
Supplementary Information1

S1 Methods2

S1.0.1 Bumble bee records3

We used a large continental-wide bumble bee data-set [1] that, before any filtering, com-4

prises 649, 407 specimen records from 46 species and spans 1805 − 2020. With this data-5

set, we follow the Bombus taxonomy of Williams et al. [2], including the lumping of B.6

sonorus with B. pensylvanicus and B. californicus with B. fervidus. We also follow the tax-7

onomic changes in Alpinobombus proposed by Williams et al. [3] and the recent split of8

B. occidentalis along the 57th parallel into B. occidentalis (south) and B. mckayi (north) [4].9

These records have been compiled from a variety of collections and sources with rep-10

utable origin. These data have been used extensively for analyses of bumble bee trends11

[5–7].12

S1.0.2 Spatial and temporal classification of bee occurrence13

To construct sites, we overlaid a grid across North America. We considered three spatial14

resolutions: 50 × 50km, 100 × 100km, and 250 × 250km. We present results for 100 ×15

100km in the main text and the others in the Supplementary Material. We split records16

(which span 1901 − 2020) into six, 20 year “eras,” each of which we further divided into17

four, 5 year “time intervals” wherein, at each site, a bumble bee species could have been18

observed (detection=1) or not observed (detection=0).19

Given the unstructured, presence-only nature of our data, we do not know which of20

the five year time intervals actually contained “visit(s),” wherein a collector actually sam-21

pled a given site. Consequently, we have to infer non-detections (detection=0). We do22
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so by first identifying site × time interval combinations where visits to sites to collect or23

observe bumble bees were known to have occurred. If any bumble bee species had been24

detected at a given site during a given time interval, we know that a bumble bee sam-25

pling event (or “visit”) took place. We assume that any other species of bumble bee, if26

present, could have been detected on that occasion at that site, thereby setting detection27

status to 0 for those species. This approach excludes site × time interval combinations28

for which no bumble bees was recorded and past work using simulated data has shown29

that this approach produces non-biased estimates of species’ occupancy [8]. A similar ap-30

proach has also been used in other previous work [9]. Importantly, however, this method31

is only valid if collectors sample bees across Bombus, rather than only collecting target32

species. Historical data likely comprises a mix of specimens from such community col-33

lections and targeted collections. Simulation work suggests that as long as ∼ 50% of34

the sampling events targeted entire communities, inferring non-detections in this manner35

yields non-biased estimates of species occupancy [see 10]. Using a strict definition of a36

sampling event (observations that occurred in the same day within 1km of one other) we37

estimated that 49.54% of sampling events in our data-set contained two or more species38

which suggests that at least 50% of the sampling events targeted more than one species,39

as some community sampling events only collect a single species.40

We model each species only over the sites that we infer to be plausibly within that41

species’ range. To construct a species’ range, we trace a convex hull around all sites con-42

taining observations of that species, regardless of when those observations occurred, and43

consider all sites within the resultant polygon to be within that species’ range. By only44

modeling each species over the sites at which it could plausibly occur, we generate mean-45

ingful estimates of occurrence, while also ensuring that effects of climate and floral re-46

sources are only based on the relevant sets of sites and values of environmental variables.47
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S1.0.3 Climate data48

We compile climatic variables using CHELSA high resolution climate data for earth [11,49

12], which contains monthly global temperature and precipitation values at a spatial res-50

olution of 1×1km. To calculate the maximum temperature at a given site in a given era,51

we calculate the average maximum temperature (using only data for July and August,52

as these months will often record the highest temperature in the year) across all of the53

1×1km cells within that site and across all the years within that era. To calculate the54

mean precipitation, we similarly average monthly mean precipitation (for all 12 months)55

across the same cells and years. Because the climate data records are only available until56

2016, climate values in our final era are based on 15 years of data (2001-2016) rather than57

the full 20 years.58

S1.0.4 Floral resource data59

To quantify floral resources for bees, we combine classifications of land use estimates for60

the Holocene (HYDE) [13] with floral resource scores for bees [14]. Land use estimates for61

the Holocene spans 10000 BCE - 2015 CE worldwide. From 1900s to 2000, HYDE provides62

land-use categories on a decade basis and from 2000 to 2015, yearly. HYDE’s spatial63

resolution is 5 arc minutes which is approximately 9.26Km at the equator and 4.6Km at64

latitude 60. HYDE land use categories contain, for example, cropland, urban, rangeland,65

wild-remote woodlands [13]. While these categories are useful for understanding the66

form that land conversion has taken over the past century, it is unclear how transitions67

between these categories might impact bees. Koh et al. [14] quantified expert knowledge68

to estimate bee abundance based on land uses, including a variety of crops and other land69

types such as pasture and forest, using the Cropland Data Layer (CDL) from 2008. Using70

these values of floral resources does not allow for temporal variation in floral resources71
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per se (i.e., the value of ’corn’ does not change through time). Variation in floral resources72

through time stems from changes in land values from HYDE. The Cropland Data Layer,73

produced by the National Agricultural Statistics Service (NASS), provides geo-referenced74

crop land cover data for the continental United States at a 30m resolution.75

We overlay the HYDE land-use map with the CDL map to obtain the categories of the76

CDL that geographically overlap with the HYDE categories for 2008. Then for each HYDE77

category, we calculate the average floral resources reported by Koh et al. [14]. Koh et al.78

[14] leveraged expert opinion to create a range of floral resources availability for 45 land-79

use cover types from the CDL. We add floral resources for spring, summer, and fall to80

provide an overall metric of floral resources through the season, as these are more relevant81

for bumble bees, which have long flight periods. While Koh et al. [14] also produced82

expert estimates for nesting resources, we only used floral resources here as these are83

more likely to apply to all bumble bee species. By overlaying the HYDE land-use map84

and the CDL map, we are implicitly assuming that the floral resources provided by a85

given crop are consistent across the continent and have been through the last century;86

an assumption that is probably not true. However, we believe that this metric still likely87

captures a course estimate of available floral resources.88

S1.1 Occupancy models89

We assume that the probability that species i is detected at site j in era k, xijk, is drawn90

from a Bernoulli distribution (0 or 1) with probability (yijk),91

xijk ∼ Bernoulli(yijk) (S1)

4



where yijk is the product of detection probability (pijk) and the unknown, but true occu-92

pancy state, zijk,93

yijk = pijk ∗ zijk (S2)

The true but unknown site occupancy for species i at site j, zijk is equal to 1 if that site94

is occupied and 0 if it is not. We assume that this true site occupancy is drawn from a95

Bernoulli distribution with mean equal to the species’ occupancy probability at that site,96

zijk ∼ Bernoulli(ψijk) (S3)

Both occupancy probability, ψ, and detection probability, p, can be formulated as func-97

tions of covariates, and we do this in two different ways for the former.98

First, to test for genus-wide temporal trends in bumble bee occupancy (Q1), we con-99

sider a simple model wherein we model “era” directly. Specifically, we model occupancy100

as101

logit(ψijk) =ψ0+

ψspecies[i]+

ψarea × area[j]+

ψera[i]× k

(S4)

Here, ψ0 denotes mean occupancy, ψspecies[i] denotes a species-specific random effect,102

ψarea denotes a fixed effect of site area to account for the fact that some sites are truncated103

by water and smaller (area[j] denotes the area of site j), and ψera[i] denotes a species-104

specific effect of era. We call this the Era model.105

Second, we consider a model wherein we replace the effect of era in the above model106

with era-level environmental predictors (Q2). Specifically, we include site-averaged max-107
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imum temperature, site-averaged precipitation, and site-averaged floral cover, such that108

our model for occupancy becomes109

logit(ψijk) =ψ0+

ψspecies[i]+

ψarea × area[j]+

ψtemp[i]× temp[j, k]+

ψtemp2 × temp[j, k]2+

ψprecip[i]× precip[j, k]+

ψfloral[i]× floral[j, k]

(S5)

Here, ψ0, ψspecies[i], and ψarea are as defined above in Eq. S4 and ψtemp[i], ψprecip[i], and110

ψfloral[i] denote species-specific linear effects of temperature, precipitation, and floral re-111

sources, respectively and ψtemp2, denotes a quadratic effect of temperature (not species-112

specific). We call this the Environmental model.113

We assume that species-specific slopes in both of the above models are normally dis-114

tributed about some mean. Specifically,115

ψera[i] ∼ N (µψera, σψera)

ψtemp[i] ∼ N (µψtemp, σψtemp)

ψprecip[i] ∼ N (µψprecip, σψprecip)

ψfloral[i] ∼ N (µψfloral, σψfloral),

(S6)

where µψera, µψtemp, µψprecip, µψfloral denote the mean effect of each corresponding predic-116

tor, across species, and σ terms denote the variances about these means.117
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In both of the above models, we model detection probability as118

logit(pijk) = p0 + psite.era[j, k] (S7)

where p0 denotes the mean detection probability and psite[j, k] denotes a site-specific ran-119

dom effect that is era-specific. This latter term allows detection to vary relatively inde-120

pendently across sites and between eras. Specifically, we assume121

psite.era[j, k] ∼ N (µpsite.era, σpsite.era). (S8)

In addition, we ran our “era” model without splitting B. occidentalis into B. occidentalis122

and B. mckayi to assess the effect this species split has on their trend through time.123

We fit models in JAGS [15] and assess model convergence both by visually inspecting124

chains and checking The Gelman-Rubin statistic (we ensured that Rhat was < 1.1 for125

all parameters). We use flat, uninformative priors for all parameters and ran models126

for 20, 000 iterations, discarding the first 10, 000 iterations and thinning by 10 across 3127

chains. For all analysis we used R V4.0.4 [16]. For spatial manipulations we used the128

packages raster [17], rgeos [18], maptools [19], rgdal [20], sp [21], spatstat [22]; for129

data manipulation we used stringr [23] and data.table [24]; for running models, we130

used rjags [25], R2jags [26], and runjags [27].131

S2 Supplementary Results132

At a spatial resolution of 50×50 km, our final data-set contained 224, 262 bee records133

across 2228 sites and six 20 year time intervals. This translates into 521993 unique species134

× site × time interval combinations. Site-era combinations were less well sampled, given135

the smaller spatial scale with the same data, with each receiving, on average, 1.3 visits136
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across 4 time intervals (Figs. S11) and 5.2 positive species observations (Fig. S9) across137

2.6 species (Fig. S13). Mean precipitation increased an average of 0.36kg/m2 per month,138

mean maximum temperature increased 0.82◦C, and mean floral resources decreased by139

-0.02).140

At a resolution of 250×250km, our final data-set contained 240, 561 bee records across141

294 sites and six 20 year time intervals. This translated into 23800 unique species × site ×142

observations. Site-era combinations were well sampled, with each receiving, on average,143

2.5 visits across 4 time intervals (Figs. S12)and 27.9 positive species detections (Fig. S10)144

across 6.3 species (Fig. S14). Mean precipitation increased an average of 0.36kg/m2 per145

month, mean maximum temperature increased 0.91◦C, and mean floral resources de-146

creased by -0.03).147

For our Era model with B. occidentalis and B. mckayi lumped together into a single148

species, the species’ trend through time is estimated as slightly decreasing but with a149

Bayesian confidence interval that overlaps zero (ψera,occidentalis = −0.104, 95% BCI=[−0.272,150

0.067]). While in the Era model with B. occidentalis and B. mckayi separated, B. occidentalis151

is estimated to be decreasing (ψera,occidentalis = −0.142, 95% BCI=[−0.318, 0.024]) and B.152

mckayi is estimated to be increasing (ψera,mckayi = 0.345, 95% BCI=[−0.001, 0.723]).153

Results were largely consistent between spatial resolutions. We found that bumble bee154

occupancy increased slightly through time, decreased significantly with temperature, and155

was not associated with changes in precipitation or floral resources (Figs. S15). Similarly,156

we found that species responses varied widely at all spatial scales (Table 1 vs. Tables157

S3 vs. S4). However, fewer species trends were significantly different from zero at larger158

spatial scales. At larger spatial scales we were more likely to find occurrences at any given159

site than at smaller spatial scales and, therefore, we were less likely to identify changes in160

occupancy through time. Finding that some species are declining at all spatial resolutions161

we analyzed increases our confidence that the detected declines are real.162
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Figure S1: Same as Fig. 1, but with a stricter data filtering; each site needed to have at
least 5 records in each of the 20-year eras in order to be included in the analysis. These
patterns do not differ qualitatively from those shown in the main text.
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Figure S2: Same as Fig. 1, but limiting to only records collected from 1960 (instead of
1900). These patterns do not differ qualitatively from those shown in the main text.
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Figure S3: Same as Fig. 1, but combining the era and environmental model into a single
combined model with era, temperature, precipitation and floral resources all as predic-
tors. These patterns do not differ qualitatively from those shown in the main text.
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Figure S4: Same as Fig. 1, but here we also include a fixed effect of era on detection. These
patterns do not differ qualitatively from those shown in the main text.
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Model Submodel Parameter Mean 95% BCI

Era
Occupancy

ψ0 -0.48 [-0.83, -0.12]
ψarea -0.07 [-0.10, -0.04]
µψ,era 0.08 [0.02, 0.14]
σψ,era 0.20 [0.16, 0.26]
σψ,species 1.12 [0.88, 1.42]

Detection p0 -0.64 [-0.67, -0.60]
σp,site.era 0.77 [0.74, 0.79]

Environmental
Occupancy

ψ0 -0.66 [-1.26, -0.07]
ψarea 0.11 [0.07, 0.15]
µψ,temp -1.57 [-2.17, -0.97]
ψtemp2 -0.30 [-0.35, -0.25]
µψ,precip 0.05 [-0.36, 0.45]
µψ,floral -0.17 [-0.40, 0.04]
σψ,temp 1.94 [1.56, 2.43]
σψ,precip 1.32 [1.05, 1.64]
σψ,floral 0.70 [0.56, 0.89]
σψ,species 2.03 [1.57, 2.62]

Detection p0 -0.70 [-0.74, 0.67]
σp,site.era 0.85 [0.83, 0.88]

Table S1: Parameter estimates for models run at a spatial resolution of 100×100km. Bold
indicates 95% Bayesian credible intervals that do not overlap zero for parameters that are
not constrained to be greater than zero.
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Species ψera[i] ψtemp[i] ψprecip[i] ψfloral[i]
1 affinis -0.3 (-0.41, -0.2) -0.64 (-1.24, -0.08) -0.41 (-0.89, 0.07) 0.37 (-0.06, 0.8)
2 appositus 0.06 (-0.02, 0.15) -1.76 (-2.24, -1.35) -0.47 (-0.73, -0.23) 0.01 (-0.26, 0.26)
3 auricomus 0.13 (0.06, 0.2) 0.23 (-0.05, 0.5) -0.13 (-0.39, 0.12) -1.2 (-1.46, -0.96)
4 bifarius -0.04 (-0.14, 0.07) -1.18 (-1.49, -0.91) 0.51 (-0.24, 1.64) 0.83 (0.61, 1.07)
5 bimaculatus 0.48 (0.4, 0.57) -0.54 (-0.88, -0.22) 1.2 (0.9, 1.53) -0.75 (-1.02, -0.51)
6 bohemicus -0.22 (-0.29, -0.14) -1.81 (-2.23, -1.46) 0.06 (-0.18, 0.37) -0.16 (-0.41, 0.08)
7 borealis 0.11 (0.04, 0.17) -4.33 (-5.03, -3.7) 0.1 (-0.21, 0.4) -1.39 (-1.72, -1.09)
8 caliginosus 0.04 (-0.11, 0.18) -2.29 (-3.2, -1.49) 0.24 (-0.23, 0.71) -0.97 (-1.58, -0.39)
9 centralis 0.21 (0.13, 0.29) -0.67 (-0.93, -0.43) -0.87 (-1.1, -0.65) 0.4 (0.23, 0.57)
10 citrinus 0.07 (0.01, 0.14) -0.71 (-1.11, -0.34) 0.75 (0.39, 1.12) 0.35 (0.04, 0.67)
11 crotchii 0.13 (-0.07, 0.32) 0.66 (-0.18, 1.58) -2.37 (-3.26, -1.56) -1.18 (-2.16, -0.26)
12 cryptarum 0.4 (0.22, 0.58) -2.71 (-3.71, -1.93) -1.06 (-1.79, -0.48) -0.6 (-1.27, -0.03)
13 fervidus -0.13 (-0.19, -0.07) -3.61 (-4.17, -3.12) -1.67 (-1.93, -1.43) -0.01 (-0.19, 0.17)
14 flavidus 0.22 (0.15, 0.29) -1.72 (-1.93, -1.52) 0.35 (0.19, 0.5) 0.54 (0.36, 0.72)
15 flavifrons 0.08 (0.01, 0.15) -1.67 (-1.9, -1.45) 0.11 (-0.06, 0.3) 0.82 (0.66, 0.98)
16 franklini 0.16 (-0.14, 0.48) -1.86 (-5.11, 1.47) -0.57 (-1.96, 0.84) -0.33 (-1.71, 1.03)
17 fraternus -0.06 (-0.13, 0.01) 2.33 (1.95, 2.73) 0.19 (0, 0.39) -0.02 (-0.2, 0.14)
18 frigidus 0.11 (0.03, 0.2) -3.45 (-3.89, -3.05) -0.96 (-1.24, -0.71) 0.11 (-0.16, 0.38)
19 griseocollis 0.29 (0.23, 0.35) 0.59 (0.36, 0.85) -0.02 (-0.19, 0.14) -1.17 (-1.44, -0.95)
20 huntii 0.21 (0.14, 0.29) -2.03 (-2.49, -1.63) -1.71 (-1.99, -1.45) 0.36 (0.21, 0.52)
21 impatiens 0.2 (0.14, 0.26) -0.53 (-0.9, -0.17) 4.77 (4.29, 5.27) -1.01 (-1.26, -0.77)
22 insularis 0.01 (-0.04, 0.07) -1.66 (-1.87, -1.47) -0.64 (-0.78, -0.5) 0.4 (0.27, 0.53)
23 jonellus 0.2 (-0.02, 0.43) -2.39 (-4.24, -0.82) -0.93 (-2, 0.95) -0.25 (-1.51, 0.95)
24 kirbiellus 0.1 (-0.01, 0.2) -2.62 (-3, -2.27) -0.73 (-1.11, -0.42) 0.41 (0.1, 0.76)
25 mckayi 0.35 (0, 0.72) -3.76 (-6.59, -1.43) -0.33 (-2.15, 2.02) -0.14 (-1.6, 1.19)
26 melanopygus 0.13 (0.06, 0.21) -0.44 (-0.61, -0.29) 1.3 (1.01, 1.62) 0.42 (0.27, 0.58)
27 mixtus 0.09 (0.02, 0.15) -1.47 (-1.66, -1.27) 0.32 (0.16, 0.49) 0.54 (0.38, 0.69)
28 morrisoni -0.05 (-0.14, 0.05) 0.7 (0.41, 0.99) -0.86 (-1.23, -0.52) 0.73 (0.5, 1)
29 natvigi 0 (-0.23, 0.22) -2.56 (-3.54, -1.65) -0.44 (-1.21, 0.25) -0.24 (-1.13, 0.57)
30 neoboreus 0.01 (-0.24, 0.25) -2.78 (-4.12, -1.57) 0.02 (-1.26, 1.53) -0.49 (-1.63, 0.69)
31 nevadensis 0.24 (0.16, 0.31) -1.06 (-1.34, -0.81) -0.74 (-0.93, -0.56) 0.17 (0.04, 0.31)
32 occidentalis -0.14 (-0.32, 0.02) -3.29 (-4.05, -2.65) 0.74 (0.06, 1.47) -0.61 (-0.96, -0.27)
33 pensylvanicus -0.03 (-0.11, 0.05) 2.33 (2.09, 2.58) 1.44 (1.12, 1.77) -0.42 (-0.62, -0.24)
34 perplexus 0.3 (0.22, 0.38) -4.61 (-5.7, -3.5) 2.31 (1.7, 2.97) 0.34 (-0.08, 0.76)
35 polaris 0.07 (-0.11, 0.25) -3.44 (-4.58, -2.44) -0.95 (-1.78, -0.2) -0.31 (-1.31, 0.63)
36 rufocinctus 0.09 (0.04, 0.14) -2.77 (-3.16, -2.4) -1.81 (-2.06, -1.58) -0.17 (-0.32, -0.03)
37 sandersoni 0.23 (0.15, 0.32) -1.56 (-1.97, -1.15) 0.97 (0.61, 1.35) 0.63 (0.28, 0.99)
38 sitkensis 0.07 (-0.03, 0.17) -0.71 (-1.04, -0.37) 2.04 (1.59, 2.58) -0.41 (-0.8, -0.04)
39 suckleyi -0.33 (-0.42, -0.25) -0.96 (-1.18, -0.75) -0.35 (-0.53, -0.2) 0.1 (-0.05, 0.25)
40 sylvicola 0.17 (0.09, 0.25) -2.07 (-2.31, -1.84) -0.72 (-0.92, -0.53) 0.9 (0.69, 1.12)
41 ternarius 0.15 (0.08, 0.21) -4.85 (-5.53, -4.2) -0.45 (-0.89, -0.03) -0.8 (-1.12, -0.48)
42 terricola -0.07 (-0.13, -0.01) -5.44 (-6.1, -4.83) 1.28 (0.98, 1.59) -1.38 (-1.68, -1.11)
43 vagans 0.13 (0.07, 0.19) -2.94 (-3.4, -2.5) 0.97 (0.71, 1.22) -0.8 (-1.02, -0.59)
44 vandykei 0.22 (0.08, 0.36) 0.83 (0.3, 1.39) 0.27 (-0.04, 0.59) -0.51 (-0.99, -0.08)
45 variabilis -0.44 (-0.55, -0.32) 1.12 (0.74, 1.53) -0.02 (-0.28, 0.24) -0.54 (-0.76, -0.33)
46 vosnesenskii 0.12 (-0.01, 0.25) 1.9 (1.39, 2.46) 1.78 (1.22, 2.39) -0.39 (-0.77, -0.02)

Table S2: Species specific parameter estimates for models run at a spatial resolution of
100×100km. 95% Bayesian credible intervals are presented inside the parenthesis.
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Figure S15: Qualitative occupancy trends are relatively insensitive to the spatial resolu-
tion of analysis. Shaded regions denote 95% Bayesian credible intervals. Output in (a) is
from our era model and output in (b)-(d) is from our environmental model. To highlight
that these are two separate models we have plotted the mean line(s) for the Era model in
red and the Environmental model in black.
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Table S3: Analog of Table 1, but for a site resolution of 50 × 50km.
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Table S4: Analog of Table 1, but for a site resolution of 250 × 250km.
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Table S5: Analog of Table 1 but here we only consider records collected from 1960 (instead
of 1900). These patterns do not differ qualitatively from those shown in the main text.
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