BISC-407, Population Dynamics, Fall 2021

Lecture: Wed 11:30-12:20 AQ 3159

Tutorial: Fri 10:30-12:20 AQ 4120 Mon (D101) 13:30-14:20 AQ 3148.1 Mon (D102) 14:30-15:20 AQ 3148.1

Instructor: Dr. Leithen M'Gonigle

e-mail address: lmgonigl@sfu.ca Office Location: Shrum Science B8273

Office Hours: Thursday, 12:00-13:00 (Click here to connect via Zoom) & by appointment

Website: https://www.sfu.ca/~lmgonigl

Teaching assistant: Hanna Jackson e-mail address: hmj2@sfu.ca

Office Location: Shrum Science, B8227

Office Hours: Monday, 11:00-12:00, Wednesday 13:00-14:00, & by appointment

Pre-requisites: BISC 102 and either BISC 204 or GEOG 215, all with a grade of C- or better.

Course Description: Using a combination of theory and applied exercises students will explore various facets of population biology and evaluate the factors influencing the natural fluctuation and regulation of plant and animal populations.

Grade Breakdown:

Tutorial	15%
Assignments	15%
Final project	10%
Midterm Exam (Fri, Oct 15)	25%
Final Exam	35%

Letter Grade Distribution:

Final grades may be curved in a fair and impartial manner, with distribution reflecting the performance and effort of the class.

General:

- Attached to the end of this document is a tentative course schedule. This will be updated throughout the term.
- Exams are closed book, closed notes, unless instructed otherwise.
- No makeup assignments or exams will be given.

Course Schedule:

To be updated as we progress.

Week	Content	Tutorial Topic	Reading
Sept 6	Welcome and Introduction, Introduction	No tutorial	Ch. 1
	to Maxima, Population growth		
Sept 13	Population growth, Model construction,	Introduction to	Ch. 2, 3.1–3.3
	One locus selection	Maxima	
Sept 20	Graphical analyses, Equilibria	Writing functions	Ch. 4, 5.1–5.2
Sept 27	Stability	Graphing	5.3
Oct 4	Stability, Applications of the theory	Finding equilibria and	5.3
		assessing stability	
Oct 11	Midterm review, Midterm	Thanksgiving	
Oct 18	Dispersal, Introduction to matrix algebra	More stability analyses	Primer 2
Oct 25	Matrix algebra, General solutions for	Allee Effects	7.1–7.3
	multi-variable linear models		
Nov 1	Solving linear equations, Introduction to	Matrix algebra 7	7.4, Ch. 10
	demography		
Nov 8	Demography continued, Lotka-Volterra	Eigenvectors	Ch. 10, 8.1-8.2
	competition		
Nov 15	Multi-variable stability analysis, Spread	Dispersal between	8.3
	of disease	patches	
Nov 22	Predator-prey models, Probability the-	Competition between	Primer 3
	ory, Discrete probability distributions	two species	
Nov 29	Continuous probability distributions,	Predator-prey models	
	Simulation models	- 0	
Dec 6	No lectures	Simulation	