Science Advances

advances.sciencemag.org/cgi/content/full/7/19/eabe5163/DC1

Supplementary Materials for

Respiratory capacity is twice as important as temperature in explaining patterns of metabolic rate across the vertebrate tree of life

Jennifer S. Bigman*, Leithen K. M'Gonigle, Nicholas C. Wegner, Nicholas K. Dulvy

*Corresponding author. Email: jennifersbigman@gmail.com

Published 5 May 2021, *Sci. Adv.* **7**, eabe5163 (2021) DOI: 10.1126/sciadv.abe5163

This PDF file includes:

Supplementary Results Supplementary Methods Tables S1 to S8 References

Supplementary Results

Is respiratory organ (i.e., lungs versus gills) a better characterization of the known difference in metabolic rate and respiratory surface area between endotherms and ectotherms?

The intercept—the metabolic rate for a given body size—did not differ significantly between organisms with lungs versus gills for all models explaining variation in metabolic rate without the inclusion of respiratory surface area (compare the overlapping 95% Bayesian Credible Intervals [BCIs] for the intercept for organisms with lungs versus gills in models "MR2_LG", "MR3_LG" in Table S6). Similarly, the body mass-scaling exponent did not differ between organisms with lungs versus gills when the body mass-scaling exponent was allowed to vary between these two groups (compare the overlapping 95% BCIs for the "mass" effect size for organisms with lungs versus gills in model "MR3_LG" in Table S6). For all models explaining variation in metabolic rate with the inclusion of respiratory surface area, neither the intercept, nor the body mass-scaling exponents (if allowed to vary, model C6_LG) differed between organisms with lungs and those with gills (models "C3_LG", "C4_LG", "C5_LG", and "C6_LG" in Table S6). Thus, the metabolic rate for a given body size and the body mass-scaling of metabolic rate did not differ between lunged- and gilled-organisms, regardless of the inclusion of respiratory surface area as a covariate (Table S6).

For the models assessing the scaling of respiratory surface area and body size—only the intercept, or respiratory surface area for a given size—was significantly different between species with lungs versus species with gills (models "RSA2_LG", "RSA3_LG" in Table S6). When the body mass-scaling exponent was allowed to vary between organisms with lungs versus gills, the difference was not significant, suggesting that the body mass-scaling of respiratory surface area does not differ between lunged- and gilled-organisms (model "RSA3_LG" in Table S6).

Supplementary Methods

Model Overview

We constructed and compared phylogenetic Bayesian multilevel linear regression models in R v.3.5.1 and v.4.0.1 in Stan using the package *rstan* (40, 41).

Model Parameterization

i. Metabolic Rate Models ("MR" models in Table S1)

We fitted three candidate models to examine the effects of mean body mass, mean (inverse) temperature, and thermoregulatory strategy on whole-organism metabolic rate (MR_i) (see Table S1).

General model parameterization:

 $MR_i = \alpha + \sum_j \beta_j x_{i,j} + \varepsilon_i$

 $\hat{\varepsilon}$ ~ multivariate normal ($\hat{0}, \sigma_e^2 * C_{phylo}$) $C_{phylo} = \lambda * V + (1 - \lambda) * I$ α ~ student-t (3, 0, 10) β_i ~ student-t (3, 0, 10) $\sigma_e^2 \sim \text{half-Cauchy}(0, 10)$

Here, MR_i is the response variable (mean whole-organism metabolic rate), α is the intercept, and β_j is the slope of the *jth* predictor, and $x_{i,j}$ is species *i*'s trait value for the *j*th trait (see below for predictors in each model). The priors on the intercept, α , slope, β_j , and error, σ_e^2 , are also reported (see above) and our choice of priors is explained below.

Following (48), we assumed the residual error, ε_i , to be distributed according to a multivariate normal distribution, where $\hat{0}$ is a vector with length N, σ_e^2 is the variation in responses to the predictors ($\beta_i x_{i,j}$), and C_{phylo} is the $N \times N$ correlation matrix resulting from the phylogeny. The strength of the phylogenetic signal, λ , in the residuals under a model of evolution of Brownian motion is estimated according to $C_{phylo} = \lambda * V + (1 - \lambda) * I$, where V is the variance covariance matrix from the phylogeny, and I is an identify matrix of $N \times N$ values with σ_e^2 on the diagonal.

Model 1: $\beta_{mass} * x_{mass} + \beta_{temp} * x_{temp}$

Model 2: $\beta_{mass} * x_{mass} + \beta_{temp} * x_{temp} + \beta_{therm} * x_{therm}$

Model 3: $\beta_{mass} * x_{mass} + \beta_{temp} * x_{temp} + \beta_{therm} * x_{therm} + \beta_{mass_therm} * x_{therm} * x_{tmass}$

where *mass* is the mean body mass associated with metabolic rate, *temp* is the mean inverse temperature associated with metabolic rate (for ectotherms, this is the temperature at which metabolic rate was experimentally measured and for endotherms, this is body temperature), and *therm* is thermoregulatory strategy. Following (2), temperature is parameterized as the Boltzmann factor (1/Boltzmann constant * temperature in Kelvin) and thus, β_{temp} is the activation energy.

ii. Respiratory Surface Models ("RSA" models in Table S1)

We fitted three candidate models to examine the effects of mean body mass and thermoregulatory strategy on wholeorganism respiratory surface area (*RSA_i*) (see Table S1).

General model parameterization:

 $RSA_i = \alpha + \Sigma_j \beta_j x_{i,j} + \varepsilon_i$

 $\hat{\varepsilon} \sim \text{multivariate normal } (\hat{0}, \sigma_e^2 * C_{phylo})$ $C_{phylo} = \lambda * V + (1 - \lambda) * I$ $\alpha \sim \text{student-t } (3, 0, 10)$ $\beta_j \sim \text{student-t } (3, 0, 10)$ $\sigma_e^2 \sim \text{half-Cauchy } (0, 10)$

Here, RSA_i is the response variable (mean whole-organism respiratory surface area), α is the intercept, and β_j is the slope of the *jth* predictor, and $x_{i,j}$ is species *i*'s trait value for the *j*th trait (see below for predictors in each model). The priors on the intercept, α , slope, β_j , and error, σ_e^2 , are also reported and our choice of priors is explained below.

The parameterization of the phylogenetic components is the same as above for the Metabolic Rate models.

Model 1: $\beta_{mass} * x_{mass}$ Model 2: $\beta_{mass} * x_{mass} + \beta_{therm} * x_{therm}$ Model 3: $\beta_{mass} * x_{mass} + \beta_{therm} * x_{therm} + \beta_{mass_therm} * x_{therm} * x_{mass}$,

where *mass* is the mean body mass associated with respiratory surface area and *therm* is as defined above. For the models with respiratory organ, "*organ*" replaced "*therm*" and was designated as either lung or gill.

```
iii. Combined Models ("C" models in Table S1)
```

We fitted six candidate models to examine the effects of mean body mass, mean temperature, residual respiratory surface area, and thermoregulatory strategy on whole-organism metabolic rate (MR_i) (see Table S1). The first level of the model regressed mean whole-organism respiratory surface (RSA_i) against mean body mass associated with respiratory surface area. The residuals from this model indicate whether a species had a higher respiratory surface area (positive residual) or lower respiratory surface area (negative residual) than would be expected based on its body mass. The second level modeled metabolic rate as a function of different combinations of covariates (body mass associated with metabolic rate, temperature, thermoregulatory strategy, as well as respiratory surface area, see Table S1). The entire posterior distribution of residual respiratory surface area estimated in the first level of the model was included as the respiratory surface area covariate in the second level of the model. Importantly, each iteration of both models happens in succession so estimates and uncertainty of residual respiratory surface area are propagated across levels of the model.

General model parameterization:

First level of the model:

 $RSA_i = \alpha + \Sigma_j \beta_j x_{i,j} + \varepsilon_i$

 $\hat{\varepsilon} \sim \text{multivariate normal } (\hat{0}, \sigma_e^2 * C_{phylo})$ $C_{phylo} = \lambda * V + (1 - \lambda) * I$ $\alpha \sim \text{student-t} (3, 0, 10)$ $\beta_{mass} \sim \text{student-t} (3, 0, 10)$ $\sigma_e^2 \sim \text{half-Cauchy } (0, 10)$

Here, RSA_i is the response variable (mean whole-organism respiratory surface area), α is the intercept, and β_{mass} is the slope of the body mass associated with respiratory surface area, x_{mass} . The priors on the intercept, α , slope, β_{mass} , and error, σ_e^2 , are also reported and our choice of priors is explained below.

Second level of the model:

 $MR_i = \alpha + \Sigma_j \beta_j x_{i,j} + \varepsilon_i$

 $\begin{aligned} \hat{\varepsilon} &\sim \text{multivariate normal } (\hat{0}, \sigma_e^2 * C_{phylo}) \\ C_{phylo} &= \lambda * \text{V} + (1 - \lambda) * \text{I} \\ \alpha &\sim \text{student-t} (3, 0, 10) \\ \beta_j &\sim \text{student-t} (3, 0, 10) \\ \sigma_e^2 &\sim \text{half-Cauchy } (0, 10) \end{aligned}$

Here, MR_i is the response variable (mean whole-organism metabolic rate), α is the intercept, and β_j is the slope of the *jth* predictor, and $x_{i,j}$ is species *i*'s trait value for the *j*th trait (see below for predictors in each model). The priors on the intercept, α , slope, β_j , and error, σ_e^2 , are also reported and our choice of priors is explained below.

The parameterization of the variance and phylogeny is the same as above in the "Metabolic Rate Models" and "Respiratory Surface Area Models".

Model 1: $\beta_{Rrsa} * x_{Rrsa} + \beta_{mass} * x_{mass} + \beta_{temp} * x_{temp}$ Model 2: $\beta_{Rrsa} * x_{Rrsa} + \beta_{mass} * x_{mass} + \beta_{mass_Rrsa} * x_{mass} * x_{Rrsa} + \beta_{temp} * x_{temp}$ Model 3: $\beta_{Rrsa} * x_{Rrsa} + \beta_{mass} * x_{mass} + \beta_{temp} * x_{temp} + \beta_{therm} * x_{therm}$ Model 4: $\beta_{Rrsa} * x_{Rrsa} + \beta_{mass} * x_{mass} + \beta_{mass_Rrsa} * x_{mass} * x_{Rrsa} + \beta_{temp} * x_{temp} + \beta_{therm} * x_{therm}$ Model 5: $\beta_{Rrsa} * x_{Rrsa} + \beta_{mass} * x_{mass} + \beta_{therm} * x_{therm} + \beta_{mass_therm} * x_{mass} * x_{therm} + \beta_{temp} * x_{temp}$ Model 6: $\beta_{Rrsa} * x_{Rrsa} + \beta_{mass} * x_{mass} + \beta_{therm} * x_{therm} + \beta_{mass_therm} * x_{mass} * x_{therm} + \beta_{temp} * x_{temp}$

 $\beta_{mass_Rrsa} * x_{mass} * x_{Rrsa} + \beta_{temp} * x_{temp}$

Choice of Priors

We used weakly informative regularizing priors based on recommendations for Stan (https://github.com/standev/stan/wiki/Prior-Choice-Recommendations). As λ (phylogenetic signal) has an equal chance of taking any value within the bounds of zero to one, we used a prior with a uniform distribution from zero to one. As σ_e^2 (variation in responses to the predictors ($\beta_i x_{i,j}$) can only be positive, we used a half-Cauchy prior with a location of zero and a scale of ten. Priors are also shown below for each set of models.

Supplementary Tables

Table S1: Comparison of all models using Pareto-smoothing importance sampling leave-one-out cross validation (PSIS-LOO) using the *loo* package in R v.5.3.1 and v.4.0.1. Values reported are for the first model run and include the LOO information criterion value (similar to Akaike Information Criterion [AIC]) *looic*, the effective number of parameters (p_{loo}), the expected log predictive density ($elpd_{loo}$), the standard error of the expected log predictive density ($se_{elpd_{loo}}$), the difference in the expected log predictive density ($elpd_{diff}$) for a given model compared to the best model, and the Bayesian stacking weight (similar to Akaike weight). The model with the lowest $elpd_{loo}$ has the most support and is emboldened and highlighted in grey for each group. Any model with $elpd_{diff} < 2$ is also highlighted in grey.

	model	looic	p 100	elpd _{loo}	seelpd_loo	elpd _{diff}	weight
	Metabolic rate:						
MR1	$MR \sim mass_{MR} + temperature$	299.5	11.6	-149.7	5.9	-9.8	0.230
MR2	$MR \sim mass_{MR} + temperature + thermoregulatory strategy$	285.9	8.4	-142.9	13.1	-3.0	0
MR3	$MR \sim mass_{MR} *$ thermoregulatory strategy + temperature	279.9	9.9	-140.0	13.9	0.0	0.770
	Respiratory surface area:						
RSA1	RSA ~ mass _{RSA}	346.4	3.0	-173.2	5.6	-46.3	0
RSA2	$RSA \sim mass_{RSA} + thermoregulatory strategy$	253.8	3.2	-126.8	7.3	0.0	1.00
RSA3	RSA ~ mass _{RSA} * thermoregulatory strategy	255.7	4.0	-127.8	7.2	-0.9	0
	Combined:						
C1	$MR \sim residual RSA + mass_{MR} + temperature$	277.9	10.6	-139.0	13.5	-7.2	0
<i>C2</i>	MR ~ residual RSA * $mass_{MR}$ + temperature	278.6	12.6	-139.3	12.6	-7.6	0.071
<i>C3</i>	$MR \thicksim residual RSA + mass_{MR} + temperature + thermoregulatory strategy$	271.6	11.2	-135.8	13.9	-4.1	0.118
<i>C4</i>	$MR \thicksim residual RSA \ast mass_{MR} + temperature + thermoregulatory strategy$	270.0	12.2	-135.0	14.1	-3.3	0
C5	$MR \ \ \ \ residual \ RSA \ + \ mass_{MR} \ \ \ \ \ temperature$	263.4	11.7	-131.7	14.6	0.0	0.811
<i>C6</i>	MR ~ residual RSA * mass _{MR} * thermoregulatory strategy + temperature	267.5	13.5	-133.7	14.8	-2.0	0

Table S2: Coefficient means and 95% Bayesian Credible Intervals (BCI, in parentheses) for all models examined. Model names correspond to those in Table S1. Intercepts are back transformed from the natural log scale. Pagel's λ indicates the strength of the phylogenetic signal in the residuals of the response variable. The models with the most support from each group are highlighted in grey (see Table S1). The coefficient means reported here are from the first model run.

model		intercept	mass	temp	residual RSA	mass: residual RSA	sigma	Pagel's λ
MR1		0.18 (0.10 to 0.38)	0.89 (0.82 to 0.96)	-1.60 (-2.00 to -1.17)	NA	NA	1.37 (0.90 to 2.24)	0.33 (0.03 to 0.72)
MR2	ectotherm endotherm	0.12 (0.07 to 0.21) 0.81 (0.28 to 2.61)	0.84 (0.77 to 0.90)	-0.53 (-1.00 to -0.06)	NA	NA	0.95 (0.65 to 1.50)	0.29 (0.02 to 0.68)
MR3	ectotherm endotherm	0.13 (0.07 to 0.22) 0.95 (0.32 to 3.01)	0.93 (0.84 to 1.02) 0.74 (0.53 to 0.95)	-0.59 (-1.05 to -0.14)	NA	NA	0.89 (0.59 to 1.43)	0.31 (0.02 to 0.70)
RSA1		1597.59 (787.52 to 3201.40)	1.05 (0.97 to 1.13)	NA	NA	NA	1.74 (1.18 to 2.86)	0.26 (0.01 to 0.70)
RSA2	ectotherm endotherm	1002.16 (679.33 to 1524.50) 9407.04 (4428.47 to 20574.87)	0.92 (0.87 to 0.98)	NA	NA	NA	0.70 (0.49 to 1.09)	0.22 (0.01 to 0.63)
RSA3	ectotherm endotherm	1005.28 (673.15 to 1611.09) 9615.49 (4404.45 to 22723.31)	0.93 (0.86 to 1.00) 0.91 (0.74 to 1.10)	NA	NA	NA	0.71 (0.49 to 1.11)	0.23 (0.01 to 0.62)
C1		0.18 (0.10 to 0.32)	0.93 (0.86 to 1.00)	-0.75 (-1.14 to -0.34)	0.63 (0.47 to 0.79)	NA	0.77 (0.55 to 1.19)	0.21 (0.01 to 0.58)
C2		0.18 (0.10 to 0.32)	0.96 (0.88 to 1.04)	-0.81 (-1.21 to -0.40)	0.60 (0.44 to 0.76)	0.05 (-0.10 to 0.01)	0.75 (0.53 to 1.13)	0.21 (0.01 to 0.57)
C3	ectotherm endotherm	0.14 (0.08 to 0.26) 0.37 (0.11 to 1.31)	0.90 (0.83 to 0.97)	-0.45 (-0.90 to 0.00)	0.46 (0.27 to 0.66)	NA	0.75 (0.53 to 1.17)	0.25 (0.01 to 0.63)
<i>C4</i>	ectotherm endotherm	0.14 (0.09 to 0.26) 0.37 (0.12 to 1.33)	0.92 (0.84 to 1.00)	-0.51 (-0.94 to -0.06)	0.42 (0.22 to 0.61)	-0.05 (-0.10 to 0.00)	0.73 (0.51 to 1.12)	0.25 (0.01 to 0.62)
C5	ectotherm endotherm	0.15 (0.09 to 0.26) 0.44 (0.14 to 1.52)	0.96 (0.88 to 1.04) 0.80 (0.60 to 1.01)	-0.51 (-0.92 to -0.07)	0.45 (0.26 to 0.64)	NA	0.69 (0.48 to 1.07)	0.24 (0.01 to 0.62)
С6	ectotherm endotherm	0.15 (0.09 to 0.28) 0.45 (0.14 to 1.57)	0.98 (0.89 to 1.08) 0.77 (0.49 to 1.05)	-0.50 (-0.91 to -0.08)	0.45 (0.27 to 0.66)	0.02 (-0.06 to 0.09)	0.70 (0.48 to 1.08)	0.24 (0.02 to 0.61)

Table S3: Comparison of the best models with and without respiratory surface area that explained variation in metabolic rate across 109 vertebrate species (i.e., "best metabolic rate model" and "best combined model"). Model names correspond to those in Table S1. Each model was run a total of four times to ensure the robustness of results. All model comparison was conducted using Pareto-smoothing importance sampling leave-one-out cross validation (PSIS-LOO) using the *loo* package in R v.5.3.1 and v.4.0.1. Values reported are the LOO information criterion value (similar to Akaike Information Criterion [AIC]) *looic*, the effective number of parameters (p_{loo}), the expected log predictive density ($elpd_{loo}$), the standard error of the expected log predictive density (se_{elpd_loo}), the difference in the expected log predictive density ($elpd_{diff}$) for a given model compared to the best model, the Bayesian stacking weight (similar to Akaike weight), and the evidence ratio (weight of evidence of the best model divided by the weight of evidence of the other model(s) of interest).

model	model run	looic	$\mathbf{p}_{\mathbf{loo}}$	elpd _{loo}	se _{elpd_loo}	elpd _{diff}	weight	evidence ratio
MR3	1	279.9	9.9	-140.0	13.9	-8.2	0.043	22.2
<i>C5</i>	1	263.4	11.7	-131.7	14.6	0	0.957	22.3
MR3	2	279.6	9.6	-139.8	13.8	-8.0	0.054	17.5
C5		263.6	11.8	-131.8	14.7	0	0.946	17.5
MR3	3	279.6	9.7	-139.8	14	-7.8	0.044	21.7
C5		264	12	-132	14.9	0	0.956	21.7
MR3	4	279.7	9.7	-139.8	13.9	-8.1	0.075	123
<i>C5</i>		263.4	11.7	-131.7	14.8	0	0.925	12.0
							average	18.5

Table S4: Standardized coefficient means (i.e., effect sizes) and 95% Bayesian Credible Intervals (BCIs, in parentheses) for the top model that explains metabolic rate as a function of body mass, temperature, respiratory surface area, thermoregulatory strategy, and the interaction of body mass and thermoregulatory strategy, while accounting for evolutionary history. The model name corresponds to that in Table S1. Intercepts are back transformed from the natural log scale. Pagel's λ indicates the strength of the phylogenetic signal in the residuals of the response variable.

model		intercept	mass	temp	residual RSA	sigma	Pagel's λ
C5	ectotherm endotherm	0.15 (0.10 to 0.25) 0.44 (0.14 to 1.41)	2.66 (2.42 to 2.90) 2.17 (1.61-0. to 2.73)	-0.25 (-0.47 to -0.04)	0.52 (0.29 to 0.75)	0.69 (0.48 to 1.09)	0.24 (0.01 to 0.61)

Table S5: Comparison of models using thermoregulatory strategy *or* respiratory organ to characterize the differences in metabolic rate and respiratory surface area between endotherms and ectotherms using Pareto-smoothing importance sampling leave-one-out cross validation (PSIS-LOO) with the *loo* package in R v.5.3.1 and v.4.0.1. Values reported are the LOO information criterion value (similar to Akaike Information Criterion [AIC]) *looic*, the effective number of parameters (p_{loo}), the expected log predictive density ($elpd_{loo}$), the standard error of the expected log predictive density ($se_{elpd_{loo}}$), and the difference in the expected log predictive density ($elpd_{diff}$) for a given model compared to the best model. The model with the lowest $elpd_{loo}$ of each group has the most support and is highlighted in grey.

	model	looic	p loo	elpd _{loo}	se _{elpd_loo}	elpd _{diff}
MR2	$MR \sim mass_{MR} + temperature + thermoregulatory strategy$	286.8	8.5	-143.3	13	0
MR2_LG	$MR \sim mass_{MR} + temperature + respiratory organ$	302.8	6.9	-151.4	11.7	-8.0
MR3	$MR \sim mass_{MR} *$ thermoregulatory strategy + temperature	281.3	9.9	-140.7	13.9	0
MR3_LG	$MR \sim mass_{MR} * respiratory organ + temperature$	304.1	8.3	-152.1	12.0	-11.4
RSA2	$RSA \sim mass_{RSA} + thermoregulatory strategy$	253.7	3.2	-126.8	7.3	0
RSA2_LG	RSA ~ mass _{RSA} + respiratory organ	269.3	2.7	-134.7	5.8	-7.8
RSA3	RSA ~ mass _{RSA} * thermoregulatory strategy	255.6	4.0	-127.8	5.8	0
RSA3_LG	RSA ~ mass _{RSA} * respiratory organ	272.3	4.0	-136.2	5.8	-8.4
<i>C3</i>	$MR \sim residual RSA + mass_{MR} + temperature + thermoregulatory strategy$	271.6	11.2	-135.8	13.9	0
C3_LG	$MR \sim residual RSA + mass_{MR} + temperature + respiratory organ$	283.3	11.4	-141.6	13.6	-5.9
<i>C4</i>	MR ~ residual RSA * mass _{MR} + temperature + thermoregulatory strategy	270.0	12.2	-135.0	14.1	0
C4_LG	MR ~ residual RSA * mass _{MR} + temperature + respiratory organ	284.3	13.8	-142.2	14.4	-7.2
C5	MR ~ residual RSA + mass _{MR} * thermoregulatory strategy + temperature	263.4	11.7	-131.7	14.6	0
C5_LG	MR ~ residual RSA + mass _{MR} * respiratory organ + temperature	283.9	12.9	-142.0	13.9	-10.2
<i>C6</i>	MR ~ residual RSA * mass _{MR} * thermoregulatory strategy + temperature	267.5	11.7	-133.7	14.8	0
C6_LG	MR ~ residual RSA * mass _{MR} * respiratory organ + temperature	294.0	17.2	-147.0	14.7	-13.3

Table S6: Coefficient means and 95% Bayesian Credible Intervals (BCIs, in parentheses) for all models that included respiratory organ (i.e., lungs or gills) in place of thermoregulatory strategy (i.e., ectotherm or endotherm). Model names correspond to Table S5. Intercepts are back transformed from the natural log scale. Pagel's λ indicates the strength of the phylogenetic signal in the residuals of the response.

model		intercept	mass	temp	residual RSA	mass: residual RSA	sigma	Pagel's λ
MR2_LG	gills lungs	0.14 (0.07 to 0.27) 0.26 (0.09 to 0.82)	0.89 (0.82 to 0.97)	-1.23 (-1.71 to -0.75)	NA	NA	1.24 (0.84 to 2.00)	0.30 (0.02 to 0.68)
MR3_LG	gills lungs	0.14 (0.08 to 0.29) 0.26 (0.09 to 0.84)	0.94 (0.82 to 1.07) 0.86 (0.58 to 1.15)	-1.31 (-1.81 to -0.80)	NA	NA	1.27 (0.85 to 2.05)	0.31 (0.02 to 0.70)
RSA2_LG	gills lungs	820.00 (395.54 – 1671.05) 4147.50 (1432.91 – 11917.25)	1.02 (0.96 to 1.07)	-0.59 (-1.05 to -0.14)	NA	NA	1.17 (0.75 to 1.85)	0.49 (0.11 to 0.77)
RSA3_LG	gills lungs	825.27 (403.64 – 1706.42) 4175.97 (1454.04 – 12183.13)	1.02 (0.93 to 1.12) 1.01 (0.79 to 1.23)	NA	NA	NA	1.19 (0.76 to 1.89)	0.49 (0.10 to 0.78)
C3_LG	gills lungs	0.19 (0.10 to 0.38) 0.15 (0.05 to 1.48)	0.93 (0.86 to 1.00)	-0.80 (-1.20 to -0.39)	0.67 (0.48 to 0.86)	NA	0.79 (0.55 to 1.21)	0.23 (0.01 to 0.59)
C4_LG	gills lungs	0.19 (0.10 to 0.37) 0.16 (0.05 to 0.48)	0.96 (0.88 to 1.05)	-0.86 (-1.27 to -0.44)	0.64 (0.45 to 0.83)	-0.05 (-0.10 to 0.01)	0.76 (0.54 to 1.17)	0.22 (0.01 to 0.58)
C5_LG	gills lungs	0.19 (0.10 to 0.37) 0.15 (0.05 to 0.48)	0.95 (0.85 to 1.06)	-0.84 (-1.27 to -0.39)	0.66 (0.48 to 0.85)	NA	0.79 (0.55 to 1.20)	0.22 (0.01 to 0.59)
C6_LG	gills lungs	0.18 (0.10 to 0.36) 0.16 (0.05 to 0.49)	0.92 (0.80 to 1.04) 1.00 (0.70 to 1.29)	-0.80 (-1.23 to -0.37)	0.63 (0.45 to 0.82)	-0.07 (-0.14 to 0.01)	0.77 (0.54 to 1.17)	0.22 (0.01 to 0.58)

Table S7: Model comparison for the three additional runs per model. Model names correspond to those in Table S1. All model comparison was conducted using Paretosmoothing importance sampling leave-one-out cross validation (PSIS-LOO) using the *loo* package in R v.5.3.1 and v.4.0.1. Values reported are the LOO information criterion value (similar to Akaike Information Criterion [AIC]) *looic*, the effective number of parameters (p_{loo}), the expected log predictive density ($elpd_{loo}$), the standard error of the expected log predictive density (se_{elpd_loo}), the difference in the expected log predictive density ($elpd_{diff}$) for a given model compared to the best model, and the Bayesian stacking weight (similar to Akaike weight). The grey shading serves as a visualization tool for separating models being compared.

Model	Model run	looic	$\mathbf{p}_{\mathbf{loo}}$	elpd _{loo}	se _{elpd_loo}	elpd _{diff}	weight
MR1	1	306.5	14.8	-153.2	6.2	-13.4	0.207
MR2	1	286.7	8.8	-143.4	13.3	-3.5	0
MR3		279.6	9.6	-139.8	13.8	0	0.793
MR1	2	305.4	14.4	-152.7	6.2	-12.9	0.208
MR2	2	286.4	8.7	-143.2	13.2	-3.4	0
MR3		279.6	9.7	-139.8	14	0	0.792
MR1		302.8	13.1	-151.4	6.1	-11.6	0.219
MR2	3	285.9	8.4	-143	13.2	-3.1	0
MR3		279.7	9.7	-139.8	13.9	0	0.781
RSA1		346.5	3.1	-173.2	5.6	-46.3	0
RSA2	1	253.9	3.3	-127	7.3	0	1
RSA3		255.8	4.1	-127.9	7.3	-0.9	0
RSA1		346.5	3.2	-173.3	5.6	-46.3	0
RSA2	2	253.9	3.3	-126.9	7.3	0	1
RSA3		255.9	4.1	-128	7.2	-1	0
RSA1		346.3	3.1	-173.2	5.6	-46.3	0
RSA2	3	253.7	3.2	-126.8	7.2	0	1
RSA3	0	20011	0.2	12010		0	0
		255.6	4	-127.8	7.2	-0.9	
C1		276.5	10	-138.2	13.2	-6.5	0.002
C2		277.4	12	-138.7	14	-6.9	0.08
C3	1	271.7	11.4	-135.8	14	-4.1	0.108
C4		270.7	12.7	-135.4	14.2	-3.6	0
C5		263.6	11.8	-131.8	14.7	0	0.809
C6		267.2	13.3	-133.6	14.8	-1.8	267.2
C1		276.6	9.9	-138.3	13.3	-6.3	0
C2		275.8	11.2	-137.9	13.3	-5.9	0.118
C3	2	270.8	11	-135.4	13.9	-3.4	0.138
C4		269.1	11.7	-134.5	13.7	-2.6	0
C5		264	12	-132	14.9	0	0.744
C6		266.8	13.1	-133.4	14.6	-1.4	0
C1		278.1	10.5	-139.1	13.3	-7.1	0
C2		277.3	11.8	-138.7	13.8	-7	0.069
C3	3	270.8	10.8	-135.4	13.8	-3.7	0.14
C4		271.9	13.3	-136	14.8	-4.3	0
C5		263.4	11.7	-131.7	14.8	0	0.791
C6		267	13.3	-133.5	14.6	-1.8	0

Species code	Scientific name	Common name
1	Seriola lalandi	Yellowtail
2	Euthynnus affinis	Mackerel Tuna
3	Ctenopharyngodon idella	Grass Carp
4	Sebastes diploproa	Rockfish
5	Carcharodon carcharias	White Shark
6	Morone saxatilis	Striped Bass
7	Pagrus auratus	Silver Seabream
8	Cirrhinus mrigala	Mrigal Carp
9	Brevoortia tyrannus	Menhaden
10	Carassius auratus	Goldfish
11	Conger conger	Conger Eel
12	Isurus oxyrinchus	Shortfin Mako
13	Hoplias malabaricus	Wolf Fish
14	Sander lucioperca	Pikeperch
15	Cottus gobio	European Bullhead
16	Varanus exanthematicus	Savannah Monitor Lizard
17	Tinca tinca	Tench
18	Labeo rohita	Rohu Carp
19	Pseudopleuronectes americanus	Winter Flounder
20	Carcharhinus plumbeus	Sandbar Shark
21	Anguilla anguilla	European Eel
22	Thunnus albacares	Yellowfin Tuna
23	Scomber scombrus	Atlantic Mackerel
24	Merlangius merlangus	Whiting
25	Pomatomus saltatrix	Bluefish
26	Oncorhynchus mykiss	Rainbow Trout
27	Hoplerythrinus unitaeniatus	Trahira
28	Catostomus commersonii	White Sucker
29	Misgurnus fossilis	Weatherfish
30	Gekko gecko	Tokay Gecko
31	Centropristis striata	Black Sea Bass
32	Gymnocephalus cernua	Ruffe
33	Scomber japonicus	Chub Mackerel
34	Seriola quinqueradiata	Amberjack
35	Platichthys flesus	European Flounder
36	Trachemys scripta	Pond Slider Turtle
37	Sander vitreus	Walleye

 Table S8: The corresponding species identity to the species code (number) along the y-axis in Figure 1.

38	Coryphaena hippurus	Dolphinfish
39	Salmo trutta	Brown Trout
40	Struthio camelus	Common Ostrich
41	Rhinoptera bonasus	Cownose Ray
42	Pollachius virens	Coalfish Pollock
43	Callionymus lyra	Dragonet
44	Channichthys rhinoceratus	Unicorn Icefish
45	Sebastolobus altivelis	Longspine Thornyhead
46	Bos taurus	Cow
47	Mus musculus	Mouse
48	Equus caballus	Horse
49	Heteropneustes fossilis	Stinging Catfish
50	Connochaetes taurinus	Blue Wildebeest
51	Limanda limanda	Common Dab
52	Ameiurus nebulosus	Brown Bullhead Catfish
53	Scyliorhinus stellaris	Nursehound
54	Notophthalmus viridescens	Eastern Newt
55	Camelus dromedarius	Camel
56	Katsuwonus pelamis	Skipjack Tuna
57	Rutilus rutilus	Common Roach
58	Sorex minutus	Pygmy Shew
59	Anguilla rostrata	American Eel
60	Taurotragus oryx	Eland Antelope
61	Perca flavescens	Yellow Perch
62	Opsanus tau	Oyster Toadfish
63	Bufo bufo	Common Toad
64	Larus argentatus	Herring Gull
65	Anabas testudineus	Climbing Perch
66	Oryctolagus cuniculus	Rabbit
67	Esox lucius	Northern Pike
68	Cavia porcellus	Guinea Pig
69	Perca fluviatilis	European Perch
70	Lipophrys pholis	Shanny Blenny
71	Phyllotis darwini	Darwin's Mouse
72	Scyliorhinus canicula	Lesser Spotted Dogfish
73	Oreochromis niloticus	Nile Tilapia
74	Pleuronectes platessa	European Plaice
75	Channa striata	Snakehead Murrel
76	Zoarces viviparus	Eelpout
77	Ambystoma opacum	Marbled Salamander
78	Taricha granulosa	Rough Skinned Newt

79	Dasyuroides byrnei	Kowari Rat
80	Dromaius novaehollandiae	Emu
81	Gallus gallus	Chicken
82	Echeneis naucrates	Sharksucker
83	Dicamptodon ensatus	Giant California Salamander
84	Vulpes lagopus	Arctic Fox
85	Amphiuma means	Two Toed Amphiuma Salamander
86	Setonix brachyurus	Quokka
87	Torpedo marmorata	Marbled Electric Ray
88	Spheniscus humboldti	Chilean Penguin
89	Balistes capriscus	Grey Triggerfish
90	Hyla arborea	European Tree Frog
91	Channa punctata	Spotted Snakehead
92	Rhyacotriton olympicus	Olympic Torrent Salamander
93	Myoxocephalus scorpius	Shortfin Sculpin
94	Cyprinus carpio	Common Carp
95	Dasyatis sabina	Atlantic Stingray
96	Clarias batrachus	Walking Catfish
97	Homo sapiens	Human
98	Bagre cavasius	Gangetic Catfish
99	Python regius	Ball Python
100	Gadus morhua	Cod
101	Chaenocephalus aceratus	Blackfin Icefish
102	Madoqua kirkii	Dik Dik Antelope
103	Pipistrellus pipistrellus	Bat
104	Anas platyrhynchos	Mallard Duck
105	Rana temporaria	Common Frog
106	Mugil cephalus	Grey Mullet
107	Cynopterus brachyotis	Fruit Bat
108	Rana arvalis	Moor Frog
109	Suncus etruscus	Shrew

REFERENCES

- J. H. Brown, J. F. Gillooly, A. P. Allen, V. M. Savage, G. B. West, Toward a metabolic theory of ecology. *Ecology* 85, 1771–1789 (2004).
- 2. J. F. Gillooly, J. H. Brown, G. B. West, V. M. Savage, E. L. Charnov, Effects of size and temperature on metabolic rate. *Science* **293**, 2248–2251 (2001).
- M. P. O'Connor, S. J. Kemp, S. J. Agosta, F. Hansen, A. E. Sieg, B. P. Wallace, J. N. McNair, A. E. Dunham, Reconsidering the mechanistic basis of the metabolic theory of ecology. *Oikos* 116, 1058–1072 (2007).
- 4. S. B. Munch, S. Salinas, Latitudinal variation in lifespan within species is explained by the metabolic theory of ecology. *Proc. Natl. Acad. Sci. U.S.A.* **106**, 13860–13864 (2009).
- D. R. Barneche, M. Kulbicki, S. R. Floeter, A. M. Friedlander, J. Maina, A. P. Allen, Scaling metabolism from individuals to reef-fish communities at broad spatial scales. *Ecol. Lett.* 17, 1067– 1076 (2014).
- G. B. West, J. H. Brown, B. J. Enquist, The fourth dimension of life: Fractal geometry and allometric scaling of organisms. *Science* 284, 1677–1679 (1999).
- 7. A. Fick, Ueber diffusion. Ann. Phys. 170, 59-86 (1855).
- G. M. Hughes, Scaling of respiratory areas in relation to oxygen consumption of vertebrates. *Experientia* 40, 519–524 (1984).
- N. C. Wegner, Gill Respiratory Morphometrics, in *Encyclopedia of Fish Physiology: From Genome* to Environment, A. P. Farrell, Ed. (Academic Press, 2011), pp. 803–811.
- 10. G. Nilsson, *Respiratory Physiology of Vertebrates: Life With and Without Oxygen* (Cambridge Univ. Press, 2010).
- W. Brown, J. M. Shick, Bimodal gas exchange and the regulation of oxygen uptake in holothurians. *Biol. Bull.* 156, 272–288 (1979).
- J. F. Gillooly, J. P. Gomez, E. V. Mavrodiev, Y. Rong, E. S. McLamore, Body mass scaling of passive oxygen diffusion in endotherms and ectotherms. *Proc. Natl. Acad. Sci. U.S.A.* 113, 5340– 5345 (2016).
- 13. G. Duthie, G. M. Hughes, The effects of reduced gill area and hyperoxia on the oxygen consumption and swimming speed of rainbow trout. *J. Exp. Biol.* **127**, 349–354 (1987).
- 14. G. G. Winberg, Rate of metabolism and food requirements of fishes. *Res. Bd. Can. Transl. Ser. No.* 194 (1956).

- 15. S. De Jager, W. J. Dekkers, Relations between gill structure and activity in fish. *Neth. J. Zool.* **25**, 276–308 (1975).
- 16. S. S. Killen, D. S. Glazier, E. L. Rezende, T. D. Clark, D. Atkinson, A. S. T. Willener, L. G. Halsey, Ecological influences and morphological correlates of resting and maximal metabolic rates across teleost fish species. *Am. Nat.* **187**, 592–606 (2016)
- J. M. Sunday, A. E. Bates, N. K. Dulvy, Thermal tolerance and the global redistribution of animals. *Nat. Clim. Change* 2, 686–690 (2012).
- E. R. Weibel, C. R. Taylor, H. Hoppeler, The concept of symmorphosis: A testable hypothesis of structure-function relationship. *Proc. Natl. Acad. Sci. U.S.A.* 88, 10357–10361 (1991).
- S. S. Hillman, T. V. Hancock, M. S. Hedrick, A comparative meta-analysis of maximal aerobic metabolism of vertebrates: Implications for respiratory and cardiovascular limits to gas exchange. *J. Comp. Physiol. B* 183, 167–179 (2013).
- 20. J. Forster, A. G. Hirst, D. Atkinson, Warming-induced reductions in body size are greater in aquatic than terrestrial species. *Proc. Natl. Acad. Sci. U.S.A.* **109**, 19310–19314 (2012).
- 21. J. G. Rubalcaba, W. C. Verberk, A. J. Hendriks, B. Saris, H. A. Woods, Oxygen limitation may affect the temperature and size dependence of metabolism in aquatic ectotherms. *Proc. Natl. Acad. Sci. U.S.A.* **117**, 31963–31968 (2020).
- 22. K. N. Hoefnagel, W. C. E. P Verberk, Is the temperature-size rule mediated by oxygen in aquatic ectotherms? *J. Therm. Biol.* **54**, 56–65 (2015).
- 23. A. Audzijonyte, D. R. Barneche, A. R. Baudron, J. Belmaker, T. D. Clark, C. T. Marshall, J. R. Morrongiello, I. van Rijn, Is oxygen limitation in warming waters a valid mechanism to explain decreased body sizes in aquatic ectotherms? *Glob. Ecol. Biogeogr.* 28, 64–77 (2019).
- 24. D. Pauly, *Gasping Fish and Panting Squids: Oxygen, Temperature, and the Growth of Water-Breathing Animals*, O. Kinne, Ed. (International Ecology Institute, 2010).
- 25. D. Pauly, The gill-oxygen limitation theory (GOLT) and its critics. Sci. Adv. 7, eabc6050 (2021)
- 26. W. W. L. Cheung, J. L. Sarmiento, J. Dunne, T. L. Frölicher, V. W. Lam, M. D. Palomares, R. Watson, D. Pauly, Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems. *Nat. Clim. Change* 3, 254–258 (2013).
- 27. C. Deutsch, J. L. Penn, B. Seibel, Metabolic trait diversity shapes marine biogeography. *Nature*, **585**, 557–562 (2020).

- 28. T. D. Clark, E. Sandblom, G. K. Cox, S. G. Hinch, A. P. Farrell, Circulatory limits to oxygen supply during an acute temperature increase in the Chinook salmon (*Oncorhynchus tshawytscha*). Am. J. Physiol. Regul. Integr. Comp. Physiol., 295, R1631–R1639 (2008).
- 29. A. P. Farrell, E. K. Eliason, E. Sandblom, T. D. Clark, Fish cardiorespiratory physiology in an era of climate change. *Can. J. Zool.* **87**, 835–851 (2009).
- 30. J. R. Speakman, E. Król, Maximal heat dissipation capacity and hyperthermia risk: Neglected key factors in the ecology of endotherms. *J. Anim. Ecol.* **79**, 726–746 (2010).
- J. H. Brown, R. C. Lasiewski, Metabolism of weasels: The cost of being long and thin. *Ecology* 53, 939–943 (1972).
- M. Tsuboi, W. van der Bijl, B. Tore Kopperud, J. Erritzøe, K. L. Voje, A. Kotrschal, K. E. Yopak, S. P. Collin, A. N. Iwaniuk, N. Kolm, Breakdown of brain-body allometry and the encephalization of birds and mammals. *Nat. Ecol. Evol.* 2, 1492–1500 (2018).
- J. C. Uyeda, R. Zenil-Ferguson, M. W. Pennell, Rethinking phylogenetic comparative methods. *Syst. Biol.* 67, 1091–1109 (2018).
- 34. J. S. Bigman, S. A. Pardo, T. S. Prinzing, M. Dando, N. C. Wegner, N. K. Dulvy, Ecological lifestyles and the scaling of shark gill surface area. J. Morphol. 279, 1716–1724 (2018).
- 35. C. R. White, P. B. Frappell, S. L. Chown, An information-theoretic approach to evaluating the size and temperature dependence of metabolic rate. *Proc. R. Soc. B* **279**, 3616–3621 (2012).
- 36. F. Bokma, Evidence against universal metabolic allometry. Funct. Ecol. 18, 184–187 (2004).
- S. B. Hedges, J. Dudley, S. Kumar, TimeTree: A public knowledge-base of divergence times among organisms. *Bioinformatics* 22, 2971–2972 (2006).
- 38. R. W. Stein, C. G. Mull, T. S. Kuhn, N. C. Aschliman, L. N. K. Davidson, J. B. Joy, G. J. Smith, N. K. Dulvy, A. O. Moors, Global priorities for conserving the evolutionary history of sharks, rays and chimaeras. *Nat. Ecol. Evol.* 2, 288–298 (2018).
- 39. M. Kleiber, Body size and metabolism. Hilgardia 6, 315–353. (1932).
- 40. R Core Team, *R: A Language and Environment for Statistical Computing* (R Foundation for Statistical Computing, 2013); www.R-project.org/.
- Stan Development Team, Stan Modeling Language Users Guide and Reference Manual, Version 2.19.2 (2019); http://mc-stan.org.
- 42. A. Vehtari, A. Gelman, J. Gabry, Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. *Stat. Comput.* **27**, 1413–1432 (2017).

- 43. S. Sundararajan, S. S. Keerthi, Predictive approaches for choosing hyperparameters in gaussian processes. *Neural Comput.* **13**, 1103–1118 (2001).
- 44. P. C. Bürkner, J. Gabry, A. Vehtari, Bayesian leave-one-out cross-validation for non-factorizable normal models. arXiv:1810.10559v3 (2019).
- 45. Y. Yao, A. Vehtari, D. Simpson, A. Gelman, Using stacking to average bayesian predictive distributions. *Bayesian Anal.* **13**, 917–1007 (2018).
- 46. A. Gelman, J. Hill, *Data Analysis using Regression and Multilevelhierarchical Models* (Cambridge Univ. Press, 2007). vol. 1.
- 47. K. P. Burnham, D. R. Anderson, Model Selection and Multimodel Inference (Springer, 2002).
- 48. L. O. Frishkoff, P. de Valpine, L. K. M'Gonigle, Phylogenetic occupancy models integrate imperfect detection and phylogenetic signal to analyze community structure. *Ecology* **98**, 198–210 (2017).
- 49. J. S. Bigman, L. K. M'Gonigle, N. C. Wegner, N. K. Dulvy, Assessing patterns of metabolic rate and respiratory surface area data across the vertebrate tree of life. figshare, dataset and code. https://doi.org/10.6084/m9.figshare.13821968.