Phototransduction and Light Adaptation

BISC 372 Home



Current Opinion in Neurobiology 1999; 9:410-418

Molecular mechanisms of verebrate photoreceptor light adaptation.

Pugh EN Jr, Nikonov S, and Lamb TD
 



J Photochem Photobiol B 1999 Jan;48(1):1-10

Rhodopsin and phototransduction.

Pepe IM

Institute of Biophysics, Faculty of Medicine, University of Genoa, Italy. pepe@ibf.unige.it

Recent studies on rhodopsin structure and function are reviewed and the properties of vertebrate as well as invertebrate rhodopsin described. Open issues such as the 'red shift' of the absorbance spectra are emphasized in the light of the present model of the retinal-binding pocket. The processes that restore the rhodopsin content in photoreceptors are also presented with a comparison between vertebrate and invertebrate visual systems. The central role of rhodopsin in the phototransduction cascade becomes evident by examining the main reports on light-activated conformational changes of rhodopsin and its interaction with transducin. Shut-off mechanisms are considered by reporting the studies on the sites of rhodopsin phosphorylation and arrestin binding. Furthermore, recent findings on the energetics of phototransduction point out that the ATP needed for photoreception in vertebrates is synthesized in the outer segments where phototransduction events take place.


Vision Res 1998 May;38(10):1341-52

Rhodopsin phosphorylation and its role in photoreceptor function.

Hurley JB, Spencer M, Niemi GA

Department of Biochemistry, University of Washington, Seattle 98195, USA. jbhhh@u.washington.edu

Light-stimulated phosphorylation of rhodopsin was first described 25 years ago. This paper reviews the progress that has been made towards (i) understanding the nature of the enzymes that phosphorylate and dephosphorylate rhodopsin (ii) identifying the sites of phosphorylation on rhodopsin and (iii) understanding the physiological importance of rhodopsin phosphorylation. Many important questions related to rhodopsin phosphorylation remain unanswered and new strategies and methods are needed to address issues such as the roles of Ca2+ and recoverin. We present one such method that uses mass spectrometry to quantitate rhodopsin phosphorylation in intact mouse retinas.



Mol Neurobiol 1999 Aug;20(1):61-80

The ordered visual transduction complex of the squid photoreceptor membrane.

Lott JS, Wilde JI, Carne A, Evans N, Findlay JB

Institute of Molecular Biosciences, Massey University, Palmerston North, New Zealand.

The study of visual transduction has given invaluable insight into the mechanisms of signal transduction by heptahelical receptors that act via guanine nucleotide binding proteins (G-proteins). However, the cyclic-GMP second messenger system seen in vertebrate photoreceptor cells is not widely used in other cell types. In contrast, the retina of higher invertebrates, such as squid, offers an equally accessible transduction system, which uses the widespread second messenger chemistry of an increase in cytosolic calcium caused by the production of inositol-(1,4,5)-trisphosphate (InsP3) by the enzyme phospholipase C, and which may be a model for store-operated calcium influx. In this article, we highlight some key aspects of invertebrate visual transduction as elucidated from the combination of biochemical techniques applied to cephalopods, genetic techniques applied to flies, and electrophysiology applied to the horseshoe crab. We discuss the importance and applicability of ideas drawn from these model systems to the understanding of some general processes in signal transduction, such as the integration of the cytoskeleton into the signal transduction process and the possible modes of regulation of store-operated calcium influx.



Physiol Res 1998;47(3):155-68

Vertebrate phototransduction: activation, recovery, and adaptation.

Jindrova H

Department of Physiology and Biophysics, University of Washington, Seattle 98195, USA.

Vision is a fascinating example of the interaction of a biological system with the outside world. The first step of translating electromagnetic energy into a biologically recognizable signal involves the phototransduction cascade in retinal photoreceptor cells. Phototransduction is the best studied example of a GTP binding protein (G protein)-coupled signal transduction pathway. A great body of knowledge about phototransduction has been established in the past several decades but there are still many unanswered questions, particularly about photoresponse recovery and adaptation. The purpose of this review is to outline the events following photon absorption by vertebrate photoreceptors, to demonstrate the great complexity of the phototransduction cascade mechanisms, and to point out some of the controversies arising from recent findings in the field of visual transduction.



Prog Retin Eye Res 1998 Oct;17(4):523-63

Light adaptation and sensitivity controlling mechanisms in vertebrate photoreceptors.

Perlman I, Normann RA

Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.

The human visual system can discriminate increment and decrement light stimuli over a wide range of ambient illumination; from moonlight to bright sunlight. Several mechanisms contribute to this property but the major ones reside in the retina and more specifically within the photoreceptors themselves. Numerous studies in retinae from cold- and warm-blooded vertebrates have demonstrated the ability of the photoreceptors to respond in a graded manner to light increments and decrements even if these are applied during a background illumination that is expected to saturate the cells. In all photoreceptors regardless of type and species, three cellular mechanisms have been identified that contribute to background desensitization and light adaptation. These gain controlling mechanisms include; response-compression due to the non-linearity of the intensity-response function, biochemical modulation of the phototransduction process and pigment bleaching. The overall ability of a photoreceptor to adapt to background lights reflects the relative contribution of each of these mechanisms and the light intensity range over which they operate. In rods of most species, response-compression tends to dominate these mechanisms at light levels too weak to cause significant pigment bleaching and therefore, rods exhibit saturation. In contrast, cones are characterized by powerful background-induced modulation of the phototransduction process at moderate to bright background intensities where pigment bleaching becomes significant.Therefore, cones do not exhibit saturation even when the level of ambient illumination is raised by 6-7 log units.



Eye 1998;12 ( Pt 3b):521-5

Control of rhodopsin activity in vision.

Baylor DA, Burns ME

Department of Neurobiology, Stanford University School of Medicine, CA 94305, USA.

Although rhodopsin's role in activating the phototransduction cascade is well known, the processes that deactivate rhodopsin, and thus the rest of the cascade, are less well understood. At least three proteins appear to play a role: rhodopsin kinase, arrestin and recoverin. Here we review recent physiological studies of the molecular mechanisms of rhodopsin deactivation. The approach was to monitor the light responses of individual mouse rods in which rhodopsin was altered or arrestin was deleted by transgenic techniques. Removal of rhodopsin's carboxy-terminal residues which contain phosphorylation sites implicated in deactivation, prolonged the flash response 20-fold and caused it to become highly variable. In rods that did not express arrestin the flash response recovered partially, but final recovery was slowed over 100-fold. These results are consistent with the notion that phosphorylation initiates rhodopsin deactivation and that arrestin binding completes the process. The stationary night blindness of Oguchi disease, associated with null mutations in the genes for arrestin or rhodopsin kinase, presumably results from impaired rhodopsin deactivation, like that revealed by the experiments on transgenic animals.



Eye 1998;12 ( Pt 3b):511-20

Molecular basis of dark adaptation in rod photoreceptors.

Leibrock CS, Reuter T, Lamb TD

Department of Physiology, University of Cambridge, UK. tdl1@cam.ac.uk

Following exposure of the eye to an intense light that 'bleaches' a significant fraction of the rhodopsin, one's visual threshold is initially greatly elevated, and takes tens of minutes to recover to normal. The elevation of visual threshold arises from events occurring within the rod photoreceptors, and the underlying molecular basis of these events and of the rod's recovery is now becoming clearer. Results obtained by exposing isolated toad rods to hydroxylamine solution indicate that, following small bleaches, the primary intermediate causing elevation of visual threshold is metarhodopsin II, in its phosphorylated and arrestin-bound form. This product activates transduction with an efficacy about 100 times greater than that of opsin.



J Photochem Photobiol B 1998 Jun 15;44(1):1-20

Calcium regulation of phototransduction in vertebrate rod outer segments.

Rispoli G

INFM, Dipartimento di Biologia dell'Universita, Ferrara, Italy. RSG@DNS.UNIFE.IT

The biochemical events underlying the phototransduction cascade in retinal photoreceptors of vertebrates are now well established, on the basis of a wealth of electrophysiological and biochemical evidence. In this review the Ca2+ regulation of the enzymes that generates the photoreceptor light response is analyzed, as well as the Ca2+ transport across the plasma membrane. Most of the results discussed in the following were collected from electrophysiological experiments.


Biosci Rep 1997 Oct;17(5):429-73

Photoreceptor guanylate cyclases: a review.

Pugh EN Jr, Duda T, Sitaramayya A, Sharma RK

Department of Psychology, University of Pennsylvania, Philadelphia 19104-6196, USA.

Almost three decades of research in the field of photoreceptor guanylate cyclases are discussed in this review. Primarily, it focuses on the members of membrane-bound guanylate cyclases found in the outer segments of vertebrate rods. These cyclases represent a new guanylate cyclase subfamily, termed ROS-GC, which distinguishes itself from the peptide receptor guanylate cyclase family that it is not extracellularly regulated. It is regulated, instead, by the intracellularly-generated Ca2+ signals. A remarkable feature of this regulation is that ROS-GC is a transduction switch for both the low and high Ca2+ signals. The low Ca2+ signal transduction pathway is linked to phototransduction, but the physiological relevance of the high Ca2+ signal transduction pathway is not yet clear; it may be linked to neuronal synaptic activity. The review is divided into eight sections. In Section I, the field of guanylate cyclase is introduced and the scope of the review is briefly explained; Section II covers a brief history of the investigations and ideas surrounding the discovery of rod guanylate cyclase. The first five subsections of Section III review the experimental efforts to quantify the guanylate cyclase activity of rods, including in vitro and in situ biochemistry, and also the work done since 1988 in which guanylate cyclase activity has been determined. In the remaining three subsections an analytical evaluation of the Ca2+ modulation of the rod guanylate cyclase activity related to phototransduction is presented. Section IV deals with the issues of a biochemical nature: isolation and purification, subcellular localization and functional properties of rod guanylate cyclase. Section V summarizes work on the cloning of the guanylate cyclases, analysis of their primary structures, and determination of their location with in situ hybridization. Section VI summarizes studies on the regulation of guanylate cyclases, with a focus on guanylate cyclases activating proteins. In Section VII, the evidence about the localization and functional role of guanylate cyclases in other retinal cells, especially in "on-bipolar" cells, in which guanylate cyclase most likely plays a critical role in electrical signaling, is discussed. The review concludes with Section VIII, with remarks about the future directions of research on retinal guanylate cyclases.



Mol Neurobiol 1997 Aug;15(1):41-63

Current issues in invertebrate phototransduction. Second messengers and ion conductances.

O'Day PM, Bacigalupo J, Vergara C, Haab JE

Institute of Neuroscience, University of Oregon, Eugene 97403-1254, USA.

Investigation of phototransduction in invertebrate photoreceptors has revealed many physiological and biochemical features of fundamental biological importance. Nonetheless, no complete picture of phototransduction has yet emerged. In most known cases, invertebrate phototransduction involves polyphosphoinositide and cyclic GMP (cGMP) intracellular biochemical signaling pathways leading to opening of plasma membrane ion channels. Excitation is Ca(2+)-dependent, as are adaptive feedback processes that regulate sensitivity to light. Transduction takes place in specialized subcellular regions, rich in microvilli and closely apposed to submicrovillar membrane systems. Thus, excitation is a highly localized process. This article focuses on the intracellular biochemical signaling pathways and the ion channels involved in invertebrate phototransduction. The coupling of signaling cascades with channel activation is not understood for any invertebrate species. Although photoreceptors have features that are common to most or all known invertebrate species, each species exhibits unique characteristics. Comparative electrophysiological, biochemical, morphological, and molecular biological approaches to studying phototransduction in these species lead to fundamental insights into cellular signaling. Several current controversies and proposed phototransduction models are evaluated.


Prog Neurobiol 1997 Nov;53(4):451-515

The Limulus ventral photoreceptor: light response and the role of calcium in a classic preparation.

Dorlochter M, Stieve H

Institut fur Biologie II, RWTH Aachen, Germany.

The ventral nerve photoreceptor of the horseshoe crab Limulus polyphemus has been used for many years to investigate basic mechanisms of invertebrate phototransduction. The activation of rhodopsin leads in visual cells of invertebrates to an enzyme cascade at the end of which ion channels in the plasma membrane are transiently opened. This allows an influx of cations resulting in a depolarization of the photoreceptor cell. The receptor current of the Limulus ventral photoreceptor consists of three components which differ in several aspects, such as the time course of activation, the time course of recovery from light adaptation, and the reversal potential. Each component is influenced in a different, characteristic way by various pharmacological manipulations. In addition, at least two types of single photon-evoked events (bumps) and three elementary channel conductances are observed in this photoreceptor cell. These findings suggest that the receptor current components are controlled by three different light-activated enzymatic pathways using three different ligands to increase membrane conductance. Probably one of these ligands is cyclic GMP, another one is activated via the IP3-cascade and calcium, the third one might be cyclic AMP. Calcium ions are very important for the excitation and adaptation of visual cells in invertebrates. The extracellular and intracellular calcium concentrations determine the functional state of the visual cell. A rise in the cytosolic calcium concentration appears to be an essential step in the excitatory transduction cascade. Cytosolic calcium is the major intracellular mediator of adaptation. If the cytosolic calcium level exceeds a certain threshold value after exposure to light it causes the desensitization of the visual cell. On the other hand, from a slight rise in cytosolic calcium facilitation results, i.e. increased sensitivity of the photoreceptor.



Biol Res 1996;29(3):313-7

Visual transduction in vertebrate rods.

Palacios AG, Goldsmith TH

Department of Biology, Yale University, New Haven, CT 06520-8103, USA. palacios@yale.edu



Vision Res 1996 Sep;36(18):2979-94

Nitric oxide: a review of its role in retinal function and disease.

Goldstein IM, Ostwald P, Roth S

Department of Anesthesia and Critical Care, University of Chicago, IL 60637, USA.

Nitric oxide synthase (NOS), the enzyme that catalyzes the formation of nitric oxide from L-arginine, exists in three major isoforms, neuronal, endothelial, and immunologic. Neuronal and endothelial isoforms are constitutively expressed, and require calcium for activation. Both of these isoforms can be induced (i.e., new protein synthesis occurs) under appropriate conditions. The immunologic isoform is not constitutively expressed, and requires induction usually by immunologic activation; calcium is not necessary for its activation. Neuronal and immunologic NOS have been detected in the retina. Neuronal NOS may be responsible for producing nitric oxide in photoreceptors and bipolar cells. Nitric oxide stimulates guanylate cyclase of photoreceptor rod cells and increases calcium channel currents. In the retina of cats, NOS inhibition impairs phototransduction as assessed by the electroretinogram. Inducible nitric oxide synthase, found in Muller cells and in retinal pigment epithelium, may be involved in normal phagocytosis of the retinal outer segment, in infectious and ischemic processes, and in the pathogenesis of diabetic retinopathy. Nitric oxide contributes to basal tone in the retinal circulation. To date, findings are conflicting with respect to its role in retinal autoregulation. During glucose and oxygen deprivation, nitric oxide may increase blood flow and prevent platelet aggregation, but it may also mediate the toxic effects of excitatory amino acid release. This reactive, short-lived gas is involved in diverse processes within the retina, and its significance continues to be actively studied.


 Mol Neurobiol 1996 Apr;12(2):163-80

Role of Drosophila TRP in inositide-mediated Ca2+ entry.

Minke B, Selinger Z

Department of Physiology, Hebrew University, Jerusalem, Israel.

Inositol lipid signaling relies on an InsP3-induced Ca2+ release from intracellular stores and on extracellular Ca2+ entry, which takes place when the Ca2+ stores become depleted of Ca2+. This interplay between Ca2+ release and Ca2+ entry has been termed capacitative Ca2+ entry and the inward current calcium release activated current (CRAC) to indicate gating of Ca2+ entry by Ca2+-store depletion. The signaling pathway and the gating mechanism of capacitative Ca2+ entry, however, are largely unknown and the molecular participants in this process have not been identified. In this article we review genetic, molecular, and functional studies of wild-type and mutant Drosophila photoreceptors, suggesting that the transient receptor potential mutant (trp) is the first putative capacitative Ca2+ entry mutant. Furthermore, several lines of evidence suggest that the trp gene product TRP is a candidate subunit of the plasma membrane channel that is activated by Ca2+ store depletion.



Annu Rev Neurosci 1995;18:283-317

Signal transduction in Drosophila photoreceptors.

Ranganathan R, Malicki DM, Zuker CS

Howard Hughes Medical Institute, University of California, San Diego, La Jolla 92093-0649, USA.



Dev Biol 1994 Dec;166(2):431-42

Signal transduction during the development of the Drosophila R7 photoreceptor.

Simon MA

Department of Biological Sciences, Stanford University, California 94305-5020.



J Biol Chem 1994 May 20;269(20):14329-32

Transduction mechanisms of vertebrate and invertebrate photoreceptors.

Yarfitz S, Hurley JB

Department of Biochemistry, University of Washington, Seattle 98195.



Rev Physiol Biochem Pharmacol 1994;125:149-92

Calcium as modulator of phototransduction in vertebrate photoreceptor cells.

Koch KW

Institut fur Biologische Informationsverarbeitung, Forschungszentrum Julich, Germany.



Biochim Biophys Acta 1993 Mar 1;1141(2-3):111-49

Amplification and kinetics of the activation steps in phototransduction.

Pugh EN Jr, Lamb TD

Department of Psychology, University of Pennsylvania, Philadelphia 19104.

We can summarize our investigation of amplification in the activation steps of vertebrate phototransduction as follows. (1) A theoretical analysis of the activation steps of the cGMP cascade shows that after a brief flash of phi photoisomerizations the number of activated PDE molecules should rise as a delayed ramp with slope proportional to phi, and that, as a consequence, the cGMP-activated current should decay as a delayed Gaussian function of time (Eqn. 20). (i) Early in the response to a flash, the normalized response R(t) can be approximated as rising as 1/2 phi At2 (after a short delay), where A is the amplification constant characteristic of the individual photoreceptor. (ii) The delayed ramp behavior of PDE activation and the consequent decline of current in the form of the delayed Gaussian are confirmed by experiments in a variety of photoreceptors; the analysis thus yields estimates of the amplification constant from these diverse photoreceptors. (iii) Eqn. 20 further predicts that the response-intensity relation at any fixed time should saturate exponentially, as has been found experimentally. (2) The amplification constant A can be expressed as the product of amplification factors contributed by the individual activation steps of phototransduction, i.e., A = nu RG cGP beta sub n (Eqns. 9 and 21), where (i) nu RG is the rate of G* production per Rh*; (ii) cGP is the efficiency of the coupling between G* production and PDE* production; (iii) beta sub is the increment in hydrolytic rate constant produced by one PDE*, i.e., a single activated catalytic subunit of PDE; and (iv) n is the Hill coefficient of opening of the cGMP-activated channels. (3) The amplification factor beta sub includes the ratio kcat/Km, which characterizes the hydrolytic activity of the PDE in vivo where cG << Km. Two different analyses based upon photocurrents were developed which provide lower bounds for kcat/Km in vivo; these analyses establish that kcat/Km probably exceeds 10(7) M-1 s-1 (and is likely to be higher) in both amphibian and mammalian rods. Few biochemical studies (other than those using trypsin activation) have yielded such high values. A likely explanation of many of the relatively low biochemical estimates of kcat/Km is that Km may have been overestimated by a factor of about 4 in preparations in which stacks of disks are left intact, due to diffusion with hydrolysis in the stacks.



Q Rev Biophys 1993 May;26(2):177-99

Interrelations of bioenergetic and sensory functions of the retinal proteins.

Skulachev VP

Department of Bioenergetics, A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Russia.

Rhodopsins are intrinsic membrane retinal-containing proteins composed of 7 hydrophobic alpha-helical transmembrane columns and hydrophilic sequences of various length connecting the helices and localized at N- and C-ends of the polypeptide. The chromophore (retinal) forms a Schiff base with a lysine residue in the middle part of the last alpha-helix. Absorption of a photon results in isomerization of retinal which gives rise to a conformational change in the protein moiety. Rhodopsins can be involved in two entirely different types of activities, i.e. ion pumping and photosensing. Recent observations concerning the pumping and sensory mechanisms allowed both these events to be explained in terms of one and the same unitary concept, which postulates the formation of a hydrophilic cleft in the hydrophobic part of the protein molecule as a crucial step in energy conservation and photosensing.



Int Rev Neurobiol 1993;35:43-86

Molecular aspects of photoreceptor adaptation in vertebrate retina.

Kawamura S

Department of Physiology, Keio University School of Medicine, Tokyo, Japan.



Adv Second Messenger Phosphoprotein Res 1992;25:135-45

The GTP-binding protein-dependent activation and deactivation of cyclic GMP phosphodiesterase in rod photoreceptors.

Yamazaki A

Kresge Eye Institute, Department of Ophthalmology, Wayne State University, School of Medicine, Detroit, Michigan 48201.



Q Rev Biophys 1991 May;24(2):165-226

Biophysical processes in invertebrate photoreceptors: recent progress and a critical overview based on Limulus photoreceptors.

Nagy K

Institut fur Biologie II der Rheinisch-Westfalischen Technischen Hochschule Aachen.

Limulus ventral nerve photoreceptor, a classical preparation for the study the phototransduction in invertebrate eyes, seems to have a very complex mechanism to transform light energy into a physiological signal. Although the main function of the photoreceptor is to change the membrane conductance according to the illumination, the cell has voltage-activated conductances as well. The voltage-gated conductances are matched to the light-activated ones in the sense that they make the function of the cell more efficient. The complex mechanism of phototransduction and the presence of four different voltage-gated conductance in Limulus ventral nerve photoreceptors indicate that these cells are far less differentiated than the photoreceptor cells of vertebrates. Indications accumulated in recent years support the view that the ventral photoreceptor of Limulus has different light-activated macroscopic current components, ion channels and terminal transmitters. After conclusions from macroscopic current measurements (Payne, 1986; Payne et al. 1986 a, b), direct evidence was presented by single-channel (Nagy & Stieve, 1990 a, b; Nagy, 1990 a, b) and macroscopic current measurements (Deckert et al. 1991 a, b) for three different light-activated conductances. It has been shown that two of these conductances are stimulated by two different excitation mechanisms. The two mechanisms, having different kinetics, release probably two different transmitters. One of them might be the cGMP (Johnson et al. 1986), the other one the calcium ion (Payne et al. 1986 a, b). However, the biochemical processes which link the rhodopsin molecules and the ion channels are not known. The unknown chemical details of the phototransduction result in a delay for the mathematical description of the biophysical mechanisms. More biochemical details are known about the adaptation mechanism. It was found that inositol 1,4,5-trisphosphate is a messenger for the release of calcium ions from the intracellular stores and that calcium ions are the messengers for adaptation (Payne et al. 1986 b; Payne & Fein, 1987). Concerning the mechanism of calcium release, it was revealed that a negative feedback acts on the enzyme cascade to regulate the internal calcium level and to protect the stores against complete emptying (Payne et al. 1988, 1990). Calcium ions also play an important role in the excitation mechanism. (a) In [Ca2+]i-depleted cells the light-induced current was increased after intracellular Ca2+ injection, suggesting that calcium is necessary for the transduction mechanism (Bolsover & Brown, 1985).



Prog Clin Biol Res 1991;362:1-32

Molecular genetic studies of photoreceptor function using Drosophila mutants.

Pak WL

Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907.



Prog Clin Biol Res 1991;362:33-66

The molecular genetics of retinal photoreceptor proteins involved in cGMP metabolism.

Pittler SJ, Baehr W

Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas 77030.

Metabolism of cGMP is critically important for the functioning of phototransduction in the mammalian retina. In rod and cone photoreceptors, two types of antagonistic enzymes, guanylate cyclases and cGMP phosphodiesterases, carefully balance the available amount of the intracellular messenger. Guanylate cyclase produces cGMP and phosphodiesterase rapidly hydrolyzes cGMP upon bleaching of the photopigment. Regulation of their activity in light and dark, influence of Ca++, and feed-back mechanisms are currently under intense investigation. A molecular analysis on both the gene and protein levels will contribute significantly to our understanding of their respective roles in phototransduction. The two types of enzymes have been characterized molecularly to a very different extent. Rod phosphodiesterase was purified to homogeneity almost fifteen years ago, but photoreceptor guanylate cyclase has evaded all attempts for molecular characterization. Characterization of retinal guanylate cyclase cDNA(s), however, will most likely be achieved in the near future. Cone PDE was shown to be a distinct enzyme, different from, but related to, the rod enzyme. Molecular cloning has provided sequence information of two of the three subunits of rod PDE; the small inhibitory subunit has been expressed in bacterial expression vectors, giving us an elegant tool for exploring mechanisms of activation and inhibition. The gene encoding the alpha subunit was shown to be a member of a large gene family of cyclic nucleotide phosphodiesterases, present in many eucaryotes ranging from unicellular organisms (yeast) to mammals. While much has been achieved, many questions remain to be answered. The beta subunit of rod phosphodiesterase has evaded complete molecular characterization, and its origin (one gene and posttranslational modification of the gene product generating alpha and beta, alternative splicing, or two separate genes with distinct gene products) has not been elucidated. Mechanisms of interaction of subunits, activation and inhibition, the active site(s) of the enzyme are undefined. Virtually nothing is known about the molecular organization of the photoreceptor guanylate cyclase(s). Recent cloning of two apparently unrelated mammalian guanylate cyclases, however, containing a common homologous domain signals increasingly rapid progress in this field.



Physiol Rev 1990 Jul;70(3):847-83

Light response of vertebrate photoreceptors.

McNaughton PA

Physiological Laboratory, Cambridge, United Kingdom.