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Supplemental Methods 
 
Occupancy models 
i) Multi-season, dynamic model to assess how a species’ climate niche shapes its 
response to land-use 

We developed a hierarchical multi-season multi-species model to estimate how a 
species’ climate niche center and breadth along temperature and precipitation axes affect 
its occupancy dynamics across the land-use gradient. We evaluated only niche 
characteristics for mean annual temperature (Bio1) and mean annual precipitation 
(Bio12) from the WorldClim dataset because the niche centers of other temperature-
related properties (e.g. temperature of warmest/coldest quarter) were all strongly 
correlated with Bio1 niche center (r = 0.9, 0.8 respectively) and other precipitation niche 
centers (e.g. precipitation of wettest/driest quarter) were highly correlated with Bio12 
niche center (r = 1.0 and 0.8 respectively). 

In the model we let Xi,j,t,k indicate whether we detected (Xi,j,t,k = 1) or did not detect 
(Xi,j,t,k = 0) the ith species at the jth  site during the kth visit to that site in year t. We then let 
Zi,j,t denote the true occupancy state of species i at site j in year t (Zi,j,t = 1 if species i was 
present in site j during year t and 0 if it was not). We assumed that the occupancy of 
species i at site j in year t was a Bernoulli random variable, such that Zi,j,t ∼ Bern(ψi,j,t) 
with ψi,j,t denoting the probability that species i was present at site j in year t. We allowed 
occupancy to be the net outcome of a species’ ability to persist in an already occupied site 
and its ability to colonize vacant sites. Thus, for the dynamic occupancy model, we 
investigated the effects of our variables of interest on the rates of persistence and 
colonization, rather than on the probability of occupancy directly.  

We let φi,j,t denote the probability that species i persisted at site j from years t to t + 1 
(given that it was present at site j in year t) and, similarly, we let γi,j,t denote the 
probability that species i colonized site j in year t + 1 (given that it was not present at site 
j in year t). The probability of occupancy for species i at site j for each subsequent year 
was then given by 	

	
𝑙𝑜𝑔𝑖𝑡(𝜓𝑖,𝑗,𝑡!!) =  𝜑!,!,!  ∗  𝑍!,!,! +  𝛾!,!,! ∗  (1 −  𝑍!,!,!).	

	
In order to quantify the effects of each land use, we defined species-specific 

persistence and colonization models that include the necessary covariates. Namely, we 
assumed that between-year persistence was given by 	

	
𝜑𝑖,𝑗 =  𝜑0𝑖,𝑙𝑎𝑛𝑑𝑢𝑠𝑒 𝑗 +  𝜑1!,!"#$%& 𝑗 +  φ2!"#$%&'[𝑗] ∗ 𝑇𝐶 𝑖 +  φ3!"#$%&' 𝑗 ∗ 𝑇𝐵 𝑖

+  φ4!"#$%&' 𝑗 ∗ 𝑃𝐶 𝑖 +  φ5!"#$%&' 𝑗 ∗ 𝑃𝐵 𝑖 +  φ6𝑗,	
	



where φ0i, landuse[j] denotes a species-specific intercept for each land-use category—
interpreted as the mean persistence in each of the three land-uses in region 1. φ1region[j] 
denotes a species-specific effect of region to allow each species to vary in persistence 
probability between regions. To avoid over-parameterizing the model, we set 𝜑1!,!equal 
to 0 for all species. Therefore, this parameter is interpreted as a region contrast (i.e., how 
different is region 2, 3, or 4 from region 1). φ2landuse[j] through φ5landuse[j] denote the 
interaction effect between a species-level covariate and land-use intensity (TC: 
temperature niche center (mean of Bio1), TB: temperature niche breadth (SD of Bio1), 
PC: precipitation niche center (mean of Bio12), PB: precipitation niche breadth (SD of 
Bio12)). This allowed species’ trait values to affect their rates of persistence differently in 
each land-use type. Finally φ6𝑗 was a random intercept for sites, included to account for 
consistent differences in site level persistence probability across species and years 
beyond that which is accounted for by land-use type. Similarly, the probability of 
colonization was given by  
	
𝛾𝑖,𝑗 =  𝛾0𝑖,𝑙𝑎𝑛𝑑𝑢𝑠𝑒[𝑗] +  𝛾1!,!"#$%&[𝑗] +  𝛾2!"#$%&'[𝑗] ∗ 𝑇𝐶 𝑖 +  𝛾3!"#$%&' 𝑗 ∗ 𝑇𝐵 𝑖

+  𝛾4!"#$%&' 𝑗 ∗ 𝑃𝐶 𝑖 +  𝛾5!"#$%&' 𝑗 ∗ 𝑃𝐵 𝑖 +  𝛾6𝑗,	
	
where the γ terms are analogous to those for persistence. 
 Whenever parameters were indexed by species, species identity was treated as a 
random effect. For example, colonization probability in transect j for species i resulted 
from:	
 	

𝜑0𝑖,𝑙𝑎𝑛𝑑!𝑠𝑒[𝑗] ~ 𝑁𝑜𝑟𝑚(𝜇.𝜑0𝑙𝑎𝑛𝑑𝑢𝑠𝑒[𝑗],𝜎!.𝜑0𝑙𝑎𝑛𝑑𝑢𝑠𝑒[𝑗])	
	
Thus, for each of our three land-uses, species-specific intercepts were drawn from a 
normal distribution whose mean and standard deviation were estimated independently 
from the other two land-uses. The species-specific effect of region was parameterized 
equivalently (with the exception of 𝜑1i and  𝛾1i which were set to 0 in region one for all i 
and not estimated from the data). Note that no coefficients were indexed by year—in 
other words, we assumed that underlying probabilities of persistence and colonization did 
not change between years. Relaxing this assumption increased the number of estimated 
parameters in the model substantially. 

Dynamic occupancy models explicitly incorporate the probability of transitioning 
between presence and absence across years. We therefore must initialize the first year of 
the model with expected occupancy probabilities. To do so, we assumed that the 
occupancy of species i in site j in year 1 was given by that species’ equilibrium 
occupancy probability, based on the persistence and colonization probabilities for that 
site: 

𝜓!,!,!  =   
𝛾!,!

(1−  𝜑!,! +  𝛾!,!  ) 	

	
Because not all species are present in all regions, and because we were primarily 

interested in how climate niche predicts relative occupancy probabilities between habitats 
contingent on a species existing in a region, we set all occupancy probabilities for all 



species never observed in a given region to zero, ensuring that those species would not 
influence parameter estimation in regions they were not observed. 

Similar to the true occupancy state (Zi,j,t), we assumed detection was a Bernoulli 
random variable such that Xi,j,t,k ∼ Bern(pi,j,t,k ∗ Zi,j,t), where pi,j,t,k was the probability that 
species i was detected at site j in the kth sample period of the tth year, given that it was 
present (i.e., Zi,j,t = 1). When species i was absent, Zi,j,t = 0, and thus detection probability 
was 0. We allowed detection probabilities to vary by species such that the detection 
probability of species i at site j in the kth replicate of the tth year was given by 	

	
𝑙𝑜𝑔𝑖𝑡 𝑝𝑖,𝑗,𝑡,𝑘 = 𝑝0!"#$%&'[!] + 𝑝1𝑖 + 𝑝2! + 𝑝3! +  𝑝4!,!,!,	

where the parameter set p0landuse describes the mean detection probability in each of the 
three land-uses (fixed effect), independent of species identity. Parameters p1 through p4 
are random effects included to account for additional variation due to correlations 
between detection probabilities that are attributable to species’, sites, and years. In all 
cases they were drawn from a normal distribution with mean 0, and standard deviation 
σ.p1 through σ.p4.	
 

We analyzed the model in a Bayesian framework using vague priors throughout. 
We ran a total 4 chains of 15,000 iterations each, discarding the first 3,000 as burnin, 
with a thinning rate of 30, which yielded 1,600 posterior samples. Convergence was 
assessed by checking that R-hats were less than 1.1, and by visually examining the traces 
of the chains. We assessed model adequacy by using a posterior predictive check and 
calculating a Bayesian p-value (Gelman & Hill 2007). To do so, we used chi-squared 
discrepancy statistics. We calculated the discrepancy between the model predictions and 
the observed data as well as the discrepancy between the model predictions and data 
simulated using those predictions. At each iteration of the MCMC chain, we then 
calculate the Bayesian p-value as the proportion of iterations for which the discrepancy 
from the observed data is less than the discrepancy from the simulated data.  
 
Goodness of fit cannot be evaluated directly for binary responses. We, therefore, 
followed (Carrillo-Rubio et al. 2014) and evaluated discrepancy by summing detections 
across visits, and comparing the number of visits for which each species in each site in 
each year was detected (0 to 3), against the expected number of detections based on fitted 
model parameters. 
 
ii) Multispecies occupancy model to assess how species change habitat affiliation along a 
rainfall gradient 
In contrast to the dynamic model in which we explicitly modeled persistence and 
colonization and allowed overall site occupancy to emerge as the outcome of these 
dynamic processes, we used a simpler model to quantify species’ tendencies to shift 
habitat affiliations across regions. We limited our analysis to the 54 species observed in 
all four regions during the wet season (or 48 species observed in the dry season), because 
species observed in fewer regions would lend little power to conclusions regarding how 
habitat affiliation shifts between regions. Here occupancy probability 𝜓!,!,! is estimated 
according to: 
 



𝑙𝑜𝑔𝑖𝑡(𝜓!,!,!) =  𝜓0!,!"#$%&'[!] +  𝜓1!,!"#$%&'[!] ∗ 𝑅𝐹[𝑟𝑒𝑔𝑖𝑜𝑛 𝑠𝑖𝑡𝑒 ]  +  𝜓2!,! 
 
where 𝜓0!,!"#$%&'[!] is a species- and land-use specific intercept, and 𝜓1!,!"#$%&'[!] is a 
species- and land-use specific slope, and RF is the regional rainfall of a site. For each 
species i 
 

𝜓0!,!"#$%&'[!] ~ 𝑑𝑛𝑜𝑟𝑚(𝜇.𝜓0!"#$%&'[!],𝜎!.𝜓0!"#$%&'[!]) 
and 

𝜓1!,!"#$%&'[!] ~ 𝑑𝑛𝑜𝑟𝑚(𝜇.𝜓1!"#$%&'[!],𝜎!.𝜓1!"#$%&'[!]) 
 
This parameterization corresponds to a fixed intercept and rainfall slope in each land-use, 
with random species intercepts and slopes generating species-specific responses. Finally 
𝜓2!,! represents residual random effects to account for species-specific variation among 
sites in occupancy levels. 𝜓2!,! was drawn from a normal distribution with mean 0, and 
standard deviation 𝜎!.𝜓2. 
 
Similarly the detection component is parameterized according to: 

𝑙𝑜𝑔𝑖𝑡 𝑝!,!,!,! = 𝑝0!"#$%&'[!] + 𝑝1! + 𝑝2! + 𝑝3! +  𝑝4!,!,!, 
 
With terms defined equivalently to those in the dynamic model above. 
	
iii) Multispecies occupancy model to obtain habitat affiliation scores	
Here, we modeled occupancy for each species i at each site j in each year t directly from 
the data. Our focus was on parameterizing the model such the individual parameter 
estimates represented each species’ preference for agricultural habitats versus forest.	
	

𝑙𝑜𝑔𝑖𝑡(𝜓𝑖,𝑗,𝑡) =  𝜓0!,𝑟𝑒𝑔𝑖𝑜𝑛[𝑗] + 𝜓1𝑖,𝑙𝑎𝑛𝑑𝑢𝑠𝑒[𝑗] +  𝜓2!,! 	
 
𝜓0 allows each species to have a unique average occupancy in each region (due to full 
parameterization of the model, this term is interpreted as the expected occupancy of a 
species in forest). In each region, individual species were drawn from region-specific 
normal distribution with independent means and variance terms (species specific random 
intercepts for each region).  

𝜓0!,!"#$%&[!] ~ 𝑁𝑜𝑟𝑚(𝜇.𝜓0!"#$%&[!],𝜎!.𝜓0!"#$%&[!]) 
𝜓1 describes the species-specific contrast in occupancy versus forest. For all species, 𝜓1 
in forest was set to 0 (𝜓0!,! = 0). For the other two land-use types, species were drawn 
from a land-use specific distribution characterized by distinct mean and variance terms 
(species-specific random contrast of land-use). Specifically for sites in diversified and 
intensive agriculture: 

𝜓1!,!  ~ 𝑁𝑜𝑟𝑚(𝜇.𝜓1!"#$%&'[!],𝜎!.𝜓1!"#$%&'[!]) 
Final 𝜓2!,!  absorbs residual species-specific variation for each site. 

 𝜓2!,!  ~ 𝑁𝑜𝑟𝑚(0,𝜎!!! )	
	
Detection probability was parameterized as above: 



𝑙𝑜𝑔𝑖𝑡 𝑝𝑖,𝑗,𝑡,𝑘 = 𝑝0!"#$%&'[!] + 𝑝1𝑖 + 𝑝2! + 𝑝3! +  𝑝4!,!,!,	
	
Models were run and convergence verified, as above. 
 
iii) Agriculture affiliation metric	
We used the occupancy model (above) to calculate habitat affinity for each species. By 
setting the family of parameters of 𝜓1!,!"#$%! equal to zero, the resulting estimates for 
𝜓1!,!"#$%&"'"$( !" and 𝜓1!,!"#$"%&'$ !" represent the degree to which species i achieves 
higher (or lower) occupancy in agriculture, relative to forest. Because variation between 
regions and individual sites was captured by 𝜓0 and 𝜓2, values of 𝜓1 represent an 
appropriate and directly estimatable metric of habitat affinity: the log odds of a given 
species occupying the focal agricultural habitat versus forest. Because the contrast 
between forest and diversified agriculture and forest and intensive agriculture were 
highly correlated (R = 0.88 and 0.86 for dry and wet season respectively), we averaged 
the parameter estimates 𝜓1!,!"#$%&"'"$( !" and 𝜓1!,!"#$"%&'$ !" for each species i to derive 
an overall agriculture affiliation. 
 
 
  



 
Climate and Land-use SDMs and Range Size Projections 
SDMs presented in the main text only included climate variables to estimate distributions 
and project those distributions into the future. However, because climate is not the only 
feature limiting species ranges these estimates may not reflect reality. In particular, even 
if a local climate regime is favorable for a species, land-use characteristics may make 
certain areas inhospitable, or alternatively, make otherwise inhospitable areas viable. To 
verify that changes in land-use did not confound our climate predictions, we 
parameterized a second series of SDMs with the same climate variables as well as 5 land-
use variables extracted from the Land-use Harmonization project (natural primary 
habitat, secondary successional habitat, cropland, pasture land, and urban) (Hurtt et al. 
2011). Specifically, we quantified each land-use variable as its proportional coverage 
within each grid cell. Low-resolution land-use data cannot be tied to individual 
detections, however, these data do provide some insight into land-use preferences, as they 
allow for probabilistic sampling of the land covers in regions where each species is most 
frequently found.  
 
After building SDMs that predicted current species distributions from land-use and 
climate data, we projected future species distributions in two ways. First, we allowed 
both climate and land-use to change, using land-use models for 2070 for each RCP 
scenario obtained from the Land-use Harmonization project (Hurtt et al. 2011). Second, 
we allowed climate to change, but held land-use constant in current conditions. This 
second case in effect controls for land-use change, demonstrating that differences in 
species range sizes in the future are indeed due to climate change, rather than correlations 
between present day climate and land-use. 
 
Comparing the full suite of scenarios in which land-use was allowed to vary, held 
constant over time, and omitted from models entirely allowed for evaluation of the 
robustness of our findings to assumptions regarding how species respond to climate 
versus land-use change.  
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Supplementary	Figures	and	Tables	
	

Fig. S1: Map of study sites. Left panel depicts survey transects (colored points) in four 
study regions (Guanacaste, Puerto Viejo, San Isidro, and Las Cruces). Middle panel 
depicts survey transects in one study region (Guanacaste). Points are colored according to 
land use (blue = forest reserves; green = diversified agriculture; yellow = intensive 
agriculture). Right panels show photos from each land use type. 
  



 
Fig. S2: Number of species with observation data within each 10km2 grid cell across 
North and South America. These presence data were used to develop species distribution 
models for 307 species included in the study.  
  

Number	of	Species



 
Fig. S3. Occupancy parameters during dry season. a-b) Summary of parameter estimates 
for the effects of species’ climatological niche characteristics on persistence and 
colonization rates in forest (dark blue), diversified agriculture (green), and intensive 
agriculture (yellow). Points depict posterior means, and lines show 95% Bayesian 
credible intervals. c-d) Posterior estimates of persistence and colonization rates for all 
307 bird species in each of the three investigated land uses depicting the effect of species’ 
precipitation niche center from the dry-season sample. Species from drier climates 
persisted and colonized agriculture better than species from wet climates, while the 
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converse was true in forest. Points represent posterior means for each species, while the 
best-fit line represents the expectation based on the posterior means of parameters 
governing how precipitation niche influences persistence and colonization probabilities, 
with dashed lines indicating 95% BCIs. 
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Figure S4. Summary of parameter estimates for the effects of species’ climatological 
niche characteristics on persistence (a) and colonization rates (b) in forest (dark blue), 
diversified agriculture (green), and intensive agriculture (yellow). Triangles indicate dry 
season estimates, while squares depict wet season estimates. Points are posterior means, 
and lines show 95% Bayesian credible intervals. Parameter estimates for the wet and dry 
season for Nonbreeding season ranges for all bird species are depicted in figures 1 and 
S2. Across all data partitions only precipitation niche consistently explains habitat 
affiliation with forest and agriculture. 
  



 
 
 
 

 
 
Figure S5: Habitat shifting among the 47 species encountered in all study regions in the 
dry season sample. Contrast with wet season sample presented in the main text (Figure 
2). Top panel depicts the effect of regional rainfall on species’ occupancy in each habitat 
type (posterior mean +/- 95% Bayesian credible interval). The bottom panel shows 
overall occupancy probability across the rainfall gradient. Large lines depict mean effects 
across species in each habitat (forest=blue, div. ag. = green, int. ag. = yellow), while thin 
lines show responses of each of the 47 individual species, based on fitted multispecies 
occupancy model. Rainfall in each of the four regions is indicated by an ‘X’.  
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Figure S6: Correlation between mean annual precipitation or mean annual temperature 
across the tropics with the average agricultural affiliation of Costa Rican species that 
occur there. Each semi-transparent black point represents a 1/3 degree by 1/3 degree grid 
cell. 
 
 
 
 
 
  



	

	
Figure S7: Agricultural affiliated species tend to be more resistant to future climate 
change regardless of assumptions regarding dispersal. Points indicate maximum 
likelihood parameter estimates explaining how habitat affiliation will affect a species’ 
expected range expansion (positive values indicate agricultural affiliation is positively 
correlated with future range size). Lines represent 95% profile-likelihood CI. Species 
distribution models were generated for species based on current climate conditions and 

Universal	Dispersal,

Universal	Dispersal,

Universal	Dispersal,	Climate	Only



current land-use information, or based on climate data only. Then each species range 
across the western hemisphere was quantified under future conditions across the four 
RCP scenarios and using 11 climate circulation models. For SDMs generated with both 
land-use and climate data future scenarios included either both future climate and future 
land-use, or future climate but holding land use at present day conditions to isolate the 
effects of climate change. For SDMs generated with just climate data only future climate 
conditions were used. Species were either assumed to be able to disperse and colonize 
any area in the western hemisphere where habitat was suitable (Universal Dispersal), or 
were assumed to be unable to disperse beyond the area they currently occupy (No 
Dispersal). For each RCP models were run with full interaction fixed effects of ‘habitat 
affiliation’ and ‘climate model’, with a random intercept of species to account for non-
independence of species identity across climate models.  
 
	 	



	

Figure S8: Full data plots for SDMs based on current climate and land-use data, and 
projected using into the future using both future climate and land-use data. Agricultural 
affiliated species on average either increase in their habitable range, or suffer less range 
loss under future climate change. See figure S6 for presentation of alternative SDM 
assumptions affect slope parameter estimates.  
	



 
 
 

 
Figure S9: Full data plots for SDMs based on current climate and land-use data, and 
projected using into the future using future climate but current land-use data to isolate the 
effect of climate change on shifts in habitable range size. See figure S6 for presentation 
of alternative SDM assumptions affect slope parameter estimates.   



 
 

 
Figure S10: Full data plots for SDMs based on current climate data only, and projected 
into the future using future climate data. See figure S6 for presentation of alternative 
SDM assumptions affect slope parameter estimates.   
	
  



	

	
Figure S11: Temperature conditions from three adjacent forest and agricultural sites in 
Las Cruces region during 2011. Left hand plot depicts the distribution of daily maxima 
and minima in forest and agriculture, pooling all three sites (Nsite-days = 76). Right hand 
side presents temperature differential of both daily maxima and minima between paired 
sites, indicating how much warmer agricultural sites are than the forested sites. Note that 
these sites were different from those used to sample bird communities, and are included 
to illustrate general differences between tropical forest and agriculture. 
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Figure S12: Humidity conditions from three adjacent forest and agricultural sites in Las 
Cruces region during 2011. Left hand plot depicts the distribution of daily maxima and 
minima in forest and agriculture, pooling all three sites (Nsite-days = 76). Right hand side 
presents relative humidity differential of both daily maxima and minima between paired 
sites, indicating how much drier agricultural sites are than the forested sites. Note that 
these sites were different from those used to sample bird communities, and are included 
to illustrate general differences between tropical forest and agriculture. 
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Figure S13: Representative differences in vegetation from 90 forest and agricultural 1 
meter-square plots in and around the Las Cruces region. Data are from 30 elevational 
transect sites from Frishkoff et al. (2015). Agricultural sites possess less vegetative 
structure as indicated by the mean diameter at breast height (DBH) of woody plants 
within the plot, the variance of DBHs within the plot, the maximum vegetation height 
within the plot, and the degree to which the plot was covered by a canopy, as measured 
by a spherical densiometer. Note that these sites were different from those used to sample 
bird communities, and are included to illustrate general differences between tropical 
forest and agriculture. 
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Figure S14: Average canopy height from 3D Global Vegetation Map Database (Simard 
et al. 2011) for each grid cell in the major biomes in North and South America.  Biomes 
are order according to average habitat affiliation of Costa Rican bird species (as in figure 
3 in the main text). Dry biomes, where Costa Rica’s agricultural species are more likely 
to come from have shorter vegetation structure. Small semi-transparent black points 
represent individual grid cells, large colored points are means of the distribution, while 
lines represent standard deviation of the data. 
 
 
 
	 	



Table S1: Summary of regions indicating the general location each region occupies in 
the country, whether it is on the Atlantic or Pacific versant, and a description of the 
natural and agricultural habitat available for species.	
	
	
Region	 Area	 Versant	 Natural Vegetation	 Major Agriculture	

Guanacaste	 Northwestern 
Costa Rica	

Pacific 
Versant	

Lowland tropical 
dry forest	

Melon, rice, sugar cane, cattle, 
and aquaculture	

San Isidro	 South-Central 
Costa Rica	

Pacific 
Versant	

Mid-elevation 
tropical wet forest	

Coffee, pineapple, sugar cane, 
pasture	

Las Cruces	 Southern Costa 
Rica	

Pacific 
Versant	

Premontane tropical 
wet forest	

Coffee, pasture	

Puerto 
Viejo	

Northern Costa 
Rica	

Atlantic 
Versant	

Lowland tropical 
wet forest	

Heart-of-palm, banana, 
pineapple, pasture	

	
Table S2: Structural differences between diversified agriculture and intensive 
monocultures. Values are means (SD) across transects from surveys conducted in 1999. 
Table adapted from (Karp et al. 2012).  	
	

	 Vegetation	Variable	 Diversified	
Agriculture	

Intensive	
Agriculture	

Crop	
Diversity	 Number	of	planted	crop	species	 21.4	(12.8)	 4.5	(2.9)	

Hedgerow	
Quality	and	
Extent	

%	without	hedgerows	 48.5	(26.6)	 69.7	(35.1)	
%	short	&	thin	hedgerows	 6.2	(5.6)	 5.5	(12.1)	
%	short	&	full	hedgerows	 7.5	(10.3)	 9.2	(24.8)	
%	tall	&	thin	hedgerows	 26.6	(19)	 11.6	(18.5)	
%	tall	&	full	hedgerows	 11.2	(12.4)	 3.7	(6.8)	

Agricultural	
plot	structure	

Plot	size	(hectares)	 3.3	(7.6)	 65.5	(78.7)	
Number	of	bordering	plots	 6.3	(3.9)	 1.9	(1.1)	

Forest	cover	 %	forest	cover	at	100m	buffer	 7	(21)	 1	(4)	
%	forest	cover	at	200m	buffer	 10	(21)	 2	(6)	

	
	 	



	
Table S3: Table of all parameter estimates from dynamic occupancy models. ‘Posterior’ 
presents posterior means [2.5%, 97.5% BCI], and ‘Prior’ indicates the prior distribution 
from which the parameters were drawn. 
 

Hier-
archy Parameter Description Posterior Prior 

O
cc

up
an

cy
 –

 P
er

si
st

en
ce

 

µ.φ0 [forest] Mean of spp in forest (Guanacaste) 2.165 [1.349, 3.01] logit(U[0,1]) 

µ.φ0 [intensive] Mean of spp in intensive (Guanacaste) 0.92 [0.344, 1.505] logit(U[0,1]) 

µ.φ0 [diversified] Mean of spp in diversified (Guanacaste) 1.542 [0.869, 2.225] logit(U[0,1]) 

µ.φ1[Las Cruces] Mean region contrast (Las Cruces) -0.037 [-0.846, 0.733] N(0, 1000) 

µ.φ1[Puerto Viejo] Mean region contrast (Puerto Viejo) -0.208 [-1.032, 0.618] N(0, 1000) 

µ.φ1[San Isidro] Mean region contrast (San Isidro) -0.458 [-1.269, 0.266] N(0, 1000) 

σ.φ0 [forest] SD of species in forest 3.516 [2.777, 4.471] U(0,20) 

σ.φ0 [intensive] SD of species in intensive 1.368 [1.038, 1.719] U(0,20) 

σ.φ0 [diversified] SD of species in diversified 2.041 [1.689, 2.433] U(0,20) 

σ.φ1[Las Cruces] SD region contrast across spp (Las Cruces) 2.058 [1.689, 2.444] U(0,20) 

σ.φ1[Puerto Viejo] SD region contrast across spp (Puerto Viejo) 2.446 [2.036, 2.933] U(0,20) 

σ.φ1[San Isidro] SD region contrast across spp (San Isidro) 1.943 [1.549, 2.396] U(0,20) 

σ.φ6 SD of site random effect 0.699 [0.49, 0.946] U(0,5) 

φ2[forest] Effect of temp. center in forest -0.415 [-1.101, 0.225] N(0, 1000) 

φ2[intensive] Effect of temp. center in intensive 0.057 [-0.322, 0.41] N(0, 1000) 

φ2[diversified] Effect of temp. center in diversified 0.212 [-0.232, 0.675] N(0, 1000) 

φ3[forest] Effect of temp. breadth in forest -0.413 [-0.981, 0.125] N(0, 1000) 

φ3[intensive] Effect of temp. breadth in intensive 0.13 [-0.174, 0.418] N(0, 1000) 

φ3[diversified] Effect of temp. breadth in diversified 0.03 [-0.327, 0.41] N(0, 1000) 

φ4[forest] Effect of precip. center in forest 0.708 [0.049, 1.424] N(0, 1000) 

φ4[intensive] Effect of precip. center in intensive -1.009 [-1.456, -0.563] N(0, 1000) 

φ4[diversified] Effect of precip. center in diversified -1.23 [-1.744, -0.789] N(0, 1000) 

φ5[forest] Effect of precip. breadth in forest -0.165 [-0.728, 0.377] N(0, 1000) 

φ5[intensive] Effect of precip. breadth in intensive -0.102 [-0.482, 0.277] N(0, 1000) 

φ5[diversified] Effect of precip. breadth in diversified -0.135 [-0.549, 0.276] N(0, 1000) 

O
cc

up
an

cy
 - 

C
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at
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µ.γ0 [forest] Mean of spp in forest (Guanacaste) -3.232 [-3.832, -2.637] logit(U[0,1]) 

µ.γ0 [intensive] Mean of spp in intensive (Guanacaste) -4.18 [-4.641, -3.709] logit(U[0,1]) 

µ.γ0 [diversified] Mean of spp in diversified (Guanacaste) -3.287 [-3.8, -2.718] logit(U[0,1]) 

µ.γ1[Las Cruces] Mean region contrast (Las Cruces) 0.233 [-0.37, 0.801] N(0, 1000) 

µ.γ1[Puerto Viejo] Mean region contrast (Puerto Viejo) 0.07 [-0.481, 0.628] N(0, 1000) 

µ.γ1[San Isidro] Mean region contrast (San Isidro) -0.067 [-0.616, 0.511] N(0, 1000) 

σ.γ0 [forest] SD of species in forest 2.642 [2.193, 3.176] U(0,20) 

σ.γ0 [intensive] SD of species in intensive 1.565 [1.317, 1.835] U(0,20) 

σ.γ0 [diversified] SD of species in diversified 1.474 [1.232, 1.744] U(0,20) 

σ.γ1[Las Cruces] SD region contrast across spp (Las Cruces) 1.126 [0.892, 1.411] U(0,20) 

σ.γ1[Puerto Viejo] SD region contrast across spp (Puerto Viejo) 0.989 [0.748, 1.266] U(0,20) 



σ.γ1[San Isidro] SD region contrast across spp (San Isidro) 1.326 [1.072, 1.607] U(0,20) 

σ.γ6 SD of site random effect 0.566 [0.427, 0.743] U(0,5) 

γ2[forest] Effect of temp. center. in forest 0.314 [-0.204, 0.81] N(0, 1000) 

γ2[intensive] Effect of temp. center. In intensive 0.012 [-0.309, 0.321] N(0, 1000) 

γ2[diversified] Effect of temp. center. In diversified 0.119 [-0.182, 0.409] N(0, 1000) 

γ3[forest] Effect of temp. breadth in forest -0.077 [-0.471, 0.326] N(0, 1000) 

γ3[intensive] Effect of temp. breadth in intensive 0.29 [0.039, 0.547] N(0, 1000) 

γ3[diversified] Effect of temp. breadth in diversified 0.353 [0.1, 0.613] N(0, 1000) 

γ4[forest] Effect of precip center. in forest 0.756 [0.293, 1.234] N(0, 1000) 

γ4[intensive] Effect of precip center. In intensive -0.801 [-1.125, -0.485] N(0, 1000) 

γ4[diversified] Effect of precip center. In diversified -0.609 [-0.911, -0.298] N(0, 1000) 

γ5[forest] Effect of precip breadth in forest -0.253 [-0.67, 0.158] N(0, 1000) 

γ5[intensive] Effect of precip breadth in intensive 0.166 [-0.122, 0.456] N(0, 1000) 

γ5[diversified] Effect of precip breadth in diversified 0.119 [-0.141, 0.37] N(0, 1000) 

D
et

ec
tio

n 

µ.p0[forest] Mean detection in forest -0.701 [-1.036, -0.368] logit(U[0,1]) 

µ.p0[intensive] Mean detection in intensive -1.333 [-1.646, -1.004] logit(U[0,1]) 

µ.p0[diversified] Mean detection in diversified -0.778 [-1.104, -0.453] logit(U[0,1]) 

σ.p1 SD of random spp effect 1.428 [1.306, 1.562] U(0,10) 

σ.p2 SD of random site effect 0.498 [0.37, 0.652] U(0,5) 

σ.p3 SD of random year effect 0.113 [0.066, 0.199] U(0,5) 

σ.p4 SD of random site X year X spp effect 0.975 [0.936, 1.018] U(0,5) 
	
	 	



	
Appendix	1:	Dynamic	Occupancy	model	for	climate	variables	
model.jags<-function() { 
 
    ## ******************************************************* 
    ## Detection Priors 
    ## ******************************************************* 
     
    for (int in 1:3){ 
      p.intensity.pre[int] ~ dunif(0,1) 
      p.intensity[int] <- logit(p.intensity.pre[int]) 
    } 
     
    for (site in 1:nsite) { 
      p.site[site] ~ dnorm(0, tau.p.site) 
    } 
 
    for (yr in 1:nyear) { 
      p.year[yr] ~ dnorm(0, tau.p.yr) 
    } 
     
    sigma.p.0 ~ dunif(0,100) 
    tau.p.0 <- 1/(sigma.p.0*sigma.p.0) 
 
    sigma.p.yr ~ dunif(0,5) 
    tau.p.yr <- 1/(sigma.p.yr*sigma.p.yr) 
 
    sigma.p.site ~ dunif(0,5) 
    tau.p.site <- 1/(sigma.p.site*sigma.p.site) 
 
    sigma.p.site.yr.sp ~ dunif(0,5) 
    tau.p.site.yr.sp <- 1/(sigma.p.site.yr.sp*sigma.p.site.yr.sp) 
 
 
    ## ******************************************************* 
    ## Occupancy priors (phi = persistence, gam = colonization) 
    ## ******************************************************* 
    ## Random site effects 
     
    sigma.phi.site ~ dunif(0,5) 
    sigma.gam.site ~ dunif(0,5) 
    tau.phi.site <- 1/(sigma.phi.site* sigma.phi.site) 
    tau.gam.site <- 1/(sigma.gam.site* sigma.gam.site) 
 
    for (site in 1:nsite){ 
      phi.site[site] ~ dnorm(0, tau.phi.site) 
      gam.site[site] ~ dnorm(0, tau.gam.site) 
    } 
     
    ## Generate mean and sd of species occupancies in each land-use 
    for(i in 1:3) { 
      mu.phi.intensity.pre[i] ~ dunif(0,1) 
      mu.gam.intensity.pre[i] ~ dunif(0,1) 



 
      mu.phi.intensity[i] <- logit(mu.phi.intensity.pre[i]) 
      mu.gam.intensity[i] <- logit(mu.gam.intensity.pre[i]) 
       
      sigma.phi.intensity[i] ~ dunif(0,20) 
      sigma.gam.intensity[i] ~ dunif(0,20) 
       
      tau.phi.intensity[i]<-1/(sigma.phi.intensity[i] * sigma.phi.intensity[i]) 
      tau.gam.intensity[i]<-1/(sigma.gam.intensity[i] * sigma.gam.intensity[i]) 
       
    } 
     
    ## Draw each species land-use responses 
    for(sp in 1:nsp){  
    for (i in 1:3) { 
   phi.intensity.sp[i,sp] ~ dnorm(mu.phi.intensity[i], 
                                    tau.phi.intensity[i]) 
   gam.intensity.sp[i,sp] ~ dnorm(mu.gam.intensity[i],  
                                    tau.gam.intensity[i]) 
    } 
     } 
 
 
    ## ******************************************************* 
    ## Species phi & gam in each region 
    ## ******************************************************* 
 
    ## Set the effect of each region for each species.  
    ## Parameterization sets region 1 as the intercept: 
    ## all other regions are contrasts off of region 1. 
     
    mu.phi.region[1]<-0 
    mu.gam.region[1]<-0 
    sigma.phi.region[1]<-0 
    sigma.gam.region[1]<-0 
 
    for(sp in 1:nsp){ 
      phi.reg.sp[1,sp] <- 0 
      gam.reg.sp[1,sp] <- 0 
    } 
 
     
    for(reg in 2:4) { 
      mu.phi.region[reg] ~ dnorm(0, 0.001) 
      mu.gam.region[reg] ~ dnorm(0, 0.001) 
      sigma.phi.region[reg] ~ dunif(0,20) 
      sigma.gam.region[reg] ~ dunif(0,20) 
      tau.phi.region[reg] <- 1/(sigma.phi.region[reg]*sigma.phi.region[reg]) 
      tau.gam.region[reg] <- 1/(sigma.gam.region[reg]*sigma.gam.region[reg])       
 
      for(sp in 1:nsp){ 
        phi.reg.sp[reg,sp] ~ dnorm(mu.phi.region[reg], tau.phi.region[reg]) 
        gam.reg.sp[reg,sp] ~ dnorm(mu.gam.region[reg], tau.gam.region[reg]) 



      } 
    } 
 
    ## Set priors for the effects of all traits in each land-use  
     
    for(i in 1:3) { 
      phi.trait[i]  ~ dnorm(0,0.001) 
      gam.trait[i]  ~ dnorm(0,0.001) 
      phi.trait2[i]  ~ dnorm(0,0.001) 
      gam.trait2[i]  ~ dnorm(0,0.001) 
      phi.trait3[i]  ~ dnorm(0,0.001) 
      gam.trait3[i]  ~ dnorm(0,0.001) 
      phi.trait4[i]  ~ dnorm(0,0.001) 
      gam.trait4[i]  ~ dnorm(0,0.001) 
    } 
 
    ## ******************************************************* 
    ## Establish core likelihood function 
    ## ******************************************************* 
 
    ## Species-specific detectability.  
    ## A function of land-use intensity, 
    ## and additional species, site, and year random effects . 
     
    for(sp in 1:nsp) { 
      p.0[sp] ~ dnorm(0, tau.p.0) 
      for (yr in 1:nyear) { 
        for(site in 1:nsite){ 
          p.site.yr.sp[site,yr,sp] ~ dnorm(0, tau.p.site.yr.sp) 
           
          logit(p[site,yr,sp]) <- p.0[sp] +  
                   p.intensity[intensity[site]] + 
                     p.year[yr] + 
                       p.site[site] + 
                         p.site.yr.sp[site,yr,sp] 
        } #\site 
      } #\yr 
    } #\sp 
     
    ## Occupancy for species in a site, over all years 
     
    for(sp in 1:nsp) { 
      for(site in 1:nsite) { 
         
        ## occupancy in year 1, equilibrium expectation 
        ## gamma / (1 - phi + gamma) 
         
        mu.psi.1[site,1,sp] <- gam[site,sp]/ (1-phi[site,sp]+gam[site,sp]) 
        psi[site,1,sp] <- mu.psi.1[site,1,sp] * 
          region.presence[sp,region[site]] 
        Z[site,1,sp] ~ dbern(psi[site,1,sp]) 
 
        ## detectability in year 1         



        E[site,1,sp] <- Z[site,1,sp]*p[site,1,sp]         
 
        # Assess model fit using Chi-squared discrepancy 
        # Compute fit statistic 'eval' for observed data 
        eval[site,1,sp] <- pow(sum(X[site,1,,sp]) -  
                                    (E[site,1,sp]*nrep[site,yr+1,sp])),2) / 
                                      ((E[site,1,sp]*nrep[site,yr+1,sp]) + 0.5)  
        # Generate replicate data and compute fit stats for them 
        eval.new[site,1,sp] <- pow(sum(X.new[site,1,,sp]) -  
                                    (E[site,1,sp]*nrep[site,yr+1,sp]),2) / 
                                      ((E[site,1,sp]*nrep[site,yr+1,sp]) + 0.5)  
         
   #L75 
        for(rep in 1:nrep[site,1,sp]) { 
          X[site,1,rep,sp] ~ dbern(E[site,1,sp]) 
          X.new[site,1,rep,sp] ~ dbern(E[site,1,sp]) 
        } 
 
       ## Effect of region, species and trait values  
       ## on persistence and colonization probabilities  
       ## in subsequent years. 
        
        logit(phi[site,sp]) <- 
          phi.reg.sp[region[site],sp] + 
            phi.intensity.sp[intensity[site],sp] + 
              phi.trait[intensity[site]] * trait[sp] + 
                phi.trait2[intensity[site]] * trait2[sp] + 
                  phi.trait3[intensity[site]] * trait3[sp] + 
                    phi.trait4[intensity[site]] * trait4[sp] + 
                      phi.site[site] 
 
        logit(gam[site,sp]) <- 
          gam.reg.sp[region[site],sp] + 
            gam.intensity.sp[intensity[site],sp] + 
              gam.trait[intensity[site]] * trait[sp] + 
                gam.trait2[intensity[site]] * trait2[sp] + 
                  gam.trait3[intensity[site]] * trait3[sp] + 
                    gam.trait4[intensity[site]] * trait4[sp] + 
                       gam.site[site] 
 
        
        for(yr in 1:(nyear-1)) { 
 
          psi[site,yr+1,sp] <- 
            (Z[site,yr,sp] * phi[site,sp] +  
             (1-Z[site,yr,sp]) * gam[site,sp]) * 
               region.presence[sp,region[site]] 
 
          Z[site,yr+1,sp] ~ dbern(psi[site,yr+1,sp]) 
 
          E[site,yr+1,sp] <- Z[site,yr+1,sp]*p[site,yr+1,sp] 
 
        # Assess model fit using Chi-squared discrepancy 



        # Compute fit statistic 'eval' for observed data 
        eval[site,yr+1,sp] <- pow(sum(X[site,yr+1,,sp]) -  
                                    (E[site,yr+1,sp]*nrep[site,yr+1,sp]),2) / 
                                      ((E[site,yr+1,sp]*nrep[site,yr+1,sp]) + 
0.5)  
        # Generate replicate data and compute fit stats for them 
        eval.new[site,yr+1,sp] <- pow(sum(X.new[site,yr+1,,sp]) -  
                                    (E[site,yr+1,sp]*nrep[site,yr+1,sp]),2) / 
                                      ((E[site,yr+1,sp]*nrep[site,yr+1,sp]) + 
0.5)  
 
          for(rep in 1:nrep[site,yr+1,sp]) { 
            X[site,yr+1,rep,sp] ~ dbern(E[site,yr+1,sp]) 
            X.new[site,yr+1,rep,sp] ~ dbern(E[site,yr+1,sp]) 
             
          } # \rep 
        } # \yr 
      } # \site 
    } # \sp 
   fit <- sum(eval[,,]) 
   fit.new <- sum(eval.new[,,]) 
 
  } # \model.jags 
	
	 	



Appendix	2:	Simple	Occupancy	model	for	habitat	shift	
model.jags<-function() { 
 
    ## ******************************************************* 
    ## Detection Priors 
    ## ******************************************************* 
     
    # Priors for random effects 
    sigma.p.0 ~ dunif(0,10) 
    tau.p.0 <- 1/(sigma.p.0*sigma.p.0) 
 
    sigma.p.site ~ dunif(0,10) 
    tau.p.site <- 1/(sigma.p.site*sigma.p.site) 
 
    sigma.p.site.year.sp ~ dunif(0,10) 
    tau.p.site.year.sp <- 1/(sigma.p.site.year.sp*sigma.p.site.year.sp) 
 
 
   ## Fixed effect of land-use intensity 
      
    for(i in 1:3) { 
      mu.p.intensity.pre[i] ~ dunif(0,1) 
      mu.p.intensity[i] <- logit(mu.p.intensity.pre[i]) 
    } 
 
    ## Species, Site, and Year random effects 
     
    for (site in 1:nsite){ 
      p.site[site]~dnorm(0, tau.p.site) 
    } 
 
    for (yr in 1:nyear){ 
      p.year[yr]~dnorm(0, tau.p.year) 
    } 
     
    for(sp in 1:nsp) { 
        p.0[sp] ~ dnorm(0, tau.p.0) 
         
        for (site in 1:nsite){ 
          for (yr in 1:nyear){ 
           
            p.site.year.sp[site,yr,sp]~dnorm(0, tau.p.site.year.sp) 
            
            ## Overall detection probability 
            logit(p[site, yr, sp]) <- p.0[sp] +  
                                       mu.p.intensity[intensity[site]] + 
                                          p.site[site] +                                                                 
                                            p.year[yr] + 
                                              p.site.year.sp[site,yr,sp] 
        } 
      } 
    } 
 



    ## ******************************************************* 
    ## Occupancy effects - Land use intercept, and rainfall slope 
    ## ******************************************************* 
   
    for(i in 1:3) { 
      ## Land-use intercept 
      mu.psi.int.pre[i] ~ dunif(0, 1) 
      mu.psi.intensity[i] <- logit(mu.psi.int.pre[i])        
      sigma.psi.intensity[i] ~ dunif(0,10) 
      tau.psi.intensity[i]<-1/(sigma.psi.intensity[i] * sigma.psi.intensity[i]) 
      ## Rainfall slope for each land-use 
      mu.psi.int.rf[i] ~ dnorm(0, 0.001)        
      sigma.psi.int.rf[i] ~ dunif(0,10) 
      tau.psi.int.rf[i]<-1/(sigma.psi.int.rf[i] * sigma.psi.int.rf[i]) 
    
      for(sp in 1:nsp){ 
     psi.intensity[i,sp] ~ dnorm(mu.psi.intensity[i], 
                                  tau.psi.intensity[i]) 
 
     psi.int.rf[i,sp] ~ dnorm(mu.psi.int.rf[i], 
                                  tau.psi.int.rf[i]) 
        }  
      } 
 
 
    ## ******************************************************* 
    ## Occupancy random effects 
    ## ******************************************************* 
  
    sigma.psi.site ~ dunif(0,10) 
    tau.psi.site <- 1/(sigma.psi.site*sigma.psi.site) 
 
    for (sp in 1:nsp){ 
      for (site in 1:nsite){ 
     psi.site[site,sp]~dnorm(0, tau.psi.site) 
      } 
    } 
  
 
    ## ******************************************************* 
    ## Establish core likelihood function 
    ## ******************************************************* 
     
    for(sp in 1:nsp) { 
      for(site in 1:nsite) { 
        for(yr in 1:nyear) { 
 
        logit(psi[site,yr,sp]) <- 
                psi.intensity[intensity[site], sp] + 
                   psi.int.rf[intensity[site], sp]*rainfall[region[site]] + 
         psi.site[site,sp] 
      
          Z[site,yr,sp] ~ dbern(psi[site,yr,sp]) 



 
          E[site,yr,sp] <- Z[site,yr,sp]*p[site,yr,sp] 
   
          # Assess model fit using Chi-squared discrepancy 
          # Compute fit statistic 'eval' for observed data 
          eval[site,yr,sp] <- pow(sum(X[site,yr,,sp]) -  
                                    (E[site,yr,sp]*nrep[site,yr,sp]),2) / 
                                      ((E[site,yr,sp]*nrep[site,yr,sp]) + 0.5)  
          # Generate replicate data and compute fit stats for them 
          eval.new[site,yr,sp] <- pow(sum(X.new[site,yr,,sp]) -  
                                      (E[site,yr,sp]*nrep[site,yr,sp]),2) / 
                                       ((E[site,yr,sp]*nrep[site,yr,sp]) + 0.5)  
         
 
          for(rep in 1:nrep[site,yr,sp]) { 
            X[site,yr,rep,sp] ~ dbern(E[site,yr,sp]) 
            X.new[site,yr,rep,sp] ~ dbern(E[site,yr,sp]) 
          } 
        } 
      } 
    } 
   fit <- sum(eval[,,]) 
   fit.new <- sum(eval.new[,,]) 
  } 
	
	 	



	
Appendix	3:	Simple	Occupancy	model	for	habitat	affiliation	
 
model.jags<-function() { 
 
    ## ******************************************************* 
    ## Detection Priors 
    ## ******************************************************* 
     
    # Priors for species, site, and year random effects 
    sigma.p.0 ~ dunif(0,10) 
    tau.p.0 <- 1/(sigma.p.0*sigma.p.0) 
 
    sigma.p.year ~ dunif(0,10) 
    tau.p.year <- 1/(sigma.p.year*sigma.p.year) 
 
    sigma.p.site ~ dunif(0,10) 
    tau.p.site <- 1/(sigma.p.site*sigma.p.site) 
 
    sigma.p.site.year.sp ~ dunif(0,10) 
    tau.p.site.year.sp <- 1/(sigma.p.site.year.sp*sigma.p.site.year.sp) 
 
    ## Fixed effect of land-use intensity  
    for(i in 1:3) { 
      mu.p.intensity.prior[i] ~ dunif(0,1) 
      mu.p.intensity[i] <- logit(mu.p.intensity.prior[i]) 
    } 
 
    ## Species, Site, and Year random effects 
    
    for (site in 1:nsite){ 
      p.site[site]~dnorm(0, tau.p.site) 
    } 
 
    for (yr in 1:nyear){ 
      p.year[yr]~dnorm(0, tau.p.year) 
    } 
 
     
    for(sp in 1:nsp) { 
        p.0[sp] ~ dnorm(0, tau.p.0) 
         
        for (site in 1:nsite){ 
          for (yr in 1:nyear){ 
           
            p.site.year.sp[site,yr,sp]~dnorm(0, tau.p.site.year.sp) 
             
            ## Overall detection probability 
            logit(p[site, yr, sp]) <- p.0[sp] +  
                                       mu.p.intensity[intensity[site]] + 
                                        p.year[yr] + 
                                          p.site[site] + 
                                            p.year[yr] + 



                                              p.site.year.sp[site,yr,sp] 
        } 
      } 
    } 
    ## ******************************************************* 
    ## Occupancy priors - Land use component 
    ## ******************************************************* 
  
  
 ## Fixed effect of intensity. Contrast with forest. 
    mu.psi.intensity[1]<-0 # Set forest to zero 
    sigma.psi.intensity[1]<-0 
     
    for(i in 2:3) { 
      mu.psi.intensity[i] ~ dnorm(0,0.01)        
      sigma.psi.intensity[i] ~ dunif(0,20) 
      tau.psi.intensity[i]<-1/(sigma.psi.intensity[i] * sigma.psi.intensity[i]) 
    } 
 
 ## Random effect of species in each intensity  
 ## (allows species specific habitat affiliations) 
 for(sp in 1:nsp){ 
  psi.intensity.sp[1,sp] <- 0 # All species affiliation with  
                              # forest set to zero. 
  for (i in 2:3) { 
   psi.intensity.sp[i,sp] ~ dnorm(mu.psi.intensity[i], 
                                  tau.psi.intensity[i]) 
  } 
 } 
 
 
    ## ******************************************************* 
    ## Occupancy priors - Region component 
    ## ******************************************************* 
     
    # Fixed effect of region. Mean value for each region 
    for (reg in 1:4){ 
     mu.psi.reg[reg]~dnorm(0, 0.01) 
        sigma.psi.region[reg] ~ dunif(0,20) 
        tau.psi.region[reg] <- 1/(sigma.psi.region[reg]*sigma.psi.region[reg]) 
       
      for (sp in 1:nsp){ 
        psi.reg.sp[reg,sp] ~ dnorm(mu.psi.reg[reg], tau.psi.region[reg])  
          # Interpreted as each species occupancy in forest in each region 
      } 
    } 
 
 
    ## ******************************************************* 
    ## Occupancy priors - Random site effect 
    ## ******************************************************* 
    sigma.psi.site ~ dunif(0,10) 
    tau.psi.site <- 1/(sigma.psi.site*sigma.psi.site) 



     
    for (sp in 1:nsp){ 
      for (site in 1:nsite){ 
     psi.site[site,sp]~dnorm(0, tau.psi.site) 
      }   
    } 
 
    ## ******************************************************* 
    ## Establish core likelihood function 
    ## ******************************************************* 
     
    for(sp in 1:nsp) { 
      for(site in 1:nsite) { 
        for(yr in 1:nyear) { 
 
   logit(psi[site,yr,sp]) <- 
                psi.intensity.sp[intensity[site], sp] +  
                     psi.reg.sp[region[site],sp] +  
             psi.site[site,sp] 
      
 
          Z[site,yr,sp] ~ dbern(psi[site,yr,sp]) 
 
          E[site,yr,sp] <- Z[site,yr,sp]*p[site,yr,sp] 
 
          # Assess model fit using Chi-squared discrepancy 
          # Compute fit statistic 'eval' for observed data 
          eval[site,yr,sp] <- pow(sum(X[site,yr,,sp]) -  
                                    (E[site,yr,sp]*nrep[site,yr,sp]),2) / 
                                      ((E[site,yr,sp]*nrep[site,yr,sp]) + 0.5)  
          # Generate replicate data and compute fit stats for them 
          eval.new[site,yr,sp] <- pow(sum(X.new[site,yr,,sp]) -  
                                      (E[site,yr,sp]*nrep[site,yr,sp]),2) / 
                                       ((E[site,yr,sp]*nrep[site,yr,sp]) + 0.5)  
         
 
          for(rep in 1:nrep[site,yr,sp]) { 
            X[site,yr,rep,sp] ~ dbern(E[site,yr,sp]) 
            X.new[site,yr,rep,sp] ~ dbern(E[site,yr,sp]) 
          } #/rep 
        } #/year 
      } #/site 
    } #/sp 
  fit <- sum(eval[,,]) 
  fit.new <- sum(eval.new[,,]) 
  } #/model 
	
	


