Luke O. Frishkoff, Perry de Valpine, Leithen K. M'Gonigle

Phylogenetic occupancy models integrate imperfect detection and phylogenetic signal to analyze community structure

Ecology

Data S1

Phylogenetic Occupancy Model functions

Authors

Luke Owen Frishkoff University of Toronto, Ecology and Evolutionary Biology 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2 frishkol@gmail.com

Perry de Valpine University of California, ESPM 130 Mulford Hall #3114 Berkeley, CA, USA 94720-3114 pdevalpine@berkeley.edu

Leithen King M'Gonigle Florida State University, Department of Biological Science Tallahassee, USA Imgonigle@bio.fsu.edu

File list (files found within DataS1.zip)

pom.R hpp.R

Description

pom.R - Core Phylogenetic Occupancy Model written as R function in JAGS language. A tutorial on running a POM in JAGS is available at: <u>https://github.com/lofrishkoff/pom</u>.

hpp.R – Function to calculate highest posterior probability for a bounded variable. Arguments are as follows:

'sample' is the full MCMC posterior sample (*e.g.*, of lambda)

'lower' is a lower bound (for lambda this is 0, but can take -Inf)

'upper' is upper bound (for lambda this is 1, but can take Inf)

'mode = TRUE' if you want the posterior mode (highest posterior probability)

'HPDcoverage' is the percentage coverage by kernel method, or 'FALSE' if no interval is desired

'codaHPD = TRUE' if interval wanted with same HPDcoverage amount or a number if a different amount wanted. Coda HPDs can not equal 0 or 1 when these are the bounds, so its purpose here is for comparison with custom HPD coverage.

'n' is the number of points that determine the resolution of the density function