
Supplementary Information1

Analytical model2

Here, we present an analytical model based on that presented by Agrawal [1]. We con-3

sider an infinite population of haploid hermaphrodites with discrete non-overlapping4

generations. Individuals are characterized by the same two loci as in the simulation5

model. Because we are interested in maternal infection, we must keep track of an indi-6

vidual’s ancestry at the A-locus. Therefore, we let xi,j;k denote the frequency of genotype7

(i, j) individuals that are born to a mother with antigen genotype k. The pair of indices8

(i, j) denotes the individual’s genotypes at the A-locus and M-locus, respectively. For ex-9

ample, xA,M;a denotes the frequency of individuals of genotype (A, M) born to mothers10

of genotype a.11

Each generation individuals first reproduce sexually. During reproduction, mutation12

occurs between alternative alleles at the antigen locus with probability µj, where j denotes13

an individual’s genotype at the modifier locus (j = m or j = M). The frequency of eggs14

of genotype (i, j) produced by mothers of antigen type k is, therefore, given by15

ei,j;k = ∑
g

(
(1− µj)δi,k + µj(1− δi,k)

)
xk,j;g , (S1)

where δi,k is an indicator function that equals 1 if i = k and 0 if i 6= k. The sum over g16

sums over all possible grandmother types (i.e. all ancestry classes for mothers of genotype17

(k, j)). Similarly, the frequency of sperm of genotype (i, j) is given by18

si,j = ∑
k,g

(
(1− µj)δi,k + µj(1− δi,k)

)
xk,j;g . (S2)
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Note that we assume there is no paternal transmission, and so we do not track the an-19

cestry of the father. Summing over all sperm donors’ antigen types (i.e. over all k), in20

addition to over all grandmother types, accomplishes this.21

Sperm and eggs are assumed to unite randomly and in proportion to their frequencies.22

We let f(m,n;o)×(p,q) = em,n;osp,q denote the frequency of unions between (m, n; o) eggs and23

(p, q) sperm. These unions produce transient diploids that then undergo meiosis, with24

recombination occurring between loci at rate r. The genotype frequencies after meiosis25

are given by26

x′i,j;k = ∑
m,n,o,p,q

f(m,n;o)×(p,q)Ψi,j;k,(m,n;o)×(p,q) , (S3)

where Ψi,j;k,(m,n;o)×(p,q) is the fraction of offspring of type (i, j; k) resulting from meiosis27

with recombination of the transient diploid produced by the union of (m, n; o) eggs and28

(p, q) sperm.29

Selection follows reproduction. There are two primary components to selection in our30

model. First, we assume there is maternal infection, in the form of similarity selection,31

as described above. An individual that differs from its mother at the A-locus will have32

similarity fitness (denoted wS) equal to 1, while an individual with the same genotype33

will have similarity fitness wS = 1− γ. By imposing a penalty for sharing the same allele34

as one’s mother at the A-locus, we are implicitly adopting an immunity model in which35

parasites target hosts on the basis of genotype, such as the matching alleles model used36

in the simulations.37

Second, we assume that there is “genotypic selection” at the A-locus. This component38

of an individual’s fitness represents selection imposed by the global parasite pool and is,39

therefore, independent of ancestry. We assign genotypic fitnesses (wG) of 1 and 1− α to40

the A and a alleles, respectively. When α is positive (respectively, negative), individuals41

with an A allele have a higher (respectively, lower) genotypic fitness. For convenience,42
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we assume that α is positive in what follows. Although fluctuations in genotypic selec-43

tion would be expected in a model of host-parasite coevolution under many parameter44

regimes, as observed in our simulations (Fig. 2) and in previous work [2], for sake of45

tractability, we do not allow such fluctuations to occur here. Our analytical model, there-46

fore, approximates the dynamics that would occur during periods when parasites that47

can infect individuals with the a-allele predominate.48

The above two fitness components act multiplicatively to determine an individual’s49

total fitness. An individual with genotype i at the A-locus, born to a mother with allele k50

at the A-locus, has fitness51

wi;k = wSwG = (1− γ)δi,k(1− α)δi , (S4)

where δi,k equals 0 when i 6= k and 1 when i = k, and δi equals 0 when i = A and 1 when52

i = a. The genotype frequencies after selection can then be computed as53

x′′i,j;k =
x′i,j;kwi;k

w̄
, (S5)

where w̄ is the mean fitness w̄ = ∑i,j,k x′i,j;kwi;k.54

As described in the main text, a basic extension to parasites entails a change to the55

fitness functions, such that having the same genotype as one’s mother is advantageous.56

Specifically this means replacing the fitness function of Eq. S4 with57

wi;k = wSwG = (1− γ)1−δi,k(1− α)δi , (S6)
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QLE analysis58

We performed a QLE (Quasi-Linkage Equilibrium) analysis to examine the rate at which59

evolution occurs at the modifier locus [3]. Briefly, the QLE analysis assumes that selection60

and mutation are weak relative to recombination and segregation and thus that allele fre-61

quency changes at the A and M loci occur slower than changes in the various associations62

among the loci (e.g., linkage disequilibrium). Using this separation of time scales allows63

us to assume that the associations are always at their steady-state values, which greatly64

simplifies analysis.65

We assume that the modifier allele, M, has an effect of increasing the mutation rate by66

∆µ from the baseline value µm encoded by the m allele (i.e., µM = µm + ∆µ). In order to67

perform the QLE analysis, we assume that selection and mutation are weak relative to re-68

combination. We begin by following Agrawal (2006) and assuming that α is on the order69

of some small term, ζ, and that γ is of even smaller order, ζ2. We further assume that the70

mutation rate, µm, and the effect of the modifier, ∆µ, are also of order ζ2. Due to these71

assumptions, changes in allele frequency occur much more slowly than changes in asso-72

ciation measures such as linkage disequilibrium (shown below). Thus it is a reasonable73

approximation to assume that the latter quickly converge to their steady-state values.74

To leading order, ζ, we find that the change in frequency of the A-allele over a single75

generation is equal to76

∆PA = αVAζ + O(ζ2) , (S7)

where VA is the variance at the A-locus, which is analogous to Eq. 2 in Agrawal (2006).77

The change in frequency of the M-allele is78

∆PM = DA,Mα(1− r)ζ + O(ζ2) (S8)
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where DA,M is the linkage disequilibrium between the A and M loci in the offspring. We79

next find the steady-state value of DA,M to substitute into Eq. S8. To do this, we solve80

the system of equations that results from setting the change in each association measure81

over a single generation equal to zero. Because these equations are too complex to solve82

exactly, we first approximate the change that occurs over a single time-step with a Taylor83

series expansion. The recursions, to leading order are84

∆DA,M = −rDA,M + O(ζ)

∆DA;A = −DA;A +
VA

2
+ O(ζ)

∆DM;A = −DM;A +
1
2

DA,M + O(ζ)

∆DA,M;A = −DA,M;A +
1
2
(1− r)(1− 2PMom

A )DA,M + O(ζ) .

(S9)

where the letters before the semicolon in the subscripts refer, respectively, to the antigen85

and modifier alleles in the offspring and the letter after the semicolon refers to the anti-86

gen allele of the mother. For example, DA,M is the linkage disequilibrium in offspring87

individuals, and DA;A is the association between antigen genotypes in offspring and their88

mothers. All the changes are of order 1, which, compared to the order of allele frequency89

changes at the A and M loci given below, demonstrates that these associations reach90

steady-state rapidly, as assumed in a QLE analysis. Only DA,M turns out to matter in91

our analysis, because it is the only association which appears in Eq. S8. To the order of92

precision presented in Eq. S9, DA,M’s steady-state solution is equal to zero, so we must93

look at higher order terms. Including terms up to order ζ2, and again setting the recur-94

sions equal to zero yields the steady-state solution95

DA,M =
2(1− r)

r
∆µ(1/2− PA)VMζ2 + O(ζ3), (S10)
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where VM is the variance at the M-locus. Similarly computing ∆PM to higher order and96

substituting this steady-state value for DA,M yields97

∆PM =
2(1− r)

r
α∆µ(1/2− PA)VMζ3 + O(ζ4) . (S11)

From Eq. S11, we can see that the rate and direction of change in the modifier depends98

only on the strength of genotypic selection (α), and that higher mutation rates are selected99

against when the beneficial A-allele is at a frequency greater than 1/2. We can also see100

that lower rates of recombination, r, and a larger effect size of the modifier, ∆µ, always101

increase the strength of selection on the modifier. In contrast to Agrawal’s findings for102

modifiers of sex, the strength of similarity selection, γ, does not appear in these equa-103

tions. Even with α of higher order than γ, he found them to have comparably strong104

effects on the evolution of sex (see his Eq. 3). This led him to conclude that similarity105

selection is a more potent force than genotypic selection for the evolution of sex. As he106

explained, this is because similarity selection acts on higher order genetic associations107

(those between mothers and offspring) than genotypic selection (those between copies of108

alleles in diploid individuals). In our case, however, mutation affects mother-offspring109

associations at the antigen locus (what similarity selection acts on) to the same order as110

it directly modifies antigen alleles that characterize individuals (what genotypic selection111

acts on). Hence the order of magnitudes of the effects of similarity and genotypic selection112

on mutation rate evolution are the same, as we confirm below.113

Because we are interested in the combined effects of genotypic selection, α, and simi-114

larity selection, γ, on the evolution of mutation rate, we proceed by conducting another115

QLE analysis in which α and γ are of the same order. In particular α and γ are on the116

order of some small term, ζ, and the rest of the analysis is conducted as described above.117

To leading order, ζ, we now find that the change in frequency of the A-allele over a118
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single generation is equal to119

∆PA = VA(α + γ(1/2− PA))ζ + O(ζ2) (S12)

and the change in frequency of the M-allele is120

∆PM = DA,M ((1− r)α + γ(1/2− PA)) ζ + O(ζ2) (S13)

Repeating what we did in the first QLE analysis, we find that the recursions for the associ-121

ation measures over one time step are the same as those in Eq. S9 and that the steady-state122

solution for DA,M is the same as in Eq. (S10). Repeating the procedure described above,123

we find the leading order change in the frequency of the M-allele to be124

∆PM = 2∆µVM

(
1− r

r

)
(α (1/2− PA) + γ((1/2−VA)(r + 1/2)−VA/2)) ζ3 + O(ζ4)

(S14)

From Eq. (S14) we can see that the rate and direction of change in the modifier depends on125

both the strength of similarity selection, γ, and the strength of genotypic selection, α. We126

can also see that lower rates of recombination, r, and a larger effect size of the modifier,127

∆µ, always increase the strength of selection on the modifier. However, the effect of r on128

reducing the rate of increase of a modifier is dampened when similarity selection, γ, is129

stronger. For more discussion of these results see Section 5 in the main text.130
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Variables and Parameters Definitions

ei,j;k Frequency of eggs of genotype (i, j) produced by mothers
of antigen type k.

f(m,n;o)×(p,q) The frequency of unions between (m, n; o) eggs and (p, q)
sperm.

r Recombination rate between the A-locus and M-locus.

si,j Frequency of sperm of genotype (i, j).

v Fitness cost in hosts of being infected in the simulation
model.

wi;k Total fitness of an individual.

xi,j;k Frequency of genotype (i, j) individuals that are born to a
mother with antigen type k.

α Genotypic fitness penalty of having allele a.

γ Similarity fitness penalty for an individual that is the same
as its mother at the A-locus.

θ The probability that an encounter with a compatible para-
site causes an infection in the global infection stage.

µS
i Mutation rate of individuals of species S with allele i at the

M-locus.

φ The probability that an encounter with a compatible para-
site causes an infection in the maternal infection stage.

∆µ Effect size of the mutation rate modifier allele.

Ψi,j;k,(m,n;o)×(p,q) The fraction of offspring of type (i, j; k) resulting from
meiosis of the transient diploid produced by the union of
(m, n; o) eggs and (p, q) sperm.

Table S1: Model Parameters and Variables.
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Figure S1: Evolved mutation rate in hosts after 107 generations as a function of the re-
combination rate. Each cell again represents the mean of 10 replicate simulations. To the
right of the vertical black line, cycle amplitude in hosts is negligible for the duration of
the evolution runs . In Fig. S2, we show vertical cross sections from this figure for φ = 0.1
and φ = 0.9 with hundred-fold replication. v = 0.25 and all else is as described in Fig. 3.
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Figure S2: Evolved mutation rate as a function of recombination rate, r, for two rates of
maternal transmission, φ. The value of each point is the mean mutation rate that evolved
after 107 generations over 100 replicate runs. It can be seen here that high recombination
weakens selection on modifiers that increase mutation rate for both weak and strong ma-
ternal transmission, but that this reduction is much smaller in the latter case. This is not
evident in Fig. S1 where there is less replication. Vertical bars denote standard errors. All
other parameters are as in Fig. S1.
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Figure S3: The critical mutation rate at which cycle size becomes negligible (amplitude<
0.1) in hosts (a) and parasites (b). All other parameters are as in Fig. 1
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Figure S4: The difference, in hosts, between the mutation rates that evolved (i.e., those
shown in Fig. 3) and the critical mutation rate at which coevolutionary cycles become
negligible (amplitude < 0.1) with (a) complete linkage (r = 0) and (b) free recombination
(r = 0.5). Darker shading indicates that mutation rates evolved further past the critical
mutation rate and white cells indicate cases when evolved mutation rates failed to reach
the critical value. The critical mutation rate at which cycle amplitude becomes negligible
is shown in Fig. S3a. Previous theory has shown that mutation rates will evolve until
cycles become negligible. Here we show that, with sufficiently strong maternal trans-
mission, mutation rates will evolve past this critical value. The solid curves indicate the
boundary below which cycle amplitude is negligible, even with small mutation rates (see
Fig. 2.
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Figure S5: Time course for the evolution of mutation rate in hosts for varying rates of ma-
ternal infection, φ, and virulence, v. Parameters used for the six panels here correspond to
the analogous six panels in Fig. 1. The black curve denotes the mutation rate that evolved
after 107 generations, averaged across 10 replicate model runs, and the grey curves de-
note the evolved mutation rate at uniformly spaced intermediate time intervals. As can
be seen here, modifier evolution has dramatically slowed by generation 107, except in the
case when maternal transmission is strong (panels c and f).
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Figure S6: The difference, in parasites, between the ESS mutation rates (i.e., those shown
in Fig. 5b) and the critical mutation rate at which coevolutionary cycles (measured for
consistency from host dynamics) become negligible (amplitude < 0.1). Darker shading
indicates that mutation rates evolved further past the critical mutation rate and white
cells indicate cases when evolved mutation rates failed to reach the critical value. The
critical mutation rate at which cycle amplitude becomes negligible is shown in Fig. S3b.
Previous theory has shown that mutation rate in parasites will also evolve until cycles
become negligible. Here we show that, with sufficiently strong maternal transmission,
mutation rates in parasites will stop evolving before reaching this critical value. The solid
curve indicates the boundary below which cycle amplitude in hosts is negligible, even
with very small mutation rates in both species (see Fig. 2). In this region, any mutation
rate evolution that occurs in parasites will, thus, lead to a positive value, even if it is
occurring only by drift.
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