µ2

(λ+ρ)4

(
2µ

(λ+ ρ)3
−

2bµ

(λ+ ρ)2

)
and simplify, using the fact that when ε = 0, we have µ = λ+ ρ.
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3.4.2 Rare Aggregate Shocks to Mortality

We now turn our attention to rare aggregate shocks in mortality. Again, we can
smooth out variation in mortality. That is, we can consider aggregate risk about
mortality rates in a small range of ages [b, b+ c], analogous to the argument of
Section 3.4.1. For simplicity, however, we suppose directly that the mortality
schedule is given by ρa + εd(a− b), where d is the Dirac delta function, so that
we have an aggregate shock to mortality of magnitude ε at age b.

A straightforward derivation gives the Euler-Lotka equation

1 =

∫ A

0

µa exp

[
−
∫ a

0

ρãdã− εH(a− b)
]
e−λada,

where H is the Heaviside step function. We again analyze the effect of rare
shifts in aggregate mortality by examining the curvature of the function λ(ε).

We can differentiate the Euler-Lotka equation to obtain:

0 = −dλ
dε

∫ A

0

aµa exp

[
−
∫ a

0

ρãdã− εH(a− b)
]
e−λada

−
∫ A

0

µa exp

[
−
∫ a

0

ρãdã− εH(a− b)
]
H(a− b)e−λada.(16)

Notice that dλ
dε < 0, giving the expected result that increases in mortality in-

crease the growth rate. We take another derivative with respect to ε, and
evaluate this derivative at ε = 0, to obtain

0 = −d
2λ

dε2

∫ A

0

aµapae
−λada+

(
dλ

dε

)2 ∫ A

0

a2µapae
−λada

+ 2
dλ

dε

∫ A

0

aµapaH(a− b)e−λada+

∫ A

0

µapa(H(a− b))2e−λada.(17)

After some algebra, it follows that21

−λ
′′

λ′
=

D(∫ A
0
aµapae−λada

)2 , (18)

21Let

D1 =

∫ A

0
aµapae

−λada, D2 =

∫ A

0
a2µapae

−λada, D3 =

∫ A

0
aµapaH(a−b)e−λada, D4 =

∫ A

0
µapaH(a−b)e−λada.

Then, noting that (H(a− b))2 = H(a− b), we can rewrite equation (17) as

0 = −λ′′D1 + (λ′)2D2 + 2λ′D3 +D4.

From (16) evaluated at ε = 0, we have 0 = −λ′D1 −D4, so that

0 = −λ′′D1 − λ′
D2D4

D1
+ 2λ′D3 − λ′D1.

Rearranging gives

−
λ′′

λ′
=
D2D4 − 2D1D3 + (D1)2

(D1)2
=

D

(D1)2
,

which is (18).
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where

D =

(∫ A

0

µapaH(a− b)e−λada

)(∫ A

0

a2µapae
−λada

)

− 2

(∫ A

0

aµapae
−λada

)(∫ A

0

aµapaH(a− b)e−λada

)
+

(∫ A

0

aµapae
−λada

)2.

.

Recall that λ
′
< 0, so that the sign of λ

′′
is the sign of D. If b = 0, D is the

variance of age in the steady state distribution and so is positive. It is clear
too that D must be positive in the limit as b → ∞. It is easily shown that D

reaches a minimum at b̂ =
∫A
0
a2µapae

−λada

2
∫A
0
aµapae−λada

. More generally, we have:

Proposition 3 Small, rare aggregate shocks to mortality are advantageous at
all ages b ≥ 0.

Proof Because λ′ < 0, it suffices for the result to show that D is positive,
for all b ≥ 0. Let f denote the distribution µapae

−λa of ages on [0, A], and
assume (normalizing if needed) that this is a probability density with cumulative
distribution F . Then we can rewrite D as

(1− F (b))E{a2} − 2E{a}E{a|a > b}(1− F (b)) + (E{a})2,

where the expectations are taken with respect to the distribution f . Expanding
the expressions for E{a} and E{a2} it follows that the desired inequality holds
if and only if

(1− F (b))[F (b)E{a2|a ≤ b}+ (1− F (b))E{a2|a > b}]
+ [F (b)E{a|a ≤ b}+ (1− F (b))E{a|a > b}]2

> 2[[F (b)E{a|a ≤ b}+ (1− F (b))E{a|a > b}]E{a|a > b}](1− F (b)).

Eliminating some common terms, this inequality holds, in turn, if and only if

(1− F (b))F (b)E{a2|a ≤ b}+ (1− F (b))2E{a2|a > b}+ F (b)2[E{a|a ≤ b}]2

> (1− F (b))2[E{a|a > b}]2,

which holds (noting that Var[a|a > b] = E[a2|a > b] − [E[a|a > b]]2 ≥ 0) if and
only if

(1− F (b))F (b)E{a2|a ≤ b}+ F (b)2[E{a|a ≤ b}]2 + (1− F (b))2Var[a|a > b] > 0,

which is obvious.

Again, if evolution has shaped our risk preferences in light of these consider-
ations, then we can expect people to seek aggregate risk to mortality. This
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contrasts with the results for aggregate shocks to fertility, which (in this set-
ting) are advantageous at young ages but disadvantageous for those over the
average age.

Consider the case that µa = µ, a constant, pa = e−ρa, where ρ is also
constant and A = ∞. After some algebra, it can be shown that the sign of D
is the sign of −2e−(λ+ρ)b(λ + ρ)b + 1. This is minimized at b̂ = 1

(λ+ρ) in which

case it has value 1 − 2/e > 0. As expected, rare random aggregate shocks to
mortality are advantageous at all ages.

Continuing with this simple case, we seek an idea of the strength of the pref-
erence for risk. Since ε is again dimensionless, we again examine the coefficient
of absolute risk aversion. Using (18), we have22

RA(ρ, b) =
λ′′

λ′
=
[
2µbe−µb − 1

]
.

(We define the coefficient of absolute risk aversion, RA(ρ, b), like this to preserve
the convention about the meaning of its sign, given λ

′
< 0.) Hence, RA(ρ, b) is

−1 at b = 0, reaches a maximum of −1 + 2e−1 ∈ (−1, 0) at b = 1/µ and tends
to −1 as b→∞.

To build some intuition for Proposition 3, we consider a simple discrete-time
two-age model. Survival from age 0 to age 1 is certain, but individuals survive
from age 1 to age 2 with probability 1−ε, and then die at the end of age 2. Each
individual of age 1 and each surviving individual of age 2 has probability u of
having one offspring. We then consider aggregate variation in ε, i.e., aggregate
variation in survival.

The Euler-Lotka equation then becomes

1 =
u

λ
+

(1− ε)u
λ2

,

which we can solve for

ε =
uλ− λ2 + u

u
.

It is apparent that ε is a strictly decreasing (since λ > u) and strictly concave
function of λ. It then follows that λ is also a strictly decreasing and strictly
concave function of ε. Hence, aggregate shocks to survival from age 1 to age 2
are disadvantageous. The forces behind this result are reminiscent of those that
cause aggregate shocks to fertility at later ages to be disadvantageous.

What then accounts for the risk loving in Proposition 3? We have described
the aggregate variations in our two-period example as affecting the survival
probability 1−ε, whereas Proposition 3 is expressed in terms of mortality rates.
To recast our example in terms of mortality rates, we write the probability of
survival from period 1 to period 2 as e−ε, and then consider aggregate variations
in the mortality rate ε. The Euler-Lotka equation now becomes

1 =
u

λ
+
ue−ε

λ2
,

22Apply the results
∫∞
b e−(λ+ρ)ada = e−(λ+ρ)b/(λ + ρ),

∫∞
b ae−(λ+ρ)ada =

e−(λ+ρ)b [1 + (λ+ ρ)b] /(λ+ρ)2, which hold for all b ≥ 0, and
∫∞
0 a2e−(λ+ρ)ada = 2/(λ+ρ)3.
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which we can solve for

ε = − ln
[
λ2 − uλ

]
+ lnu.

It follows readily that

dε

dλ
=
−2λ+ u

λ2 − uλ
< 0

d2ε

dλ2
=

λ2 + (λ− u)2

(λ2 − uλ)2
> 0.

Since ε is a strictly decreasing and strictly convex function of λ, it follows that λ
is also a strictly decreasing and strictly convex function of ε. Aggregate shocks
to mortality rates are advantageous.

We obtain different results for aggregate variations in survival and mortality
because the probability of surviving from period 1 to period 2 is linear in the
survival probability (i.e., 1 − ε is linear in ε), but is convex in the mortality
rate (i.e, e−ε is convex in ε). When examining fertility, we found that aggregate
variations at later ages were disadvantageous. We find an analogous result here
for survival probabilities. However, the convexity of the survival probability
in the mortality rate builds in a force pushing causing aggregate variations in
the mortality rate to be advantageous. We see again that attitudes to risk are
affected by whether the demographic variables are expressed as factors or as
rates.

4 The Allocation of Resources

We usually think of risk as affecting economic variables such as income, rather
than affecting mortality or fertility directly. We would accordingly like to ex-
amine the evolutionary implications of aggregate shocks to economic variables
such as income. We construct a simple model in which such effects appear.

4.1 Optimal Resource Use

Suppose that each agent receives an age-dependent flow of income, with ya
specifying income at age a. Income can be divided between income used to
increase fertility (ca) and income used to decrease mortality (sa), so that ya =
ca + sa. There is no saving. This aids tractability, but it might also be a
reasonable approximation of hunter-gatherer economies. Fertility at age a is
endogenous, given by µa = ua(ca), where ua is an age-dependent increasing
concave production function. Similarly, mortality is endogenous, given by ρa =
ra(sa), where ra is an age-dependent decreasing convex production function.
Survival to age a is given by pa, which connects to mortality as dpa

da = −para(sa).
The Euler-Lotka equation is∫ A

0

e−λapaua(ca)da = 1.
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The basic problem is then to find the growth rate λ̂ that solves

max
ca,sa

λ subject to

1 =

∫ A

0

e−λapaua(ca)da

ya = ca + sa
dpa
da

= −para(sa), p0 = 1.

It is not hard to show that we can equivalently find λ̂ by first solving the
following problem, for every value of λ,

max
ca,sa

∫ A

0

e−λapaua(ca)da subject to

ya = ca + sa
dpa
da

= −para(sa), p0 = 1

and then noting that λ̂ is the unique value of λ that then solves 1 =
∫ A

0
e−λ̂apaua(ca)da.

The Hamiltonian for this second maximization problem is

H =e−λapaua(ca)− ηapara(sa),

which is to be maximized subject to ya = ca+sa. Here, ηa is the costate variable
for the state variable pa, where ηae

λa can be interpreted as the contemporaneous
reproductive value of an individual of age a. To see this, note that the adjoint
equation is dηa

da = −∂H∂p = −e−λaua(c) + ηara(s). Using dpa
da = −para(sa), it

follows then that d
da (paηa) = −pae−λaua(ca) so that

ηae
λa =

∫ A
a
pãe
−λãuã(cã)dã

pae−λa
, (19)

using the transversality condition that ηA = 0. This equation gives the repro-
ductive value of an individual of age a. This is the appropriately discounted
integral of future fertility, conditional on being alive at age a.

The solution to the problem of maximizing the Hamiltonian, H, is charac-
terized by the Kuhn-Tucker conditions. In particular, the first-order condition
for an interior solution is

pae
−λa dua(c)

dca
= −ηapa

dra(s)

dsa
,

so that

−ηaeλa
dra(s)

dsa
=
dua(c)

dca
. (20)

This equates the marginal gain from using resources to promote fertility, dua(c)
dca

,

to the marginal gain from using resources to reduce mortality, −ηaeλa dra(s)
dsa

.
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The latter expression is the marginal gain from mortality reduction, −dra(s)
dsa

times the contemporaneous value of an individual alive at date a, namely ηae
λa.

Existence of an optimal solution follows readily. Further, the maximized
Hamiltonian is concave in the state pa, so that the above conditions characterize
the optimum (Mangarasian [14]).

4.2 Shocks to Income

How would individuals react to rare aggregate shocks to income yb at age b?
We have examined the effects of aggregate shocks to fertility and mortality, and
the effect of aggregate shocks to income will depend on how these translate into
shocks to fertility and mortality. In general, the result will involve a complex
weighted average of the responses to aggregate shocks to fertility and to mortal-
ity. We accordingly restrict attention to a simple special case. Tractability plays
an important role in our choices, though we argue at the end of this section that
this is a plausible first approximation.

Suppose that fertility is a linear function, so that

ua(c) = αac

for some αa > 0. For an interior solution, the first order condition given by (20)
is then

αa = −ηaeλa
dra(s)

dsa
.

If ya is sufficiently small for some age a, then there might well be a corner
solution to the problem of maximizing the Hamiltonian, H, with ca = 0, so
that all resources are devoted to survival. In this case, there is no fertility at
age a, and all variation in ya = sa induces variation in mortality. This might
be the case over some initial period of childhood. For simplicity, however, we
limit attention to the case that ya is sufficiently large that there is an interior
solution to the first-order condition. Our interpretation is either that this is
the case throughout an agent’s lifetime, or that we are focussing on shocks to
income during the period of “adulthood” in which this is the case. We then have
ca > 0. The equivalence of the marginal products in the first-order condition
fixes the contribution sa to reducing mortality, and hence all variation in ya
will translate directly into variation of ca, with no variation is sa. In particular,
there will exist an equilibrium level s∗a, with fertility µa then given by

µa = αa(ya − s∗a). (21)

4.2.1 Idiosyncratic Shocks to Income

Equation (21) indicates that in this simple model, variations in income at age b
translate linearly into variations in fertility at age b, while having no effect on
mortality. However, we have already established that idiosyncratic variations in
fertility lead to population growth rates identical to those that would prevail if
fertility is fixed at its mean level. Evolution will then select for preferences that
are neutral with respect to idiosyncratic variations in income.
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4.2.2 Aggregate Shocks to Income

Now consider aggregate variations in income. In particular, suppose we replace
ya by ya + εd(a− b). How does the growth rate λ now depend on ε? As before,
we interpret this as an approximation to a case in which there is large but finite
shock to income over a narrow range of ages, anchored at age b and conveniently
captured by a impulse shock to income at age b. In the model, aggregate impulse
variations in income again leave mortality unaffected and translate linearly into
aggregate variations in fertility. We can thus apply the results from Section
3.4.1 to conclude that aggregate variations in income are advantageous at early
adult ages and disadvantageous at later ages:

Proposition 4 There exists an age b̄ such that small, rare aggregate shocks to
income at age b < b̄ are advantageous, while small, rare aggregate shocks to
income at age b > b̄ are disadvantageous.

We can thus expect adults to be risk-preferring at relatively young ages, for
aggregate shocks to income, but to eventually become risk-averse and remain
so. For example, investments in the stock market entail risks that are correlated
across investors, and so we might then not be surprised to see younger individ-
uals participate in the market, while older individuals often divest themselves
of stocks, while continuing to save using other (but more idiosyncratic) risky
instruments.23

To make this economic prediction more explicit, reconsider the simple case
with constant fertility, µ, and mortality ρ, over [0,∞). Suppose also that the
conversion of resources to fertility is age-independent so that αa = α in (21).
From (15), it follows that RA(y, b) = αRA(µ, b) = 2αe−(λ+ρ)b(b(λ + ρ) − 1),
where RA(y, b) is the coefficient of absolute risk-aversion over income at age
b. This gives us an explicit prediction, for this special case, of how RA(y, b)
depends on age b.

There is evidence suggesting that our model is not an unreasonable first
approximation. The popular press has given considerable attention to research,
involving animal experiments (often rats) showing that the restriction of food
intake may prolong life. The effect of calorie restriction on human longevity has
not been empirically established, despite the enormous inherent interest, but
there is a view that such an effect might be small (e.g., Page and Rose [15]).

23There is some evidence that bears out this prediction. For example, Dohmen, Falk,
Golsteyn, Huffman and Sunde [5, Abstract] state that “...willingness to take risks decreases
over the life course, linearly until age 65 after which the slope becomes flatter”. However,
they do not break out stock holdings, perhaps the leading example of modern aggregate
risk. Ameriks and Zeldes [1, Abstract] claim more specifically that “We find no evidence of a
gradual reduction in portfolio shares with age. There is some tendency for older individuals to
shift completely out of the stock market around the time of annuitizations and withdrawals.”
Ameriks and Zeldes also point out that simple standard economic theory does not predict
a reduction in the portfolio share of risky assets just because there are fewer periods left.
If utility has constant relative risk aversion, for example, and there is no additional future
income, the share of savings held in risky assets should be constant, even though the amount
saved declines. Hence the current model may help understand a phenomenon that, although
having almost the status of conventional wisdom, is not robustly predicted by standard theory.
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A model in which variations in resources have only a small effect on mortality
might then be a reasonable approximation of our evolutionary past. Lost in
the publicity surrounding the effect of nutrition on mortality is the observation
that variations in food intake have a larger effect on fertility than mortality.
Indeed, the experiments show that a reduction in food intake often causes a
dramatic reduction in fertility. (For an early paper in this literature, see Ball,
Barnes and Visscher [3].) Once again, and for obvious reasons, these experiments
have concentrated on nonhuman subjects (often rats), and the effects of calorie
restriction on human fertility are relatively unexplored. However, if humans
once experienced effects of food intake on fertility similar to those found now
for other mammals, we are close to the current formulation.24 That is, it seems
likely that variations in food intake translate at least mostly into variations in
fertility.

Of course, there is much work to be done in exploring variations on this
model. Notice in particular that other technologies for converting income into
fertility and mortality may give risk to nontrivial risk attitudes toward idiosyn-
cratic risks.

5 Discussion

We have examined the simplest setting in which we can make the point that
age-structures can give rise to differences in attitudes toward idiosyncratic and
aggregate risk. Several extensions immediately suggest themselves.

5.1 Life Beyond Fertility

Life beyond menopause could not be evolutionarily optimal in the current model.
A large literature has struggled to reconcile the obvious existence of post-
menopausal survival with evolutionary arguments, with the grandmother hy-
pothesis being the leading explanation (cf. Hawkes, O’Connell, Blurton Jones,
Alvarez and Charnov [11]). Capturing the grandmother hypothesis would re-
quire the incorporation of intergenerational resource transfers into the model.
We view this as a promising topic for further work, but postpone it because
such transfers are most effectively incorporated in connection with simplifica-
tions that mask the risk considerations examined here.

5.2 Attitudes Toward Risk

Our basic finding is that evolution need not select for neutral attitudes toward
aggregate risk. Psychological studies of risk attitudes suggest that a feeling of
control is important in inducing people to be comfortable with risk.25 Risks aris-

24A mechanism that dramatically reduces fertility while holding constant or even reducing
mortality might have been selected for its ability to defer reproduction from bad times until
times are good again (see Halliday [9]).

25See Slovic, Fischhoff and Lichtenstein [22] for an early contribution and Slovic [21] for a
more recent discussion.
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ing out of situations in which people feel themselves unable to affect the outcome
cause considerably more apprehension than risks arising out of circumstances
people perceive themselves to control. “Control” may be an evolutionarily con-
venient stand-in for an idiosyncratic risk. If so, then our seemingly irrational
fear of uncontrolled risk may be a mechanism inducing an evolutionarily rational
fear of aggregate risk.

We find here that, as expected, idiosyncratic risk to fertility or mortality
is evolutionarily neutral. Aggregate shocks to fertility are advantageous when
young and disadvantageous when old, while aggregate shocks to mortality are
always advantageous. We obtained these results by examining rare and small
shocks. This serves to illustrate a central set of possibilities, but much remains
to be done in extending the results to a wider range of settings.

We are interested in evolutionary foundations for attitudes toward risk in
an economic variable, income in particular. The simplification we adopt, that
fertility is linear in income, implies risk neutral attitudes toward idiosyncratic
risk in income. Another worthwhile extension would be to consider the more
general case where fertility is a strictly concave function of income so that
individuals are risk-averse with respect to idiosyncratic gambles in income.

6 Appendices

6.1 A Discrete Foundation

The derivation in Section 2 effectively assumes that a population subject to
idiosyncratic risk grows at the same rate as would an equivalent deterministic
population where each random variable is replaced by its mean, and assumes
that the population will converge to steady-state growth. This section provides
foundations.

6.1.1 The Discrete Model

Time is discrete and is measured in periods of length ∆. Section 6.1.2 will
consider the case in which ∆ approaches zero, but in this section we let ∆ = 1
and suppress it in the notation. As noted, we find it convenient to consider
the case in which the upper bound A on the set of ages is finite. In this case,
the results in this section are straightforward applications of results from Harris
[10, Chapter II] and Athreya and Ney [2, Chapter V]. With somewhat more
cumbersome notation, the results extend to the case in which age is unlimited
(Harris [10, Chapter III]).

At the beginning of each period t ∈ {0, 1, 2, . . .}, we take a census of the pop-
ulation, which is characterized by a vector N(t) = (N1(t), . . . , NA(t)) identifying
the number of individuals of each age 1, . . . A.

After the census in each period, reproduction occurs, giving rise to new-
borns. An individual of each age a = 1, ..., A has probability ma(x) of having
x ∈ {0, 1, . . . , X} offspring, where this is independent across individuals. Each
individual then either survives until the next period, growing one period older
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in the process, or dies. An individual of age a = 0, ..., A−1 survives to age a+1
with probability πa ∈ (0, 1], while all individuals of age A die.

We then arrive at period t+ 1 and the next census. We assume for simplic-
ity that each individual’s survival is independent of that individual’s fertility.
Further, and more importantly, all individuals take independent draws from the
relevant birth and death distributions.

For each age a ∈ {1, . . . A}, we can think of an A-dimension random variable
taking realizations of the form (N1, . . . , NA), specifying the number of members
of each age emanating in the next period from a single individual of age a in
the current period. (The notation Na here has distinct meaning from that in
effect elsewhere as the age structured population.) These random variables are
independent across ages, individuals, and time periods, and for each age are
identically distributed across individuals and time periods.

It is convenient to describe the random variables in terms of a collection of A
moment generating functions fa : [0, 1]A → R+, one for each age 1, . . . A, where

fa(s1, . . . , sA) =
∑

(N1,...,NA)

ra(N1, . . . , NA)
A∏
k=1

sNkk ,

where ra(N1, . . . , NA) is the probability that an age-a individual gives rise to Nk
individuals of age k for k ∈ {1, . . . , A}. (The (s1, ..., sA) are formal variables.)
In this particular case, an individual of age a can give rise only to individuals
of age a + 1 (by surviving until the next period, if a < A) and of individuals
of age 1 (by having offspring that survive). Hence, we can write our generating
functions as

f1(s1, s2) =
∑
N1,N2

r1(N1, N2)sN1
1 sN2

2

f2(s1, s3) =
∑
N1,N3

r2(N1, N3)sN1
1 sN3

3

...

fA−1(s1, sA) =
∑
N1,NA

rA−1(N1, NA)sN1
1 sNAA

fA(s1) =
∑
N1

rA(N1)sN1
1 .

Inserting the relevant expressions for the probabilities and rearranging, the mo-
ment generating functions can be shown to reduce to the convenient forms:

fa(s1, sa+1) = (πasa+1 + (1− πa))

X∑
x=0

ma(x){π0s1 + (1− π0)}x, a = 1, . . . , A− 1

fA(s1) =

X∑
x=0

mA(x){π0s1 + (1− π0)}x.

27



These expressions reflect the requirement that the coefficient of (s1)N1(sa+1)Na+1

in the moment generating function fa(s1, sa+1) is the probability that there are
N1 age 1 individuals and Na+1 age a + 1 individuals one period after starting
with one age a individual. For example, consider the coefficient of s1sa+1 in the
expression for fa(s1, sa+1), which, for a = 1, .., A− 1, is

πa{ma(1)π0+ma(2)2π0(1−π0)+ma(3)3π0(1−π0)2+...+ma(X)Xπ0(1−π0)X−1}.

This is the product of probabilities that the age a individual survives (given by
πa) and that exactly one of her offspring survives as well (the term in braces).

The moment generating functions provide a complete description of the
stochastic population process, in a form that allows us to extract various types
useful information. Each moment generating function describes the implica-
tions of a single individual of a certain age. However, using the independence
across individuals and ages, we can obtain a description of the entire population.
If the current population is given by (N1(t), ..., NA(t)) at time t, the moment
generating function for the state of the population in the next period is[

A−1∏
a=1

(fa(s1, sa+1))Na(t)

]
(fA(s1))NA(t),

Iterating this map allows one to describe how the population evolves over time.
Our first application of the moment generating function allows us to describe

the probability of extinction. Consider a population that initially consists of a
single individual of age a, so that Na = 1 and Nã = 0 for ã 6= a. Define the
probability of extinction for this population to be qa. These probabilities are
characterized by the equations

qa = fa(q1, qa+1) = [πaqa+1 + (1− πa)]

X∑
x=0

ma(x)(π0q1+(1−π0))x, a = 1, . . . , A−1,

and

qA = fA(q1) =

X∑
x=0

mA(x)(π0q1 + (1− π0))x.

To interpret these expressions, note that two things must occur if the line of
descendants of the individual of age a = 1, ..., A−1 is to suffer extinction. First,
all offspring must give rise to lines of descendants that suffer extinction. The
probability of this event is given by the sum on the right side of the equation.
Second, the individual in question must either die immediately, or survive until
the next period, and then give rise to a line of descendants that suffers extinction.
The probability of this combination of events is given by the term in square
brackets on the right side of the equation. These events are independent, and so
the overall probability of extinction is given by the product of these probabilities.

In general, again using the independence across individuals, if there is a
population given by (N1, ..., NA), the probability of extinction is

A∏
a=1

(qa)Na .
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Next, derivatives of moment generating functions identify expected numbers
of descendants. Define an A×A matrix L as

La,1 =
∂fa(1, 1)

∂s1
=

X∑
x=1

ma(x)xπ0 =: µaπ0, a = 1. . . . , A

and

La,a+1 =
∂fa(1, 1)

∂sa+1
= πa, a = 1, . . . , A− 1,

where all other terms La,ã are 0. Then we can interpret La,1 as the expected
number of surviving offspring in the next period, from an individual of age a
in the current period, and can interpret La,a+1 as the expected number of age
a+ 1 individuals next period as a result of the survival of an individual who is
age a in the current period. Putting these terms together, we have the “Leslie”
matrix

L =


µ1π0 π1 . . . 0
µ2π0 0 . . . 0

...
µA−1π0 0 . . . πA−1

µAπ0 0 . . . 0

 .
We say that the process is positively regular if there existsK such that LK >> 0.
One sufficient condition for this is that µ1 > 0 and µA > 0. We say that the
process is nonsingular if it is not the case that all of the functions fa are linear.

The central result in the theory of branching processes is that the matrix L of
the derivatives of the generating functions determines the fate of the population.
Let Λ > 0 be the Frobenius root (or dominant eigenvalue) of L.

Proposition 5 Let the population process be positively regular and nonsingular.
Then:

[5.1] If Λ ≤ 1 then qa = 1 for all a, so extinction occurs with probability 1
given any initial population.

[5.2] If Λ > 1, then qa < 1 for all a, so that extinction has probability strictly
less than 1 for any initial population. Furthermore, every finite nonzero state
is transient. Finally, almost surely,

N(t)

Λt
→ vW, as t→∞,

where v >> 0 is the left eigenvector of L and W ≥ 0 is a random variable with
the property that Pr(W > 0) > 0.

Proof See Athreya and Ney [2, Theorem 3.2, p. 186 and Theorem 6.1, p. 192]

When Λ > 1, the process may go extinct, with the probability of extinction
given by the probability that the random variable W equals zero. However,
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with strictly positive probability (i.e., with Pr(W > 0)) it does not go extinct.
It then explodes, growing to infinity with growth factor Λ and settling down
to a steady population distribution given by v. The population is eventually
described by a deterministic growth path exhibiting the constant growth rate
λ = ln Λ and a constant age structure. The level of this growth path depends
upon chance events that affect the size of the population when small, which are
captured by the random variable W , while the rate of growth does not depend
on such events.

The growth factor Λ satisfies the characteristic equation of the matrix M ,

1 =

A∑
a=1

(Πã=a−1
ã=0 πã)µa

Λa
. (22)

This is the counterpart of the Euler-Lotka equation given by (5).
We have thus established the result that in the discrete model, the long-run

growth rate of a population subject to idiosyncratic risk concerning fertility or
survival matches that of a population growing deterministically at mean rates.

6.1.2 Taking the Limit

We now show that the Euler-Lotka equation (5) for a continuous-age model is
the limit of the Euler-Lotka equations (22) for a converging sequence of discrete-
age models.

Our candidate limit for such a sequence is a continuous-age model with
continuous fertility and mortality schedules µa and ρa defined on the interval
[0, A]. We index the elements in the sequence of discrete-age models by ∆,
interpreted as the length of a period, and consider the limit as ∆→ 0. We then
refer to an element of our sequence as “model ∆.”

The finite set of ages for model ∆ is given by G(∆) = {∆, 2∆, ..., 1, 1+∆, 1+
2∆, ..., A}. That is, we limit attention to ∆ that divide evenly into 1 and hence
A. We now think of the fertility rate µa from the continuous specification as
applying for each age a ∈ G(∆), as a constant rate, over the interval [a, a+ ∆].
This generates a fertility level

µa∆

for each age a ∈ G(∆) in model ∆. For mortality, we suppose similarly that ρa
applies, as a constant rate, over the interval [a, a+ ∆] for each a ∈ G(∆). This
implies that the survival probability from age a to age a+ ∆ is now given by

πa(∆) = e−ρa∆

for each age a ∈ G(∆) in model ∆.
Each discrete model ∆ exhibits idiosyncratic risk—the fertility and mortality

outcomes of the agents in model ∆ are outcomes of independent draws from
distributions, as in Section 6.1, summarized by µa∆ and πa(∆). Taking the
limit as ∆→ 0 entails a larger number of such independent draws.
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We are interested in the resulting steady-state configurations. Proposition
5 indicates that the steady-state configuration for model ∆ is described by the
Euler-Lotka equation (22) for model ∆, which we can write as

1 =
∑

a∈G(∆)

(Πã=a−1
ã=0 πã(∆))µa∆

Λa
. (23)

In this expression, Λ denotes the growth factor that applies over an interval
of fixed length 1. Our task is then to show that the sequence of Euler-Lotka
equations given by (23) converges (as ∆ → 0) to the continuous-time Euler-
Lotka equation given by (5).

A straightforward technical result for evaluating the limit as ∆→ 0 is:

Lemma 1 Suppose that g(a,∆) is a twice continuously differentiable function
g : [0, A]×R+ → R+, with g(a, 0) = 0. Consider a grid G(∆) = {∆, 2∆, ..., A},
for any ∆ > 0 and A > 0. Then∑

a∈G(∆)

g(a,∆)→
∫ A

0

∂g(a, 0)

∂∆
da

as ∆→ 0.

Proof. Taylor’s Theorem implies that

g(a,∆) = ∆
∂g(a, 0)

∂∆
+

∆2

2

∂2g(a, χ)

∂∆2
,

where χ ∈ (0,∆). Because g(a,∆) is a twice continuously differentiable func-

tion, we have
∑
a∈G(∆) ∆∂g(a,0)

∂∆ →
∫ A

0
∂g(a,0)
∂∆ da and

∑
x∈G(∆) ∆∂2g(a,χ)

∂∆2 →∫ A
0

∂2g(a,0)
∂∆2 . Hence ∆

∑
a∈G(∆) ∆∂2g(a,χ)

∂∆2 → 0 and so we have
∑
a∈G(∆) g(a,∆)→∫ A

0
∂g(a,0)
∂∆ da.

Consider now the limit of our sequence of discrete-time models. By con-
struction, the survival factors in the discrete-time model are given by πa(∆) =
e−ρa∆. It follows that the probability of surviving to age a is given by pa
where ln pa =

∑
ã∈G(∆),ã≤a ln(πã(∆)) =

∑
a∈G(∆),ã≤a ln(e−ρã∆). If we let

g(a,∆) = ln(e−ρa∆), then g(a,∆) satisfies the conditions of Lemma 1. Since
∂g(a,0)
∂∆ = −ρa, it follows from Lemma 1 that ln pa → −

∫ a
0
ρãdã and hence

Πã=a−1
ã=0 πã(∆) = pa → e−

∫ a
0
ρãdã.

From this, it follows that:

Proposition 6 The discrete Euler-Lotka equation converges to its continuous
counterpart, i.e.,∑

a∈G(∆)

(Πã=a−1
ã=0 πã(∆))µa∆

Λa
−→

∫ ∞
0

exp

{
−
∫ a

0

ρãdã

}
µae
−λada,

where λ = ln Λ.
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Using (23) and (1), this gives us the Euler-Lotka equation (5).
Much as in the discrete case, the population governed by the Euler-Lotka

equation (5) grows if λ > 0. That is, for an arbitrary initial age distribution,
the population has a deterministic growth path that converges to a steady-state
population configuration with the constant growth rate λ and a constant age
structure. See Frauenthal [8, pp. 131–134] and Kot [13, 356–357] for details.

6.1.3 The Criterion for Evolutionary Success

Our criterion for evolutionary success is to maximize the “ultimate” growth rate,
by which we mean the long-run growth rate conditional on escaping extinction.
If a type escapes extinction, then it eventually grows without bound at this rate.
This criterion is standard in the literature, but raises three questions.

First, what if there are two types, one with a higher ultimate growth rate, but
also a higher probability of extinction? This issue is addressed in Robson (1996),
which supposes that there is some small probability of each type mutating into
the other.26 Once we bring these mutations into the model, the various types
are bound together—either they all go extinct or none of them do. Further, if
mutations are rare, the growth rate of the integrated population is close to the
growth rate of the that type with the highest ultimate growth rate, and this
type dominates the population. In this sense, then, evolution selects the type
with the highest ultimate growth rate, as captured by our model.

Second, populations clearly cannot increase without bound, contrary to the
model. How does this affect the current analysis? In principle, a more realistic
but also more complex model would incorporate a feedback from population
size to the probability distribution of offspring, so that the expected number
of offspring would sink to 1 as the carrying capacity of the environment is ap-
proached.27 It remains true, of course, that the type with the maximum ultimate
growth at carrying capacity will dominate the population. Hence, as long as
our model captures the ranking of ultimate growth rates that prevails near the
carrying capacity of the environment, our results apply, and it is convenient to
simplify the analysis by removing considerations of carrying capacity.

Third, there is a more subtle issue that carrying capacity introduces. Sup-
pose that the type that dominates the population at carrying capacity does so
with an offspring distribution that features a positive probability of zero off-
spring, as would generally be the case. Then there is only one possible long run
outcome—eventually all individuals in a given generation will obtain the zero
outcome and the type will become extinct. Surely this would introduce some
degree of aversion to idiosyncratic risk? If so, carrying capacity would have to
enter the model.

How important this consideration is depends on how large the carrying
capacity is. There are currently estimated to be only three northern white

26This assumption is biologically plausible, as long as the time considered is long. Indeed,
the very existence of a type confirms the existence of such mutations.

27In general, the differential success of different types might vary as the population size
approaches carrying capacity.
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rhinoceros in the world. Idiosyncratic fertility and mortality draws pose a very
real extinction threat to such animals, but it is unlikely that the population
will remain positive but so small long enough for this to play a role in the
evolutionary selection of risk attitudes. On the other hand, it is possible, in
principle, that for the next century, there are no female births among humans,
so driving the population extinct. Given the billions of reproductive age women
in the world, this is prodigiously unlikely, and little harm is done by neglecting
it. In general, a population that survives long enough for evolution to shape
risk attitudes will be large enough that idiosyncratic realizations pose little risk
of extinction. The phenomena of interest here are thus well approximated in
a model that allows populations to grow without bound, while conditioning on
escaping extinction.

6.2 Proof of Proposition 1

The population growth factor. The growth factor P (T ) = N(T )/N(0) is
the product of a number of growth factors, where each factor corresponds to a
sojourn in some particular state n. Let Tn be the total amount of time, in the
interval [0, T ], that the population spends in state n (so

∑N
n=1 Tn = T ). This

time will be comprised of Wn sojourns in state n of lengths τ1
n, . . . , τ

Wn
n (where

τ1
n + . . . + τWn

n = Tn). If we let Pwn denote the growth factor associated with
sojourn w in state n, then we can write (suppressing the dependence of variables
in the final term on T , to keep the notation uncluttered)

P (T ) =

N∏
n=1

Pn(T ) =

N∏
n=1

Wn∏
w=1

Pwn ,

where Pn(T ) denotes the product
∏Wn

w=1 P
w
n of the growth factors associated

with the sojourns in state n. That is, the growth factor Pwn is N(t̄wn )/N(twn )
where [twn , t̄

w
n ] is the wth sojourn in state n in [0, T ].

In order to verify (6), fix a value ε.

Fixed state n. We now fix a state n and examine Pn(T ). Throughout this
portion of the argument, whenever possible, we omit the state subscript on
variables, again to keep the notation uncluttered.

Within any sojourn w in state n, growth proceeds deterministically. It fol-
lows that there exists an upper bound on growth rates, so that

lnPw

τw
≤ m (24)

for m > 0. This bound holds uniformly in the initial population distribution,
and we can choose a bound that holds across all states.28

28Suppose that m = maxn,a µna where µna is fertility at age a in state n. Consider a
population where all individuals have fertility m and there is no mortality. Clearly the growth
rate of this population, which is always m, regardless of age structure, exceeds that of the
population in any state.
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Next, choose a value ε′ such that

λn − ε ≤ (λn − ε′)(1− ε′) ≤ (λn + ε′)(1 + ε′) +mε′ ≤ λn + ε (25)

holds for all states.
Invoking the arguments in Feller [7, Ch XI], we can choose τ̂ such that

lnPw

τw
∈ [λn − ε′, λn + ε′] (26)

for all sojourn lengths τw ≥ τ̂ , uniformly in the initial population distribution
and across states.29

Let τ be the expected length of a sojourn in state n. Notice that τ increases
without bound as k increases. Hence, we can choose K such that for all k ≥ K,

Pr{τ̃ ≤ τ̂} ≤ ε′ (27)

τ̂ ≤ τ (28)

1 ≤ E{τ̃ |τ̃ ≥ τ̂}
τ

≤ 1 + ε′. (29)

We can again ensure that this holds for all states.
We can rewrite the equality Pn(T ) =

∏Wn

w=1 P
w
n as

lnPn(T )

Tn
=
∑
τw<τ̂

lnPw

τw
τw

Tn
+
∑
τw≥τ̂

lnPw

τw
τw

Tn
. (30)

Using (24) allows us to bound the second term on the right side by

0 ≤
∑
τw<t̂

lnPw

τw
τw

Tn
≤ mW

Tn

∑
τw<τ̂

τw

W
.

Taking a limit and using (27) and (28) for the second inequality gives

0 ≤ lim
T→∞

∑
τw<τ̂

lnPw

τw
τw

Tn
≤ m

τ
E{τ̃ |τ̃ < τ̂}Pr{τ̃ < τ̂} ≤ mε′,

almost surely. Turning to the first term on the right side of (30), we have (using
(26) for the first inequality and (29) for the second)

lim
T→∞

∑
τw≥τ̂

lnPw

τw
τw

Tn
≤ 1

τ
(λn + ε′)E{τ̃ |τ̃ ≥ τ̂}Pr{τ̃ ≥ τ̂} ≤ (λn + ε′)(1 + ε′),

almost surely, and that (again using (26) for the first inequality and (29) for the
second)

lim
T→∞

∑
τw≥τ̂

lnPw

τw
τw

Tn
≥ 1

τ
(λn − ε′)E{τ̃ |τ̃ ≥ τ̂}Pr{τ̃ ≥ τ̂} ≥ (λn − ε′)(1− ε′),

29A detailed proof of this assertion is available at http://www.sfu.ca/ robson/RSA and at
https://sites.google.com/site/larryatyale/home/papers.
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almost surely. Our choice of ε′ in (25) then ensures that

lim
Tn

1

Tn
lnPn(T ) ∈ [λn − ε, λn + ε],

almost surely, for all states n = 1, ..., N .

Combining states. The growth factor at time T is then

P (T ) = P1(T )...PN (T )

Hence, recalling that T1 + ...+ TN = T ,

1

T
lnP (T ) =

∑
n

Tn
T

(
lnPn(T )

Tn

)
,

so that (using Durret [6, Theorem 3.1, p. 169] for the first equality)

lim
T

1

T
lnP (T ) =

∑
n

πn lim
Tn

lnPn(T )

Tn
∈

[∑
n

πnλn − ε,
∑
n

πnλn + ε

]
,

almost surely, which gives (6).

6.3 Calculations for Section 3.3

We first consider how a lag to first reproduction also induces greater aversion
to aggregate risk concerning fertility in a discrete model. First, suppose there is
no age structure. In each period t = 1, 2, . . ., each individual in the population
has µ offspring and survives herself. Letting N(t) be the population size at time
t, with N(0) = 1, we have

N(t) = (1 + µ)N(t− 1) so that N(t) = (1 + µ)t for t = 0, 1, 2, ....

The population growth rate is then given by

λ =
lnN(t)

t
= ln(1 + µ).

The growth rate λ is thus a concave function of the fertility rate µ, indicating
that aggregate risk in fertility is disadvantageous. Aggregate risk has an effect
here, despite the lack of an age structure, because of the discrete formulation.
The Arrow-Pratt measure of absolute risk aversion in this case is given by

RNA = −
d2λ
dµ2

dλ
dµ

=
1

(1 + µ)
.

Now suppose that reproduction does not begin until the second period of
one’s life. The population is then governed by the difference equation

N(t) = N(t− 1) + µN(t− 2),
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with initial conditions N(0) = N(1) = 1. This is a straightforward second-order
difference equation, whose solution is given by

N(t) =
1√

1 + 4µ

[(
1 +
√

1 + 4µ

2

)t+1

−
(

1−
√

1 + 4µ

2

)t+1
]
,

with growth rate

lim
t→∞

λ = lim
t→∞

lnN(t)

t
= lim
t→∞

ln

[(
1+
√

1+4µ
2

)t+1

−
(

1−
√

1+4µ
2

)t+1
]

t

= ln
1 +
√

1 + 4µ

2
.

This gives us the growth rate λ as a concave function of µ, and hence aggregate
risk in fertility is disadvantageous. We can now calculate:

dλ

dµ
=

2

1 + 4µ+
√

1 + 4µ

d2λ

dµ2
= − 8 + 4(1 + 4µ)−1/2

(1 + 4µ+
√

1 + 4µ)2

RLA = −
d2λ
dµ2

dλ
dµ

=
4
√

1 + 4µ+ 2

1 + 4µ+ (1 + 4µ)
√

1 + 4µ
.

Comparing to the case of no age structure, it follows that, as long as µ is not
large, the measure of risk aversion is larger for the case of the structure with a
reproductive lag.30 As µ→∞, both measures of risk aversion approach 0.

We now turn to the example in Section 3.3 and show that aversion to aggre-
gate risk arises in the case M > 0 and A <∞. We have the relationship

µ =
λ

e−λM − e−λA
=:

λ

f(λ)
.

To establish that λ is a concave function of µ, and hence that aggregate risk is
disadvantageous, we show that d2µ/dλ2 > 0. We first calculate, with abbrevi-
ated notation,

dµ

dλ
=

f − f ′λ
f2

d2µ

dλ2
=

f(−f ′′λ)− (f − f ′λ)2f ′

f3
.

We thus need to show
2(f ′)2λ > ff ′′λ+ 2ff ′.

30If x =
√

1 + 4µ, it follows readily that RLA > RNA if and only if x < 3 + 2
√

3 or if and
only µ < 10.2, approximately, a bound that includes all plausible human levels of fertility.
For larger values of µ, the comparison is reversed.
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We then note that

f = e−λM − e−λA

f ′ = Ae−λA −Me−λM

f ′′ = M2e−λM −A2e−λA.

Inserting these terms and simplifying, it follows that we need

λ(A−M)2e−λ(A+M)+λ(Ae−λA−Me−λM )2+2(Me−2λM+Ae−2λA) > 2(A+M)e−λ(A+M).

This inequality holds for all λ > 0 and 0 < M < A <∞.31

6.4 Relation to Robatto and Szentes

Robatto and Szentes [16] argue that aggregate shocks to fertility and mortality
rates, like idiosyncratic shocks, are evolutionarily neutral, in the sense that a
population subject to such shocks exhibits the same long-run growth rate as a
population characterized by the corresponding mean fertility and mortality rates
but subject to no shocks. For a population in which mortality and fertility are
independent of age, their results are consistent with the current paper. That is,
our analysis echoes their striking result that, although aggregate risk generally
has observable (stochastic) consequences, it induces the same relevant long-run
growth rate as comparable idiosyncratic risk.

31After some algebra, this inequality can be shown to be equivalent to

λA2+λM2+λA2eλ(M−A)+λM2eλ(A−M)+2Meλ(A−M)+2Aeλ(M−A) > 4λAM+2A+2M (∗).

This holds as an equality in the limit when λ = 0. It then suffices that, for A > M and λ > 0,
the first derivative of the left hand side of (*) in λ exceeds the first derivative of the right
hand side in λ. This inequality is

A2 +M2 +A2eλ(M−A) +M2eλ(A−M)

+ λA2(M −A)eλ(M−A) + λM2(A−M)eλ(A−M)

+ 2M(A−M)eλ(A−M) + 2A(M −A)eλ(M−A) > 4AM.

Again, this holds as an equality in the limit when λ = 0. It then suffices to show that the
second derivative of the left hand side of (*) is strictly positive when λ > 0 (the second
derivative of the right hand side is clearly zero). The second derivative of the left hand side
of (*) is

2A2(M −A)eλ(M−A) + 2M2(A−M)eλ(A−M)

+ λA2(M −A)2eλ(M−A) + λM2(A−M)2eλ(A−M)

+ 2M(A−M)2eλ(A−M) + 2A(M −A)2eλ(M−A).

This expression has the form T1eλ(M−A) + T2eλ(A−M), where T2 > 0. Furthermore, it
follows readily that T1 + T2 > 0. If T1 ≥ 0, the second derivative of the left hand side of (*)
is positive and we have the desired result. If T1 < 0 then

T2e
λ(A−M) > T2 > −T1 > −T1eλ(M−A)

and we also have the result.
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In an online Appendix Robatto and Szentes [16] argue that there is a more
general sense in which aggregate risk is equivalent to idiosyncratic risk, no mat-
ter what the population’s age structure. Since we do not obtain such a general
equivalence for an age-structured population in continuous time, this appendix
relates the two approaches.

We consider the model of Section 4.2, in which we found that aggregate
shocks to income are advantageous when young and disadvantageous when old.
It is convenient to define a state here as a value of the parameter ε scaling the
shock to income at age b. Let the set of such states be Ω. With each state
ε ∈ Ω, we can associate a growth rate λ(ε), and our (approximate) growth rate
is given by

λ∗ =

∫
Ω

λ(ε)dG(ε), (31)

where G is the ergodic distribution over states ε.
Let n be a steady-state age distribution, with value na = Na∫A

0
Nada

at age a,

and let N be the set of all such age distributions n. Then the measure G will
induce a distribution G̃ over the set Ω×N . Robatto and Szentes ([16], equation
(A.9)) show that, under these assumptions, the long-run growth rate is

λ∗ =

∫
Ω×N

∫ A

0

(µa(ε)− ρa(ε))nadadG̃(ε, n), (32)

where µa(ε) is the fertility rate of an agent of age a in state ε and ρa(ε) the
mortality rate of an agent of age a in state ε. Notice that the population growth
rate is given by the mean net fertility rate, where the mean is calculated with
respect to the distribution over ages and states, as in the right side of (32).

We first show that the criterion (32), derived from Robatto and Szentes [16],
is equivalent to our expression (31), in a simple case. Suppose that income
is a constant y for all ages a ∈ [0,∞), except for the shock at age b, so that
ya = y + εd(a − b). Section 4.2 shows that the mortality rate will remain
unchanged, at rate we denote by ρ, so that

pa = e−ρa

Fertility will be given by µ + εd(a − b), assuming that αa = 1, for simplicity,
and the Euler-Lotka equation for a population permanently in state ε is then
given by

1 =

∫ ∞
0

µe−(λ(ε)+ρ)ada+ εe−(λ(ε)+ρ)b.

We can solve this for

µ = (λ(ε) + ρ)(1− εe−(λ(ε)+ρ)b). (33)

Because we are working with the limiting case of rare aggregate shocks, we
can associate a unique age distribution na(ε) with each state ε, where

na(ε) = (λ(ε) + ρ)e−(λ(ε)+ρ)a.
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Using the approximation that state ε appears only when coupled with age dis-
tribution na(ε), condition (32) then becomes

λ∗ =

∫
Ω

(∫ ∞
0

(µ− ρ)(λ(ε) + ρ)e−(λ(ε)+ρ)ada+ ε(λ(ε) + ρ)e−(λ(ε)+ρ)b

)
dG(ε).

(34)
We can solve for

λ∗ =

∫
Ω

(
(µ− ρ) + ε(λ(ε) + ρ)e−(λ(ε)+ρ)b

)
dG(ε) (35)

=

∫
Ω

λ(ε)dG(ε), (36)

where we obtain (35) by performing the inner integration in (34),32 and then
inserting the expression for µ given by (33) into (35) and simplifying to obtain
(36). But this is precisely our expression for the population growth rate given by
(31). Since the reverse implication is immediate, this establishes the equivalence
of our expression for the growth rate and that derived by Robatto and Szentes.

We can illuminate the differences between the two approaches by examining
the induced risk attitudes towards aggregate shocks to income. Suppose agents
receive a draw from an aggregate random variable determining income as ya(ε) =
y + εd(a − b), where ε has distribution given by G, and

∫
Ω
εdG(ε) = 0. We

have shown that evolution will select for agents who, when young (i.e, when b
is small), prefer to receive this random income rather than receive the mean
income

∫
Ω
y(ε)dG(ε) = y; but when they are old, they prefer the mean income

y. Hence, evolution will select for agents who seek aggregate risk when young,
but are averse to such risk when old.

On the other hand, Robatto and Szentes [16] argue that their condition
given here as (32) implies agents are risk neutral with respect to this random
income. We interpret this as the observation that individuals would be indif-
ferent between this random income and receiving the mean income given by∫

Ω

(∫∞
0
y(ε)na(ε)da

)
dG(ε). This expression calculates the mean with respect

to the joint distribution over population age distributions and the state. To
compare to our results, we note that this expression is equal to∫

Ω

∫ ∞
0

(y + εd(a− b))(λ(ε) + ρ)e−(λ(ε)+ρ)adadG(ε) =

∫
Ω

T (ε)dG(ε),

where
T (ε) = y + ε(λ(ε) + ρ)e−(λ(ε)+ρ)b.

If λ did not depend on ε, we would have
∫

Ω
T (ε)dG(ε) = y, so that the random

income is compared with the mean income y. But λ does depend on ε, and hence
the requirement that the mean of ε with respect to G is 0 generally implies that
the mean of ε with respect to the joint distribution over population distributions
and the state is not 0.

32
∫∞
0 (µ− ρ)(λ(ε) + ρ)e−(λ(ε+ρ)ada = µ− ρ.
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Indeed, for any b ≥ 0, it follows readily that T ′′(0) = 2λ′e−(λ+ρ)b(1 − (λ +
ρ)b), so T is convex for b < 1/(λ + ρ) but concave for b > 1/(λ + ρ). Hence∫

Ω
T (ε)dG(ε) > y, for all b < 1/(λ + ρ) but

∫
Ω
T (ε)dG(ε) < y, for all b >

1/(λ+ρ), for ε with sufficiently small support. This precisely reflects our results
in Propositions 2 and 4.

Our analysis implies that aggregate shocks to income are advantageous rel-
ative to the mean of

∫
Ω
y(ε)dG(ε) = y at young ages, but then disadvantageous

at older ages. Robatto and Szentes’ [16] condition (32) equivalently implies that
aggregate shocks to income are neutral when compared to a mean

∫
Ω
T (ε)dG(ε),

which is higher than the mean income y at young ages, and lower at older ages.
We consider a mean taken with respect only to the distribution of income,
whereas Robatto and Szentes [16] could be interpreted as considering a mean
taken with respect to the distribution over income and the endogenously gener-
ated equilibrium age distribution.

Notice that, in any case, there must be a discrepancy between the effect of
idiosyncratic and aggregate risk. For example, adding aggregate risk with mean
0 to income y at b = 0 is strictly preferred to y; however, adding idiosyncratic
risk with mean 0 to y is equivalent to y.
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