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Supplemental Methods

Occupancy models
i) Multi-season, dynamic model to assess how a species’ climate niche shapes its
response to land-use

We developed a hierarchical multi-season multi-species model to estimate how a
species’ climate niche center and breadth along temperature and precipitation axes affect
its occupancy dynamics across the land-use gradient. We evaluated only niche
characteristics for mean annual temperature (Biol) and mean annual precipitation
(Bio12) from the WorldClim dataset because the niche centers of other temperature-
related properties (e.g. temperature of warmest/coldest quarter) were all strongly
correlated with Biol niche center (r = 0.9, 0.8 respectively) and other precipitation niche
centers (e.g. precipitation of wettest/driest quarter) were highly correlated with Bio12
niche center (r = 1.0 and 0.8 respectively).

In the model we let X;;,« indicate whether we detected (X;; .« = 1) or did not detect
(Xijtx = 0) the i" species at the jth site during the K™ visit to that site in year ¢t. We then let
Z;; denote the true occupancy state of species i at site j in year ¢ (Z;;, = 1 if species i was
present in site j during year ¢ and 0 if it was not). We assumed that the occupancy of
species i at site j in year ¢ was a Bernoulli random variable, such that Z;;, ~ Bern(y; ;)
with y;;; denoting the probability that species i was present at site j in year £. We allowed
occupancy to be the net outcome of a species’ ability to persist in an already occupied site
and its ability to colonize vacant sites. Thus, for the dynamic occupancy model, we
investigated the effects of our variables of interest on the rates of persistence and
colonization, rather than on the probability of occupancy directly.

We let ¢, denote the probability that species i persisted at site j from years # to £ + 1
(given that it was present at site j in year ¢) and, similarly, we let y;;, denote the
probability that species i colonized site j in year ¢ + 1 (given that it was not present at site
j in year ¢). The probability of occupancy for species i at site j for each subsequent year
was then given by

logit(Wijee1) = Qije * Zije+ Vije* (1 — Zyje).
In order to quantify the effects of each land use, we defined species-specific

persistence and colonization models that include the necessary covariates. Namely, we
assumed that between-year persistence was given by

Qi = (poi,landuse[j] + (pli,region[j] + (pzlanduse[j] * TC[i] + (pSIanduse[j] *TB [l]
+ (p4landuse[j] * PC[i] + (pslanduse[j] * PB[i] + (p6j'



where ©0; /anausesj7 denotes a species-specific intercept for each land-use category—
interpreted as the mean persistence in each of the three land-uses in region 1. @1egionfj]
denotes a species-specific effect of region to allow each species to vary in persistence
probability between regions. To avoid over-parameterizing the model, we set ¢1; ;equal
to 0 for all species. Therefore, this parameter is interpreted as a region contrast (i.e., how
different is region 2, 3, or 4 from region 1). ¢2andusefj] through @5iandusefj denote the
interaction effect between a species-level covariate and land-use intensity (7C:
temperature niche center (mean of Biol), 7B: temperature niche breadth (SD of Biol),
PC: precipitation niche center (mean of Bio12), PB: precipitation niche breadth (SD of
Bio12)). This allowed species’ trait values to affect their rates of persistence differently in
each land-use type. Finally @6, was a random intercept for sites, included to account for
consistent differences in site level persistence probability across species and years
beyond that which is accounted for by land-use type. Similarly, the probability of
colonization was given by

yi,j = yoi,landuse[j] + Vli,region[j] + yzlanduse[j] *TC [l] + V3landuse[j] *TB [l]
+ y4’landuse[j] * PC[i] + yslanduse[j] * PB [l] + y6j'

where the y terms are analogous to those for persistence.

Whenever parameters were indexed by species, species identity was treated as a
random effect. For example, colonization probability in transect j for species i resulted
from:

(poi,landuse[j] ~ Norm(:u' (polanduse[j]' a’. (polanduse[j])

Thus, for each of our three land-uses, species-specific intercepts were drawn from a
normal distribution whose mean and standard deviation were estimated independently
from the other two land-uses. The species-specific effect of region was parameterized
equivalently (with the exception of ¢1; and y1; which were set to 0 in region one for all i
and not estimated from the data). Note that no coefficients were indexed by year—in
other words, we assumed that underlying probabilities of persistence and colonization did
not change between years. Relaxing this assumption increased the number of estimated
parameters in the model substantially.

Dynamic occupancy models explicitly incorporate the probability of transitioning
between presence and absence across years. We therefore must initialize the first year of
the model with expected occupancy probabilities. To do so, we assumed that the
occupancy of species i in site j in year 1 was given by that species’ equilibrium
occupancy probability, based on the persistence and colonization probabilities for that
site:

Vi,j
A=+ vij)

l/Ji,j,1 =

Because not all species are present in all regions, and because we were primarily
interested in how climate niche predicts relative occupancy probabilities between habitats
contingent on a species existing in a region, we set all occupancy probabilities for all



species never observed in a given region to zero, ensuring that those species would not
influence parameter estimation in regions they were not observed.

Similar to the true occupancy state (Z; ), we assumed detection was a Bernoulli
random variable such that X, ~ Bern(p;; .« * Z;;:), where p;; .« was the probability that
species i was detected at site j in the ™ sample period of the /" year, given that it was
present (i.e., Z;;, = 1). When species i was absent, Z;;, = 0, and thus detection probability
was 0. We allowed detection probabilities to vary by species such that the detection
probability of species i at site j in the k™ replicate of the /" year was given by

IOgit (pi,j,t,k) = polanduse[j] + pli + pzj + p?’t + p4i,j,t7
where the parameter set p0yuquse describes the mean detection probability in each of the
three land-uses (fixed effect), independent of species identity. Parameters p1 through p4
are random effects included to account for additional variation due to correlations
between detection probabilities that are attributable to species’, sites, and years. In all
cases they were drawn from a normal distribution with mean 0, and standard deviation
o.pl through o.p4.

We analyzed the model in a Bayesian framework using vague priors throughout.
We ran a total 4 chains of 15,000 iterations each, discarding the first 3,000 as burnin,
with a thinning rate of 30, which yielded 1,600 posterior samples. Convergence was
assessed by checking that R-hats were less than 1.1, and by visually examining the traces
of the chains. We assessed model adequacy by using a posterior predictive check and
calculating a Bayesian p-value (Gelman & Hill 2007). To do so, we used chi-squared
discrepancy statistics. We calculated the discrepancy between the model predictions and
the observed data as well as the discrepancy between the model predictions and data
simulated using those predictions. At each iteration of the MCMC chain, we then
calculate the Bayesian p-value as the proportion of iterations for which the discrepancy
from the observed data is less than the discrepancy from the simulated data.

Goodness of fit cannot be evaluated directly for binary responses. We, therefore,
followed (Carrillo-Rubio ef al. 2014) and evaluated discrepancy by summing detections
across visits, and comparing the number of visits for which each species in each site in
each year was detected (0 to 3), against the expected number of detections based on fitted
model parameters.

ii) Multispecies occupancy model to assess how species change habitat affiliation along a
rainfall gradient

In contrast to the dynamic model in which we explicitly modeled persistence and
colonization and allowed overall site occupancy to emerge as the outcome of these
dynamic processes, we used a simpler model to quantify species’ tendencies to shift
habitat affiliations across regions. We limited our analysis to the 54 species observed in
all four regions during the wet season (or 48 species observed in the dry season), because
species observed in fewer regions would lend little power to conclusions regarding how
habitat affiliation shifts between regions. Here occupancy probability 1; ; . is estimated

according to:



logit(lpi,j,t) = lpoi,landuse[j] + lpli,landuse[j] *RF[Tegion[Site]] + lpzi,j

where Y0; 14nquse;] 18 @ species- and land-use specific intercept, and Y1; janquse[)] 18 @

species- and land-use specific slope, and RF is the regional rainfall of a site. For each
species i

lpoi,landuse[j] ~ dnorm(ﬂ- lpolanduse[j]J a’. lpolanduse[j])
and

lpli,landuse[j] ~ dnorm(ﬂ- lpllanduse[j]J a’. lpllanduse[j])

This parameterization corresponds to a fixed intercept and rainfall slope in each land-use,
with random species intercepts and slopes generating species-specific responses. Finally
Y2, ; represents residual random effects to account for species-specific variation among
sites in occupancy levels. Y2; ; was drawn from a normal distribution with mean 0, and
standard deviation o2.12.

Similarly the detection component is parameterized according to:
logit(pi,j,t,k) = POandauserj] + P1i + 02; + 3¢ + p4ije

With terms defined equivalently to those in the dynamic model above.

iii) Multispecies occupancy model to obtain habitat affiliation scores

Here, we modeled occupancy for each species i at each site j in each year ¢ directly from
the data. Our focus was on parameterizing the model such the individual parameter
estimates represented each species’ preference for agricultural habitats versus forest.

logit(lpi,j,t) = lpoi,region[j] + lpli,landuse[j] + lpzi,j

10 allows each species to have a unique average occupancy in each region (due to full
parameterization of the model, this term is interpreted as the expected occupancy of a
species in forest). In each region, individual species were drawn from region-specific
normal distribution with independent means and variance terms (species specific random
intercepts for each region).
lpoi,region[j] ~ Norm(/'l- 1por"egion[j]; a?. lporegion[j])
11 describes the species-specific contrast in occupancy versus forest. For all species, Y1
in forest was set to 0 (¥0; ; = 0). For the other two land-use types, species were drawn
from a land-use specific distribution characterized by distinct mean and variance terms
(species-specific random contrast of land-use). Specifically for sites in diversified and
intensive agriculture:
lpli,j ~ Norm(p. 1/J]-landuse[j]' a’. lpllanduse[j])
Final ¥2; ; absorbs residual species-specific variation for each site.
Y2;; ~ Norm(0, aj,z)

Detection probability was parameterized as above:



IOgit (pi,j,t,k) = polanduse[j] + pli + pzj + p?’t + p4i,j,t7
Models were run and convergence verified, as above.

iii) Agriculture affiliation metric

We used the occupancy model (above) to calculate habitat affinity for each species. By
setting the family of parameters of Y1; r,,es: €qual to zero, the resulting estimates for
Y1 piversified ag ad Y1 iniensive ag TEPresent the degree to which species i achieves
higher (or lower) occupancy in agriculture, relative to forest. Because variation between
regions and individual sites was captured by 0 and 2, values of 11 represent an
appropriate and directly estimatable metric of habitat affinity: the log odds of a given
species occupying the focal agricultural habitat versus forest. Because the contrast
between forest and diversified agriculture and forest and intensive agriculture were
highly correlated (R = 0.88 and 0.86 for dry and wet season respectively), we averaged
the parameter estimates Y1; piversified ag and Y1; imeensive ag Or €ach species i to derive
an overall agriculture affiliation.



Climate and Land-use SDMs and Range Size Projections

SDMs presented in the main text only included climate variables to estimate distributions
and project those distributions into the future. However, because climate is not the only
feature limiting species ranges these estimates may not reflect reality. In particular, even
if a local climate regime is favorable for a species, land-use characteristics may make
certain areas inhospitable, or alternatively, make otherwise inhospitable areas viable. To
verify that changes in land-use did not confound our climate predictions, we
parameterized a second series of SDMs with the same climate variables as well as 5 land-
use variables extracted from the Land-use Harmonization project (natural primary
habitat, secondary successional habitat, cropland, pasture land, and urban) (Hurtt ez al.
2011). Specifically, we quantified each land-use variable as its proportional coverage
within each grid cell. Low-resolution land-use data cannot be tied to individual
detections, however, these data do provide some insight into land-use preferences, as they
allow for probabilistic sampling of the land covers in regions where each species is most
frequently found.

After building SDMs that predicted current species distributions from land-use and
climate data, we projected future species distributions in two ways. First, we allowed
both climate and land-use to change, using land-use models for 2070 for each RCP
scenario obtained from the Land-use Harmonization project (Hurtt ef al. 2011). Second,
we allowed climate to change, but held land-use constant in current conditions. This
second case in effect controls for land-use change, demonstrating that differences in
species range sizes in the future are indeed due to climate change, rather than correlations
between present day climate and land-use.

Comparing the full suite of scenarios in which land-use was allowed to vary, held
constant over time, and omitted from models entirely allowed for evaluation of the
robustness of our findings to assumptions regarding how species respond to climate
versus land-use change.
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Supplementary Figures and Tables

Fig. S1: Map of study sites. Left panel depicts survey transects (colored points) in four
study regions (Guanacaste, Puerto Viejo, San Isidro, and Las Cruces). Middle panel
depicts survey transects in one study region (Guanacaste). Points are colored according to
land use (blue = forest reserves; green = diversified agriculture; yellow = intensive
agriculture). Right panels show photos from each land use type.
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Fig. S2: Number of species with observation data within each 10km? grid cell across
North and South America. These presence data were used to develop species distribution
models for 307 species included in the study.
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Fig. S3. Occupancy parameters during dry season. a-b) Summary of parameter estimates
for the effects of species’ climatological niche characteristics on persistence and
colonization rates in forest (dark blue), diversified agriculture (green), and intensive
agriculture (yellow). Points depict posterior means, and lines show 95% Bayesian
credible intervals. c-d) Posterior estimates of persistence and colonization rates for all
307 bird species in each of the three investigated land uses depicting the effect of species’
precipitation niche center from the dry-season sample. Species from drier climates
persisted and colonized agriculture better than species from wet climates, while the



converse was true in forest. Points represent posterior means for each species, while the
best-fit line represents the expectation based on the posterior means of parameters
governing how precipitation niche influences persistence and colonization probabilities,
with dashed lines indicating 95% BCls.
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Figure S4. Summary of parameter estimates for the effects of species’ climatological
niche characteristics on persistence (a) and colonization rates (b) in forest (dark blue),
diversified agriculture (green), and intensive agriculture (yellow). Triangles indicate dry
season estimates, while squares depict wet season estimates. Points are posterior means,
and lines show 95% Bayesian credible intervals. Parameter estimates for the wet and dry
season for Nonbreeding season ranges for all bird species are depicted in figures 1 and
S2. Across all data partitions only precipitation niche consistently explains habitat
affiliation with forest and agriculture.
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Figure S5: Habitat shifting among the 47 species encountered in all study regions in the
dry season sample. Contrast with wet season sample presented in the main text (Figure
2). Top panel depicts the effect of regional rainfall on species’ occupancy in each habitat
type (posterior mean +/- 95% Bayesian credible interval). The bottom panel shows
overall occupancy probability across the rainfall gradient. Large lines depict mean effects
across species in each habitat (forest=blue, div. ag. = green, int. ag. = yellow), while thin
lines show responses of each of the 47 individual species, based on fitted multispecies
occupancy model. Rainfall in each of the four regions is indicated by an ‘X’.
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Figure S6: Correlation between mean annual precipitation or mean annual temperature
across the tropics with the average agricultural affiliation of Costa Rican species that

occur there. Each semi-transparent black point represents a 1/3 degree by 1/3 degree grid
cell.
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Figure S7: Agricultural affiliated species tend to be more resistant to future climate
change regardless of assumptions regarding dispersal. Points indicate maximum
likelihood parameter estimates explaining how habitat affiliation will affect a species’
expected range expansion (positive values indicate agricultural affiliation is positively
correlated with future range size). Lines represent 95% profile-likelihood CI. Species
distribution models were generated for species based on current climate conditions and



current land-use information, or based on climate data only. Then each species range
across the western hemisphere was quantified under future conditions across the four
RCP scenarios and using 11 climate circulation models. For SDMs generated with both
land-use and climate data future scenarios included either both future climate and future
land-use, or future climate but holding land use at present day conditions to isolate the
effects of climate change. For SDMs generated with just climate data only future climate
conditions were used. Species were either assumed to be able to disperse and colonize
any area in the western hemisphere where habitat was suitable (Universal Dispersal), or
were assumed to be unable to disperse beyond the area they currently occupy (No
Dispersal). For each RCP models were run with full interaction fixed effects of ‘habitat
affiliation’ and ‘climate model’, with a random intercept of species to account for non-
independence of species identity across climate models.
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Figure S8: Full data plots for SDMs based on current climate and land-use data, and
projected using into the future using both future climate and land-use data. Agricultural
affiliated species on average either increase in their habitable range, or suffer less range
loss under future climate change. See figure S6 for presentation of alternative SDM
assumptions affect slope parameter estimates.
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Figure S9: Full data plots for SDMs based on current climate and land-use data, and
projected using into the future using future climate but current land-use data to isolate the
effect of climate change on shifts in habitable range size. See figure S6 for presentation
of alternative SDM assumptions affect slope parameter estimates.
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Figure S11: Temperature conditions from three adjacent forest and agricultural sites in
Las Cruces region during 2011. Left hand plot depicts the distribution of daily maxima
and minima in forest and agriculture, pooling all three sites (Niic-days = 76). Right hand
side presents temperature differential of both daily maxima and minima between paired
sites, indicating how much warmer agricultural sites are than the forested sites. Note that
these sites were different from those used to sample bird communities, and are included
to illustrate general differences between tropical forest and agriculture.
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Figure S12: Humidity conditions from three adjacent forest and agricultural sites in Las
Cruces region during 2011. Left hand plot depicts the distribution of daily maxima and
minima in forest and agriculture, pooling all three sites (Niite-days = 76). Right hand side
presents relative humidity differential of both daily maxima and minima between paired
sites, indicating how much drier agricultural sites are than the forested sites. Note that
these sites were different from those used to sample bird communities, and are included
to illustrate general differences between tropical forest and agriculture.
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Figure S13: Representative differences in vegetation from 90 forest and agricultural 1
meter-square plots in and around the Las Cruces region. Data are from 30 elevational
transect sites from Frishkoff ez al. (2015). Agricultural sites possess less vegetative
structure as indicated by the mean diameter at breast height (DBH) of woody plants
within the plot, the variance of DBHs within the plot, the maximum vegetation height
within the plot, and the degree to which the plot was covered by a canopy, as measured
by a spherical densiometer. Note that these sites were different from those used to sample
bird communities, and are included to illustrate general differences between tropical
forest and agriculture.
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Figure S14: Average canopy height from 3D Global Vegetation Map Database (Simard
et al. 2011) for each grid cell in the major biomes in North and South America. Biomes
are order according to average habitat affiliation of Costa Rican bird species (as in figure
3 in the main text). Dry biomes, where Costa Rica’s agricultural species are more likely
to come from have shorter vegetation structure. Small semi-transparent black points
represent individual grid cells, large colored points are means of the distribution, while
lines represent standard deviation of the data.




Table S1: Summary of regions indicating the general location each region occupies in
the country, whether it is on the Atlantic or Pacific versant, and a description of the
natural and agricultural habitat available for species.

Region Area Versant Natural Vegetation Major Agriculture
Guanacaste Northwestern Pacific Lowland tropical Melon, rice, sugar cane, cattle,
Costa Rica Versant dry forest and aquaculture
San Isidro South-Central Pacific Mid-elevation Coffee, pineapple, sugar cane,
Costa Rica Versant tropical wet forest pasture
Las Cruces  Southern Costa Pacific Premontane tropical Coffee, pasture
Rica Versant wet forest
Puerto Northern Costa  Atlantic Lowland tropical Heart-of-palm, banana,
Viejo Rica Versant wet forest pineapple, pasture

Table S2: Structural differences between diversified agriculture and intensive
monocultures. Values are means (SD) across transects from surveys conducted in 1999.
Table adapted from (Karp et al. 2012).

. . Diversified Intensive
Vegetation Variable Agriculture Agriculture
Di\(i(l;:fity Number of planted crop species 21.4 (12.8) 4.5 (2.9)
% without hedgerows 48.5 (26.6) 69.7 (35.1)
Hedgerow % short & thin hedgerows 6.2 (5.6) 5.5(12.1)
Qualityand % short & full hedgerows 7.5 (10.3) 9.2 (24.8)
Extent % tall & thin hedgerows 26.6 (19) 11.6 (18.5)
% tall & full hedgerows 11.2 (12.4) 3.7 (6.8)
Agricultural  Plot size (hectares) 3.3(7.6) 65.5 (78.7)
plot structure Number of bordering plots 6.3 (3.9) 1.9 (1.1)
% forest cover at 100m buffer 7 (21) 1(4)
Forest cover
% forest cover at 200m buffer 10 (21) 2 (6)




Table S3: Table of all parameter estimates from dynamic occupancy models. ‘Posterior’
presents posterior means [2.5%, 97.5% BCI], and ‘Prior’ indicates the prior distribution
from which the parameters were drawn.

Hier-
archy Parameter Description Posterior Prior

1.0 [forest] Mean of spp in forest (Guanacaste) 2.165 [1.349, 3.01] logit(U[0,1])
1.0 [intensive] Mean of spp in intensive (Guanacaste) 0.92[0.344, 1.505] logit(U[0,1])
1.0 [diversified] Mean of spp in diversified (Guanacaste) 1.542 [0.869, 2.225] logit(U[0,1])
pn.@l[Las Cruces] Mean region contrast (Las Cruces) -0.037 [-0.846, 0.733]  N(0, 1000)
p.@1[Puerto Viejo]  Mean region contrast (Puerto Viejo) -0.208 [-1.032, 0.618]  N(0, 1000)
p.@1[San Isidro] Mean region contrast (San Isidro) -0.458 [-1.269, 0.266]  N(0, 1000)
0.¢0 [forest] SD of species in forest 3.516 [2.777,4.471] U(0,20)
0.¢00 [intensive] SD of species in intensive 1.368 [1.038, 1.719] U(0,20)
0.¢0 [diversified] SD of species in diversified 2.041[1.689, 2.433] U(0,20)

2 o.¢1[Las Cruces] SD region contrast across spp (Las Cruces) 2.058 [1.689, 2.444] U(0,20)

.‘2 o.¢1[Puerto Viejo]  SD region contrast across spp (Puerto Viejo)  2.446 [2.036, 2.933] U(0,20)

Ea 0.¢1[San Isidro] SD region contrast across spp (San Isidro) 1.943 [1.549, 2.396] U(0,20)

'% 0.96 SD of site random effect 0.699 [0.49, 0.946] U(0,5)

é‘ @2[forest] Effect of temp. center in forest -0.415[-1.101, 0.225]  N(0, 1000)

§ @2[intensive] Effect of temp. center in intensive 0.057 [-0.322, 0.41] N(0, 1000)

© @2[diversified] Effect of temp. center in diversified 0.212 [-0.232, 0.675] N(0, 1000)
@3[forest] Effect of temp. breadth in forest -0.413 [-0.981, 0.125]  N(0, 1000)
¢@3[intensive] Effect of temp. breadth in intensive 0.13[-0.174, 0.418] N(0, 1000)
@3[diversified] Effect of temp. breadth in diversified 0.03 [-0.327, 0.41] N(0, 1000)
@4[forest] Effect of precip. center in forest 0.708 [0.049, 1.424] N(0, 1000)
@4[intensive] Effect of precip. center in intensive -1.009 [-1.456, -0.563]  N(0, 1000)
@4[diversified] Effect of precip. center in diversified -1.23 [-1.744, -0.789] N(0, 1000)
@5[forest] Effect of precip. breadth in forest -0.165[-0.728,0.377]  N(0, 1000)
@5[intensive] Effect of precip. breadth in intensive -0.102 [-0.482, 0.277]  N(0, 1000)
o5[diversified] Effect of precip. breadth in diversified -0.135 [-0.549, 0.276]  N(0, 1000)

Occupancy - Colonization

n.y0 [forest]
W.y0 [intensive]
w.y0 [diversified]
p.yl[Las Cruces]

wy1[Puerto Viejo]

py1[San Isidro]
0.70 [forest]
0.Y0 [intensive]
0.Y0 [diversified]
o.yl[Las Cruces]

o.y1[Puerto Viejo]

Mean of spp in forest (Guanacaste)

Mean of spp in intensive (Guanacaste)
Mean of spp in diversified (Guanacaste)
Mean region contrast (Las Cruces)

Mean region contrast (Puerto Viejo)

Mean region contrast (San Isidro)

SD of species in forest

SD of species in intensive

SD of species in diversified

SD region contrast across spp (Las Cruces)

SD region contrast across spp (Puerto Viejo)

-3.232[-3.832, -2.637]
-4.18 [-4.641, -3.709]
-3.287[-3.8,-2.718]
0.233[-0.37, 0.801]
0.07 [-0.481, 0.628]
-0.067 [-0.616, 0.511]
2.642 [2.193, 3.176]
1.565 [1.317, 1.835]
1.474 [1.232, 1.744]
1.126 [0.892, 1.411]
0.989 [0.748, 1.266]

logit(U[0,1])
logit(U[0,17)
logit(U[0,17)
N(0, 1000)
N(0, 1000)
N(0, 1000)
U(0,20)
U(0,20)
U(0,20)
U(0,20)
U(0,20)



o.y1[San Isidro] SD region contrast across spp (San Isidro) 1.326 [1.072, 1.607] U(0,20)
0.y6 SD of site random effect 0.566 [0.427, 0.743] U(0,5)
v2[forest] Effect of temp. center. in forest 0.314 [-0.204, 0.81] N(0, 1000)
y2[intensive] Effect of temp. center. In intensive 0.012 [-0.309, 0.321] N(0, 1000)
y2[diversified] Effect of temp. center. In diversified 0.119 [-0.182, 0.409] N(0, 1000)
v3[forest] Effect of temp. breadth in forest -0.077 [-0.471, 0.326]  N(0, 1000)
v3[intensive] Effect of temp. breadth in intensive 0.29 [0.039, 0.547] N(0, 1000)
v3[diversified] Effect of temp. breadth in diversified 0.35310.1, 0.613] N(0, 1000)
v4[forest] Effect of precip center. in forest 0.756 [0.293, 1.234] N(0, 1000)
v4[intensive] Effect of precip center. In intensive -0.801 [-1.125,-0.485]  N(0, 1000)
v4[diversified] Effect of precip center. In diversified -0.609 [-0.911, -0.298]  N(0, 1000)
y5[forest] Effect of precip breadth in forest -0.253 [-0.67, 0.158] N(0, 1000)
y5[intensive] Effect of precip breadth in intensive 0.166 [-0.122, 0.456] N(0, 1000)
y5[diversified] Effect of precip breadth in diversified 0.119 [-0.141, 0.37] N(0, 1000)
p.pO[forest] Mean detection in forest -0.701 [-1.036, -0.368]  logit(U[0,1])
p.pO[intensive] Mean detection in intensive -1.333 [-1.646, -1.004]  logit(U[0,1])
_5 p.pO[diversified] Mean detection in diversified -0.778 [-1.104, -0.453]  logit(U[0,1])
E opl SD of random spp effect 1.428 [1.306, 1.562] U(0,10)
é) op2 SD of random site effect 0.498 [0.37, 0.652] U(0,5)
op3 SD of random year effect 0.113 [0.066, 0.199] U(0,5)
o.p4 SD of random site X year X spp effect 0.97510.936, 1.018] U(0,5)




Appendix 1: Dynamic Occupancy model for climate variables
model . jags<-function() {

FHE kK sk sk ok sk sk 3k sk sk sk ok sk ok 3k sk ok 3k sk sk ok sk sk sk sk ok 3k sk sk ok sk ok 3k sk ke 3k sk sk ok sk ok ok ok ok ok ok ok ok ok

## Detection Priors
## 3k 3k 3k sk 3k 3k sk sk 3k sk sk 3k sk sk 3k sk sk sk sk Sk ok sk sk sk 3k sk sk 3k sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk ok sk sk sk sk sk sk ok k

for (int in 1:3){
p.intensity.pre[int] ~ dunif(@,1)
p.intensity[int] <- logit(p.intensity.pre[int])

for (site in 1l:nsite) {
p.site[site] ~ dnorm(@, tau.p.site)

for (Cyr in 1l:nyear) {
p.year[yr] ~ dnorm(@, tau.p.yr)

sigma.p.® ~ dunif(@,100)
tau.p.® <- 1/(sigma.p.@*sigma.p.0)

sigma.p.yr ~ dunif(@,5)
tau.p.yr <- 1/(sigma.p.yr*sigma.p.yr)

sigma.p.site ~ dunif(0,5)
tau.p.site <- 1/(sigma.p.site*sigma.p.site)

sigma.p.site.yr.sp ~ dunif(@,5)
tau.p.site.yr.sp <- 1/(sigma.p.site.yr.sp*sigma.p.site.yr.sp)

FHE kK sk sk ok sk ko ok sk sk sk ok sk sk 3k sk ok 3k sk sk sk ok sk ok sk sk sk 3k sk sk ok sk ok 3k sk ke 3k sk sk ok sk ok ok ok ok ok ok ok ok ok

## Occupancy priors (phi = persistence, gam = colonization)
## 3k 3k sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk

## Random site effects

sigma.phi.site ~ dunif(0,5)
sigma.gam.site ~ dunif(0,5)
tau.phi.site <- 1/(sigma.phi.site* sigma.phi.site)
tau.gam.site <- 1/(sigma.gam.site* sigma.gam.site)

for (site in 1l:nsite){
phi.site[site] ~ dnorm(@, tau.phi.site)
gam.site[site] ~ dnorm(@, tau.gam.site)

3

## Generate mean and sd of species occupancies in each land-use
for(i in 1:3) {

mu.phi.intensity.pre[i] ~ dunif(0@,1)

mu.gam.intensity.pre[i] ~ dunif(0@,1)



mu.phi.intensity[i] <- logit(mu.phi.intensity.pre[i])
mu.gam.intensity[i] <- logit(mu.gam.intensity.pre[i])

sigma.phi.intensity[i] ~ dunif(@,20)
sigma.gam.intensity[i] ~ dunif(0,20)

tau.phi.intensity[i]<-1/(sigma.phi.intensity[i] * sigma.phi.intensity[i])
tau.gam.intensity[i]<-1/(sigma.gam.intensity[i] * sigma.gam.intensity[i])

3

## Draw each species land-use responses
for(sp in 1l:nsp){
for (1 in 1:3) {
phi.intensity.sp[i,sp] ~ dnorm(mu.phi.intensity[i],
tau.phi.intensity[i])
gam.intensity.sp[i,sp] ~ dnorm(mu.gam.intensity[i],
tau.gam.intensity[i])

FHE kK sk sk ok sk sk ok sk sk ok sk sk 3k sk sk 3k sk sk sk ok sk sk 3k sk sk 3k sk sk ok sk ok 3k sk ke 3k sk sk ok sk ok ok ok ok ok ok ok ok ok

## Species phi & gam in each region
## 3k 3k sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk

## Set the effect of each region for each species.
## Parameterization sets region 1 as the intercept:
## all other regions are contrasts off of region 1.

mu.phi.region[1]<-0
mu.gam.region[1]<-0
sigma.phi.region[1]<-0
sigma.gam.region[1]<-0

for(sp in 1l:nsp){
phi.reg.sp[1,sp] <- @
gam.reg.sp[1,sp] <- @
ks

for(reg in 2:4) {
mu.phi.region[reg] ~ dnorm(@, 0.001)
mu.gam.region[reg] ~ dnorm(@, 0.001)
sigma.phi.region[reg] ~ dunif(@,20)
sigma.gam.region[reg] ~ dunif(@,20)
tau.phi.region[reg] <- 1/(sigma.phi.region[reg]*sigma.phi.region[reg])
tau.gam.region[reg] <- 1/(sigma.gam.region[reg]l*sigma.gam.region[reg])

for(sp in 1l:nsp){
phi.reg.sp[reg,sp] ~ dnorm(mu.phi.region[reg], tau.phi.region[reg])
gam.reg.sp[reg,sp] ~ dnorm(mu.gam.region[reg], tau.gam.region[reg])



}
}

## Set priors for the effects of adll traits in each land-use

for(i in 1:3) {
phi.trait[i] ~ dnorm(0,0.001)
gam.trait[i] ~ dnorm(0,0.001)
phi.trait2[i] ~ dnorm(0,0.001)
gam.trait2[i] dnorm(0,0.001)
phi.trait3[i] dnorm(0,0.001)
gam.trait3[i] dnorm(0,0.001)
phi.trait4[i] dnorm(0,0.001)
gam.trait4[i] dnorm(0,0.001)

l

l

l

l

l

3
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##f Establish core likelihood function
## 3k 3k 3k 3k >k 3k sk %k 5k 5k %k 3k sk %k 5k %k 5k 5k %k 5k %k %k 5k 5k %k 5k %k %k 5k %k %k 5k %k 5k %k %k 5k %k %k 5k %k %k 5k %k %k 5k %k 5k %k %k >k %k k ok k

## Species-specific detectability.
## A function of land-use intensity,
## and additional species, site, and year random effects .

for(sp in 1l:nsp) {
p.0[sp] ~ dnorm(@, tau.p.0)
for (yr in 1l:nyear) {
for(site in 1l:nsite){
p.site.yr.sp[site,yr,sp] ~ dnorm(@, tau.p.site.yr.sp)

logit(p[site,yr,spl) <- p.0[sp] +
p.intensity[intensity[site]] +
p.year[yr] +
p.site[site] +
p.site.yr.sp[site,yr,sp]
} #\site
} Ayr
} #\sp

## Occupancy for species in a site, over all years

for(sp in 1l:nsp) {
for(site in 1l:nsite) {

## occupancy in year 1, equilibrium expectation
## gamma / (1 - phi + gamma)

mu.psi.l[site,1,sp] <- gam[site,sp]/ (1-phi[site,sp]+gam[site,sp])

psi[site,1l,sp] <- mu.psi.l[site,1,sp] *
region.presence[sp,region[site]]

Z[site,1,sp] ~ dbern(psi[site,1,sp])

## detectability in year 1



E[site,1,sp] <- Z[site,1,spl*p[site,1,sp]

# Assess model fit using Chi-squared discrepancy
# Compute fit statistic 'eval' for observed data
eval[site,1,sp] <- pow(sum(X[site,1,,sp]) -
(E[site,1,spl*nrep[site,yr+l,spl)),2) /
((CE[site,1,spl*nrep[site,yr+l,sp]) + 0.5)
# Generate replicate data and compute fit stats for them
eval.new[site,1,sp] <- pow(sum(X.new[site,1,,sp]) -
(E[site,1,spl*nrep[site,yr+l,spl),2) /
((CE[site,1,spl*nrep[site,yr+l,sp]) + 0.5)

#L75
for(rep in 1l:nrep[site,1l,sp]) {
X[site,1,rep,sp] ~ dbern(E[site,1,sp])
X.new[site,1,rep,sp] ~ dbern(E[site,1,sp])
3

## Effect of region, species and trait values
## on persistence and colonization probabilities
## in subsequent years.

logit(phi[site,sp]) <-
phi.reg.sp[region[site],sp] +
phi.intensity.sp[intensity[site],sp] +
phi.trait[intensity[site]] * trait[sp] +
phi.trait2[intensity[site]] * trait2[sp] +
phi.trait3[intensity[site]] * trait3[sp] +
phi.trait4[intensity[site]] * trait4[sp] +
phi.site[site]

logit(gam[site,sp]) <-
gam.reg.sp[region[site],sp] +
gam.intensity.sp[intensity[site],sp] +
gam.trait[intensity[site]] * trait[sp] +
gam.trait2[intensity[site]] * trait2[sp] +
gam.trait3[intensity[site]] * trait3[sp] +
gam.trait4[intensity[site]] * trait4[sp] +
gam.site[site]

for(yr in 1l:(nyear-1)) {
psi[site,yr+l,sp] <-
(Z[site,yr,sp] * phi[site,sp] +
(1-Z[site,yr,sp]) * gam[site,sp]) *
region.presence[sp,region[site]]
Z[site,yr+1l,sp] ~ dbern(psi[site,yr+l,sp])

E[site,yr+l,sp] <- Z[site,yr+l,sp]l*p[site,yr+1,sp]

# Assess model fit using Chi-squared discrepancy



# Compute fit statistic 'eval' for observed data
eval[site,yr+l,sp] <- pow(sum(X[site,yr+1,,sp]) -
(E[site,yr+l,spl*nrep[site,yr+l,spl),2) /
((E[site,yr+l,spl*nrep[site,yr+l,sp]) +
0.5)
# Generate replicate data and compute fit stats for them
eval.new[site,yr+1,sp] <- pow(sum(X.new[site,yr+1,,sp]) -
(E[site,yr+l,spl*nrep[site,yr+l,spl),2) /
((E[site,yr+l,spl*nrep[site,yr+l,sp]) +
0.5)

for(rep in 1l:nrep[site,yr+l,sp]) {
X[site,yr+l,rep,sp] ~ dbern(E[site,yr+1l,sp])
X.new[site,yr+l,rep,sp] ~ dbern(E[site,yr+1,sp])

} # \rep
} # \yr
} # \site
} # \sp
fit <- sum(eval[l,,]1)
fit.new <- sum(eval.new[,,])

} # \model. jags



Appendix 2: Simple Occupancy model for habitat shift
model . jags<-function() {

FHE kK sk sk ok sk sk ok sk sk sk ok sk ok 3k sk ok 3k sk sk sk ok sk ok sk sk ok 3k sk sk sk ok sk ok 3k sk ke 3k sk sk ok sk ok ok ok ok ok ok ok ok ok

## Detection Priors
## 3k 3k sk sk 3k 3k sk sk 3k sk sk 3k sk sk 3k sk sk sk sk sk ok 3k sk sk 3k sk sk 3k sk sk ok sk sk sk sk sk sk 3k sk sk sk sk sk ok sk sk ok sk skosk sk sk sk ok k

# Priors for random effects
sigma.p.® ~ dunif(0,10)
tau.p.® <- 1/(sigma.p.0@*sigma.p.0)

sigma.p.site ~ dunif(0,10)
tau.p.site <- 1/(sigma.p.site*sigma.p.site)

sigma.p.site.year.sp ~ dunif(0,10)
tau.p.site.year.sp <- 1/(sigma.p.site.year.sp*sigma.p.site.year.sp)

## Fixed effect of land-use intensity

for(i in 1:3) {
mu.p.intensity.pre[i] ~ dunif(0,1)
mu.p.intensity[i] <- logit(mu.p.intensity.pre[i])
ks

## Species, Site, and Year random effects

for (site in 1l:nsite){
p.site[site]~dnorm(@, tau.p.site)
ks

for (yr in l:nyear){
p.year[yr]~dnorm(@, tau.p.year)
ks

for(sp in 1l:nsp) {
p.0[sp] ~ dnorm(@, tau.p.0®)

for (site in 1l:nsite){
for (yr in l:nyear){

p.site.year.sp[site,yr,spl~dnorm(@, tau.p.site.year.sp)

## Overall detection probability
logit(p[site, yr, sp]l) <- p.0[sp] +
mu.p.intensity[intensity[site]] +
p.site[site] +
p.year[yr] +
p.site.year.sp[site,yr,sp]



FHE kK sk sk sk sk sk ok sk sk sk ok sk ok 3k sk ok 3k sk sk sk ok sk sk sk sk sk 3k sk sk ok sk ok 3k sk ke ok sk sk ok sk ok 3k ok ok ok ok ok ok ok

## Occupancy effects - Land use intercept, and rainfall slope
## 3k 3k sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk

for(i in 1:3) {
## Land-use intercept
mu.psi.int.pre[i] ~ dunif(@, 1)
mu.psi.intensity[i] <- logit(mu.psi.int.pre[i])
sigma.psi.intensity[i] ~ dunif(0,10)
tau.psi.intensity[i]<-1/(sigma.psi.intensity[i] * sigma.psi.intensity[i])
## Rainfall slope for each land-use
mu.psi.int.rf[i] ~ dnorm(@, 0.001)
sigma.psi.int.rf[i] ~ dunif(0@,10)
tau.psi.int.rf[i]<-1/(sigma.psi.int.rf[i] * sigma.psi.int.rf[i])

for(sp in 1l:nsp){
psi.intensity[i,sp] ~ dnorm(mu.psi.intensity[i],
tau.psi.intensity[i])

psi.int.rf[i,sp] ~ dnorm(mu.psi.int.rf[i],
tau.psi.int.rf[i])
}
}

FHE kK sk sk sk sk sk 3k sk sk sk ok sk sk 3k sk sk 3k sk sk sk ok sk ok sk sk ok 3k sk sk ok sk ok 3k sk ke 3k sk sk ok sk ok ok ok ok ok ok ok ok ok

## Occupancy random effects
## 3k 3k sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk

sigma.psi.site ~ dunif(0,10)
tau.psi.site <- 1/(sigma.psi.site*sigma.psi.site)

for (sp in 1:nsp){
for (site in 1l:nsite){
psi.site[site,sp]~dnorm(@, tau.psi.site)
}
ks

FHE kK sk sk sk sk sk 3k sk sk sk ok sk ok 3k sk ok 3k sk sk sk ok sk sk sk sk sk 3k sk sk ok sk ok 3k sk ke 3k sk sk ok sk ok ok ok ok ok ok ok ok ok

## Establish core likelihood function
## 3k 3k 3k sk 3k 3k sk sk 3k sk sk 3k sk sk 3k sk sk 3k sk sk sk sk sk sk sk sk sk 3k sk sk 3k sk sk sk sk sk sk sk sk sk ok sk sk ok sk sk ok sk skosk sk sk sk sk k

for(sp in 1l:nsp) {
for(site in 1l:nsite) {
for(yr in l:nyear) {

logit(psi[site,yr,sp]) <-
psi.intensity[intensity[site], sp] +
psi.int.rf[intensity[site], spl*rainfall[region[site]] +
psi.site[site,sp]

Z[site,yr,sp] ~ dbern(psi[site,yr,sp])



}

3

}

}

E[site,yr,sp] <- Z[site,yr,spl*p[site,yr,sp]

# Assess model fit using Chi-squared discrepancy

# Compute fit statistic 'eval' for observed data

eval[site,yr,sp] <- pow(sum(X[site,yr,,sp]) -

(E[site,yr,spl*nrep[site,yr,spl),2) /

(CE[site,yr,spl*nrep[site,yr,sp]l) + 0.5)

# Generate replicate data and compute fit stats for them

eval.new[site,yr,sp] <- pow(sum(X.new[site,yr,,sp]) -
(E[site,yr,spl*nrep[site,yr,spl),2) /

((E[site,yr,spl*nrep[site,yr,sp]l) + 0.5)

for(rep in l:nrep[site,yr,sp]) {
X[site,yr,rep,sp] ~ dbern(E[site,yr,sp])
X.new[site,yr,rep,sp] ~ dbern(E[site,yr,sp])
3

fit <- sum(eval[l,,])
fit.new <- sum(eval.new[,,])



Appendix 3: Simple Occupancy model for habitat affiliation

model . jags<-function() {

FHE kK sk sk sk sk sk ok sk sk sk ok sk sk 3k sk ok 3k sk sk sk ok sk sk sk sk sk 3k sk sk sk ok sk ok 3k sk ke 3k sk sk ok sk ok ok ok ok ok ok ok ok ok

## Detection Priors
## 3k 3k 3k sk 3k 3k sk sk 3k sk sk 3k sk sk 3k sk sk 3k sk sk ok sk sk sk 3k sk sk 3k sk sk 3k sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk ok sk skosk sk sk sk sk k

# Priors for species, site, and year random effects
sigma.p.® ~ dunif(0,10)
tau.p.® <- 1/(sigma.p.0@*sigma.p.0)

sigma.p.year ~ dunif(0,10)
tau.p.year <- 1/(sigma.p.year*sigma.p.year)

sigma.p.site ~ dunif(0@,10)
tau.p.site <- 1/(sigma.p.site*sigma.p.site)

sigma.p.site.year.sp ~ dunif(0,10)
tau.p.site.year.sp <- 1/(sigma.p.site.year.sp*sigma.p.site.year.sp)

## Fixed effect of land-use intensity
for(i in 1:3) {
mu.p.intensity.prior[i] ~ dunif(0@,1)
mu.p.intensity[i] <- logit(mu.p.intensity.prior[i])
ks

## Species, Site, and Year random effects

for (site in 1l:nsite){
p.site[site]~dnorm(@, tau.p.site)
ks

for (yr in l:nyear){
p.year[yr]~dnorm(@, tau.p.year)
ks

for(sp in 1l:nsp) {
p.0[sp] ~ dnorm(@, tau.p.0®)

for (site in 1l:nsite){
for (yr in l:nyear){

p.site.year.sp[site,yr,spl~dnorm(@, tau.p.site.year.sp)

## Overall detection probability
logit(p[site, yr, sp]l) <- p.0[sp] +
mu.p.intensity[intensity[site]] +
p.year[yr] +
p.site[site] +
p.year[yr] +



p.site.year.sp[site,yr,sp]
}
}
}
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## Occupancy priors - Land use component
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## Fixed effect of intensity. Contrast with forest.
mu.psi.intensity[1]<-0 # Set forest to zero
sigma.psi.intensity[1]<-0

for(i in 2:3) {
mu.psi.intensity[i] ~ dnorm(0,0.01)
sigma.psi.intensity[i] ~ dunif(@,20)
tau.psi.intensity[i]<-1/(sigma.psi.intensity[i] * sigma.psi.intensity[i])

}

## Random effect of species in each intensity
## (allows species specific habitat affiliations)
for(sp in 1:nsp){

psi.intensity.sp[1l,sp] <- @ # All species affiliation with

# forest set to zero.
for (1 in 2:3) {
psi.intensity.sp[i,sp] ~ dnorm(mu.psi.intensity[i],
tau.psi.intensity[i])
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## Occupancy priors - Region component
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# Fixed effect of region. Mean value for each region
for (reg in 1:4){
mu.psi.reg[reg]~dnorm(@, 0.01)
sigma.psi.region[reg] ~ dunif(@,20)
tau.psi.region[reg] <- 1/(sigma.psi.region[reg]*sigma.psi.region[reg])

for (sp in 1:nsp){
psi.reg.sp[reg,sp] ~ dnorm(mu.psi.reg[reg], tau.psi.region[reg])
# Interpreted as each species occupancy in forest in each region
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## Occupancy priors - Random site effect
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sigma.psi.site ~ dunif(0,10)
tau.psi.site <- 1/(sigma.psi.site*sigma.psi.site)



for (sp in 1:nsp){
for (site in 1l:nsite){
psi.site[site,sp]~dnorm(@, tau.psi.site)
}
ks
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## Establish core likelihood function
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for(sp in 1l:nsp) {
for(site in 1l:nsite) {
for(yr in l:nyear) {

logit(psi[site,yr,sp]l) <-
psi.intensity.sp[intensity[site], sp] +
psi.reg.sp[region[site],sp] +
psi.site[site,sp]

Z[site,yr,sp] ~ dbern(psi[site,yr,sp])
E[site,yr,sp] <- Z[site,yr,spl*p[site,yr,sp]

# Assess model fit using Chi-squared discrepancy

# Compute fit statistic 'eval' for observed data

eval[site,yr,sp] <- pow(sum(X[site,yr,,sp]) -

(E[site,yr,spl*nrep[site,yr,spl),2) /

(CE[site,yr,spl*nrep[site,yr,sp]l) + 0.5)

# Generate replicate data and compute fit stats for them

eval.new[site,yr,sp] <- pow(sum(X.new[site,yr,,sp]) -
(E[site,yr,spl*nrep[site,yr,spl),2) /

((E[site,yr,spl*nrep[site,yr,sp]l) + 0.5)

for(rep in l:nrep[site,yr,sp]) {
X[site,yr,rep,sp] ~ dbern(E[site,yr,sp])
X.new[site,yr,rep,sp] ~ dbern(E[site,yr,sp])
} #/rep
} #/year
} #/site
} #/sp
fit <- sum(evall[,,]1)
fit.new <- sum(eval.new[,,])
} #/model



