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Intensive agriculture reduces wild pollinator abundance, diversity and pollination services,

while depending critically on wild pollinators for crop pollination. Floral enhancements

such as hedgerows (native, perennial flowering trees and shrubs) can enhance pollinator

colonization, persistence, occupancy, and species richness within intensive agricultural

landscapes. However, little is known about the specific features of hedgerows that

promote pollinator communities in such landscapes. Understanding how pollinator

communities respond to local changes in site conditions as hedgerows mature,

such as the availability of floral or nesting resources, can help guide the design of

more effective hedgerows that promote pollinators and/or pollination services. In an

intensively-managed agricultural region of California, we found that pollinator community

attributes responded principally to the enhancement of floral diversity as hedgerows

mature, as well as to surrounding natural habitat. Once hedgerows matured, this

relationship leveled off, suggesting either saturation of community assembly processes,

or greater importance of floral density/display relative to diversity. Although we did not

find any relationships between measures of pollinator community diversity and nesting

resources, such resources are notably difficult to measure. Surrounding natural habitat

also affected species and functional richness at hedgerows, particularly for solitary bees

that nest above ground. Such species are known to be particularly sensitive to the

negative effects of agriculture. Thus, hedgerows in combination with natural habitat may

reverse some of the community disassembly provoked by intensive agriculture.

Keywords: habitat restoration, floral enhancement, pollinator, functional diversity, agro-ecosystem, bee,

California, intensive agriculture

1. INTRODUCTION

Agricultural intensification is a global land use change (Ramankutty et al., 2018) that has
large impacts on arthropod biodiversity and the ecosystem functions and services provided by
arthropods within those ecosystems (Gurr et al., 2016). Native pollinators, which provide valuable
pollination services to crops similar in magnitude to those of managed bees (Kleijn et al., 2015)
even when managed honey bees are present (Garibaldi et al., 2013; Rader et al., 2016), have

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://doi.org/10.3389/fevo.2018.00170
http://crossmark.crossref.org/dialog/?doi=10.3389/fevo.2018.00170&domain=pdf&date_stamp=2018-10-25
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles
https://creativecommons.org/licenses/by/4.0/
mailto:ckremen@berkeley.edu
https://doi.org/10.3389/fevo.2018.00170
https://www.frontiersin.org/articles/10.3389/fevo.2018.00170/full
http://loop.frontiersin.org/people/274963/overview
http://loop.frontiersin.org/people/614912/overview
http://loop.frontiersin.org/people/624443/overview


Kremen et al. Pollinator Communities Track Hedgerow Restoration

reduced abundance and diversity in larger fields that are more
simplified (Kovács-Hostyánszki et al., 2017). However, these
are the landscapes where pollination services are in highest
demand (Koh et al., 2016). Re-diversifying such landscapes with
habitat enhancements such as hedgerows or wildflower strips
can support pollinator communities (Garibaldi et al., 2014),
potentially increasing the supply of pollinators to adjacent crops
(Blaauw and Isaacs, 2014; Morandin et al., 2016, but see Sardiñas
and Kremen, 2015). Although such plantings may chiefly support
generalist pollinators (Kleijn et al., 2015), some evidence suggests
that well-targeted plantings can promote diverse communities
of pollinators including more specialized species (Kremen and
M’Gonigle, 2015; M’Gonigle et al., 2015, 2017; Ponisio et al.,
2016), as well as supporting other arthropod-mediated services
such as pest control (Gurr et al., 2016; Morandin et al., 2016).
Habitat plantings in farmland may thus enhance both arthropod
conservation and ecosystem services. However, much remains
to be known about how to target farmland plantings to reverse
the disturbance of agricultural intensification and promote
arthropod conservation and/or ecosystem services (Williams
et al., 2015; Kovács-Hostyánszki et al., 2017; Williams and
Lonsdorf, 2018).

In intensively-managed production systems in California,
hedgerow plantings, implemented to enhance pest control,
game birds, and/or other ecosystem services, are made up of
diverse, perennial native shrubs, grasses, and forbs that provide
a sequence of floral resources (Bugg et al., 1998; Garbach
and Long, 2017; Long et al., 2017). Our previous studies
examined how these hedgerows affect pollinator populations and
communities, focusing on time since restoration in two types
of studies: before-after-control-impact (Kremen and M’Gonigle,
2015; M’Gonigle et al., 2015) or space-for-time substitution
(Ponisio et al., 2016, 2017). These studies have demonstrated that
hedgerows have a strong positive impact on pollinator occupancy
rates, local and regional species richness, functional diversity,
occurrence of resource specialists, and plant-pollinator network
characteristics. Additional studies demonstrated that hedgerows
promote spillover of individuals into adjacent fields (Morandin
and Kremen, 2013), leading to enhanced pest control and
pollination services (Morandin et al., 2016), although pollination
improvements were not observed for all crops (Sardiñas and
Kremen, 2015).

Thus, in California, hedgerows appear to promote the
conservation of native pollinators in intensively-managed
landscapes and, in some crops, pollination services. Existing
studies have not yet examined, however, which aspects of
hedgerow maturation are responsible for the observed changes
in pollinator community composition. Understanding how
pollinator communities respond to local changes in site
conditions as hedgerows mature, such as the availability of floral
or nesting resources, can help guide the design of more effective
hedgerows that promote pollinators and/or pollination services.

Here, we used data collected over 9 field seasons within a 10
year period in a before-after-control-impact design, to ask how
metrics of pollinator community composition change in response
to local site characteristics (floral and nesting resources) and to
surrounding landscape characteristics (area of natural habitat).

Comparing against unmanaged field edges (controls), we asked:
(1) How do floral and nesting resources change with years
post-restoration and surrounding landscape characteristics? (2)
How do bee community responses (abundance, species richness,
diversity, evenness and functional diversity) change with local
(i.e., hedgerow) and surrounding landscape characteristics,
and years post-restoration? (3) How long after hedgerow
planting does it take to observe consistent changes in bee
community composition relative to initial conditions? We were
also interested in determining whether crop-visiting bees show
similar or distinct responses to the entire bee community.

We expected to find that floral and nesting resources were
enhanced as hedgerows matured relative to controls and that
bee community responses would track these changes, leading to
greater abundance, richness, diversity and functional diversity,
but lower evenness as rarer species colonized the hedgerows.
Because so little natural habitat occurs in the landscape we
studied (0–4.5% natural cover in regions extending 1,500 m out
from our sites), we did not expect to see an effect of natural
habitat on bee community metrics. Finally, we expected that
inclusion of local site characteristics (e.g., floral and/or nesting
resources) would substitute for hedgerowmaturation (years post-
restoration, or ypr), leading to its non-inclusion in final models.
Further, we expected changes in bee community composition
relative to initial conditions would only be consistent at least 4
years post-planting, at which point shrubs are sufficiently mature
that they produce large floral displays.

2. MATERIALS AND METHODS

2.1. Study Sites and Collection Methods
Located in the Central Valley of California (Yolo County),
our study area is an intensively-managed landscape comprising
conventional (i.e., using an array of synthetic pesticides and
fertilizers, irrigation and mechanization) field crops, grape
vineyards, and orchards (Figure S1). Field crops typically rotate
annually; common crops in the region are safflower, tomato,
wheat, grass, sunflower, melon. Common orchard crops include
almond, walnut and plum. We selected five farm edges for
restoration and 10 non-restored control edges. Hedgerows were
planted in 2007 and 2008 with native perennial shrubs and
trees (e.g., Cercis occidentalis, Ceanothus spp., Rosa californica,
Heteromeles arbutifolia, Sambucus mexicana, Eriogonoum spp.,
Baccharis spp., Salvia spp., and others; see Table S1 for a
complete list of shrub plantings by site). Hedgerow restorations
were approximately 350 m long and 3–6 m wide, bordering large
crop fields (ca. 30 hectare). In 2008, nine regularly-spaced small
plots (1 × 8 m) were seeded with forb mixtures made up of
nine locally-native annual or perennial forb species within the
genera Escholtzia, Grindelia, Lupinus, Lotus, Phacelia, Trifolium
spp., as described in detail in Wilkerson et al. (2014). Hedgerows
were irrigated and weeded for 3 years, after which no further
management was needed (except for some replanting in 2009
of species or individuals that did not take; see Figure S2 for an
example of a restoration prior to and 6 years after restoration).
Pollinator sampling at each restoration site began 1 year prior
to restoration, except at one site where sampling began earlier
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in the same year that restoration occurred (see Table S2 for an
overview of sampling history per site). Restoration and control
sites were sampled in each year of the study to achieve a
before-after-control-impact design (Underwood, 1994; Kremen
and M’Gonigle, 2015).

Control sites were selected to match conditions surrounding
restoration sites. For each restoration site, we selected two control
sites adjacent to the same crop type (rotational field crop,
orchard, pasture, or vineyard), within the same landscape context
(i.e., within 1–3 km of the restoration site), but > 1 km from all
other study sites. Control sites were generally weedy field edges
and reflect a variety of unmanaged crop field edges found in
the region as the pre-restored condition (Figure S1). Such edges
typically contain a variety of non-native forbs, grasses, shrubs,
and trees and may at times be tilled, treated with pesticides, or
left alone. The most common flowering plants at these sites are
Convolvulus arvensis, Brassica spp., Lepidium latifolium, Picris
echioides, and Centaurea solstitialis. Many of these species have
also established at restoration sites.

We sampled pollinator communities at each restoration and
control site three or more times per year from 2006 until 2014
(with a few exceptions; seeTable S2). All sampling was conducted
between April and August. Dates of sampling were spread evenly
across this time period. Sites were selected in random order for
sampling and, once all sites had been sampled, the process began
again for the next sample round. Due to logistical constraints, no
sampling was conducted in 2010.

Insect pollinators were netted in timed samples along a 350
m transect, pausing the timer while handling specimens and
identifying the plant species from which each specimen was
collected, until 1 h of netting time had elapsed. Surveys were
only conducted under sunny conditions when the temperature
was above 21 ◦C and wind speed was below 2.5 m/s. While
all insect visitors that contacted the reproductive parts of the
flower were collected, here we focus our analyses only on wild
bees (non-honey bees). Specimens were identified to species
(or morpho-species for some bee specimens in the genera
Lasioglossum, Nomada, and Sphecodes) by an expert taxonomist
(Robbin Thorp, Professor Emeritus, UC Davis).

2.2. Functional Traits
Traits selected for assessing functional diversity were resource
capture and use traits, as described previously (Kremen and
M’Gonigle, 2015; Ponisio et al., 2016). Qualitative traits for bees
included sociality, nesting location, nesting habit, lecty (degree
of pollen specialization), and whether the species is known to
pollinate crops. Following Burkle et al. (2013), we classified bees
as social (including primitively social to eusocial) or solitary
based on Michener (2000). Following Williams et al. (2011),
we classified nesting location as above- or below-ground and
nesting habit as constructing a nest (excavator) or using a pre-
existing cavity (renter). Nesting location was based on Krombein
et al. (1979), Michener (2000), Cane et al. (2007), and Sheffield
et al. (2011), and nesting habit was based on Michener (2000).
Lecty was classified as oligo (specialist) or poly (generalist) lectic,
based on Krombein et al. (1979). Bee species were classified as
crop visitors if they had been detected as visitors during studies

conducted in the sample area on the main pollinator-dependent
crops grown in the region (watermelon, tomato, sunflower, and
almond, Kremen et al., 2004; Greenleaf and Kremen, 2006a,b;
Klein et al., 2012; Brittain et al., 2013a,b; Sardiñas et al., 2016).
We omitted the five cleptoparasitic species (13 specimens) from
the functional trait analysis because such species depend on their
host species for pollen and nest construction and thus cannot be
scored for several of the qualitative characteristics.

Quantitative traits for bees included mean body size and floral
resource specialization. For body size, we used log-transformed
inter-tegular distance as a proxy for mobility (Greenleaf et al.,
2007), measuring from one to five specimens under a dissecting
microscope. We calculated floral resource specialization and
regional abundance based on a more inclusive data set (this
data set plus additional data collected in the same study area
on an additional 48 hedgerow and control sites using identical
samplingmethods within the same set of sample years; Morandin
and Kremen, 2013; Ponisio et al., 2017, C. Kremen, unpublished
data). For floral resource specialization, for each bee species
in our data, we calculated the metric d′ , which measures the
deviation of the observed interaction frequency from a null
model in which all partners interact in proportion to their
abundances (Blüthgen et al., 2006); thus, it is not confounded
with abundance as is the total number of interaction partners
(Winfree et al., 2014). It ranges from 0 for generalist species to
1 for specialist species. In contrast to lecty, measurements of d′

includes floral visits both for pollen to provision larvae and for
nectar and pollen for adult food, reflecting both larval and adult
diet breadth.

3. MEASURING SITE AND LANDSCAPE
CHARACTERISTICS

3.1. Floral Diversity
In order to investigate how restoration affects pollinator
communities via changes in floral composition, we calculated a
Shannon diversity index for the plants blooming at each site.
On, or within several days of, each bee survey date, we surveyed
50 1m2 quadrats for the presence of blooming plant species,
and used the incidence of each blooming species among those
50 quadrats as a proxy for its abundance when calculating the
Shannon diversity index (see Figure S3 for further details about
quadrat placement). For each site, this metric was calculated
at each sample date within a year (for pollinator community
composition analyses) or across all dates within a year (for
pollinator functional diversity analyses, see below).

3.2. Nesting Resources
During one of the floral diversity surveys each year, we also
noted several characteristics previously associated with nesting
resources for above or below-ground nesting bees (Potts et al.,
2005; Sardiñas and Kremen, 2014). In each of the 50 1m2

quadrats, we estimated the percentages of the quadrat comprising
exposed bare ground or covered by dead wood as indicators of
below or above-ground nesting habitat, respectively. We then
used the average percentage across all 50 quadrats as a metric of
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“percent bare ground” or “percent dead wood” at each site in each
year.

3.3. Natural Cover
We used a habitat classification method developed in Karp et al.
(2016) to quantify the extent of semi-natural habitat surrounding
a site. This method accounts for nearby natural habitat likely
having a greater impact on a focal site than natural habitat that
is farther away (see also Miguet et al., 2017). It does this by
weighting each cover type fragment according to its distance
from the focal site, and summing the resultant distance-weighted
areas. Weights are calculated using a Gaussian function with a
decay rate α, such that each fragment is assigned a weight of

W = e−d2/(2∗α2), where d is the distance from the focal site.
Reducing α lowers the weight assigned to distant fragments
relative to the weight assigned to near fragments. Here, we chose
a decay rate equal to α = 350 which translates to effects of
natural habitat beyond 1 km being negligible, which fits within
typical bee foraging movements (Greenleaf et al., 2007; Kennedy
et al., 2013). To determine the area of surrounding natural
habitat within a 1 km radius of each hedgerow, we classified
aerial imagery data from the National Agricultural Imagery
Program (NAIP, 1 m2 resolution, https://www.fsa.usda.gov/
programs-and-services/aerial-photography/imagery-programs/
naip-imagery/) for Yolo County using heads-up digitizing in
ArcGIS (version 10.1, Environmental Systems Research Institute,
Redlands, CA, USA) to identify patches of semi-natural habitat,
which in this intensively-farmed landscape were restricted to
riparian and riparian-scrub habitats. For samples collected prior
to 2010, we developed cover scores from 2006 NAIP data, and for
those collected during or after 2010, we developed cover scores
from 2012 NAIP data.

3.4. Statistical Analyses
All continuous predictors were centered prior to analysis to
allow direct comparison of the magnitude of effect sizes. Sample
day and day2 were included as explanatory variables in all
models (except where noted otherwise) to account for seasonality
(M’Gonigle et al., 2015), as were random effects of site and year
to account for non-independence among samples collected from
the same site or within the same year.

3.4.1. Floral and Nesting Resources
To investigate whether floral or nesting resources changed as a
result of restoration, wemodeled floral diversity (see above), dead
wood, or bare ground as a function of the number of years post-
restoration (ypr) for each site in each year. Values of ypr are
initially 0 for all sites and then, for hedgerow sites, increase by
+1 each year following planting. For example, a site restored in
2007 would have a value of ypr = 0 in 2006 and 2007, and a
value of 1 in 2008, 2 in 2009, and so on. Use of a quantitative
predictor such as ypr permits greater flexibility in analyses then a
classic before-after coding scheme. A before-after coding is better
suited to analyzing a pulse disturbance, whereas we studied a
press disturbance (the maturation of hedgerows and their effects
on site characteristics and flower visitor communities).

3.4.2. Community and Functional Composition
To investigate whether pollinator community composition
tracked changes in floral resources over time, we used generalized
linear mixed models (GLMM) to model aggregate abundance
(Negative Binomial error), species richness (Gaussian error,
Chao1 estimator, transformed as (natural log+1); Chao, 2006),
species diversity (Gaussian error, Shannon index) and species
evenness (Gaussian error, Evar; 82 of 412 total samples had
≤ 1 species and, thus, had to be dropped, Smith and Wilson,
1996) as a function of floral diversity, natural cover, ypr, and
the interactions of ypr with floral diversity and natural cover.
Transformations were used when necessary to achieve normality.
After constructing the full model with these terms, we used
Likelihood Ratio Tests to compare successively simpler models,
dropping the least significant interaction or main effect at each
step (Zuur et al., 2009). We wished to determine if changes in
floral diversity or natural cover could substitute for ypr or, if
not, whether they interacted with ypr. We were also interested in
whether changes in above or below ground nesting resources led
to changes in the corresponding groups of pollinators; however,
since neither resource (dead wood or bare ground) showed a
significant response to restoration (see section 4), we do not
present models investigating responses of above or below ground
bee communities to these variables.

We also used GLMM to analyze functional diversity (Gaussian
error) except that samples at each site were combined within
each year. We used functional dispersion (Fdis, square-root
transformed, one sample with 0 species was dropped) as our
metric of functional diversity. Fdis measures how communities
fill an n-dimensional trait space independently of species richness
(Laliberté and Legendre, 2010). Fdis is the sum of the abundance-
weighted distances of each species from the community centroid
in the n-dimensional trait space, normalized by abundance.
Pooling data from multiple site visits within each year ensured
that samples contained enough species to calculate Fdis. The first
three samples per site within each year were pooled for analysis
(see Table S2), in order to maintain consistency among sites in
sample effort and seasonal timing. Model structure was the same
as above, except that within-season effects (e.g., sample day and
day2) were excluded because they were no longer meaningful.

Finally, in order to determine how long after restoration
significant changes in community and functional metrics are
detectable, we replaced ypr with a categorical years-post-
restoration predictor (yprF) in those original models in which
ypr was retained as a significant main or interactive effect. Here,
we omitted the floral diversity and natural cover co-variates, but
retained seasonal and random effects, in order to focus on the
temporal component.

4. RESULTS

Across the 9 sample years and 15 sites, we collected
7,179 specimens comprising 101 bee species (including 4
morphospecies containing a total of 11 specimens). Forty-two
species in the sample (41.5%) were known to visit crops common
to the region, and comprised the majority of individuals in
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FIGURE 1 | Effect of restoration on floral diversity. Points show Shannon

diversity values for each sample at each site in each year. Lines show

model-estimated curves for different possible values of adjacent natural cover

(from bottom to top, curves correspond to the 5th, 50th, and 95th quantiles

for levels of natural cover observed in our data-set).

the sample (6,125 specimens, 85.3%). The subset of data used
for functional diversity analysis included 5,718 specimens
comprising 84 species, after removing those species for which
trait data was incomplete (16 species including cleptoparasites,
44 specimens in total) and some samples to standardize sampling
across sites (1,417 specimens).

Floral diversity increased linearly and significantly in response
to ypr (effect size = 0.147; p < 0.001) and the amount of
natural cover in the surrounding landscape (effect size = 0.21;
p < 0.037). A positive interaction between ypr and the amount
of natural habitat cover (effect size = 0.042; p = 0.021) meant
that floral diversity increased faster with ypr for sites with
greater surrounding natural habitat cover (Figure 1). Neither the
amount of dead wood nor the amount of bare ground increased
with ypr or surrounding natural cover.

Species abundance increased significantly with floral diversity,
while species evenness declined (Table 1, Figures 2a,c). Species
richness, species diversity and functional dispersion increased
with floral diversity and ypr, but these factors had a negative
interaction, such that species richness in new and maturing
hedgerows increased with increasing floral diversity, while
mature hedgerows had a stable or negative response to increased
floral diversity (Table 1, Figures 2b,d, 3). Surrounding natural
cover also had a weak, but significant, positive effect on species
richness (p = 0.046) and functional dispersion (p = 0.034)
(Table 1).

A consistent positive change in species richness and diversity
occurred at 5 years post restoration and beyond (Figures 4A,B).
Notably, there was also a significant positive change at 2 years
post restoration. Since plants were young at this stage and
provided few to no blooms, this increase may indicate that the

sites selected for hedgerow plantings were already somewhat
higher in bee richness then control sites. We found significant
changes in functional dispersion only at 4 and 8 years compared
to the initial community (Figure 4C).

5. DISCUSSION

Bee species abundance and evenness tracked changes in floral
diversity (Figure 2), and no other variables were explanatory.
As predicted, abundance responded positively to greater floral
diversity, while evenness declined, probably due to the addition
of a greater number of rare species. Bee species diversity,
richness, and functional diversity (as measured by functional
dispersion) also responded positively to increases in floral
diversity, but only in young andmaturing hedgerows. In contrast,
these quantities declined in response to floral diversity at the
most mature hedgerows. This effect was more pronounced for
functional diversity than for species diversity or richness. At
sites with the highest floral diversity levels (i.e., more mature
hedgerows, Figure 1), higher floral diversity may be associated
with reduced densities of preferred or total floral resources,
leading to reduced visitation. For example, Hegland and Boeke
(2006), studying a semi-natural grassland in Norway, found that
floral visitor occurrence, richness, and activity all responded
more strongly to total floral density than floral diversity.
Williams et al. (2015), studying the response of pollinator
communities to wildflower plantings in farmland, similarly found
that, when using plant mixes that provide continuous bloom,
pollinator abundance and richness responded to floral display
size rather than to floral diversity. Alternatively, the changes in
visitor response to floral diversity with hedgerow maturation
may reflect a saturating community assembly process with
increased floral resources. In experimentally assembled plant
communities of varying floral richness, Ebeling et al. (2008)
found that pollinator community richness saturated as floral
density increased over 15 percent or floral richness increased over
nine species.

Floral diversity of hedgerows increased as hedgerowsmatured,
and this pattern was stronger when hedgerows were nearer
to natural habitats (Figure 1). An increase in floral diversity
associated with natural habitat could occur if native or non-native
plant species colonize from nearby semi-natural habitat patches.
The majority of species that colonized hedgerow plantings (i.e.,
non-planted species that were not present in floral samples in
the year prior to planting) were non-native; these species could
have been present in the seed bank, or have colonized either
from surrounding agricultural or semi-natural habitats. Semi-
natural habitats may provide refugia for weed species; in Europe,
greater complexity of the surrounding landscape had a positive
effect on weed species diversity of both vegetation and seed bank
within agricultural fields (Roschewitz et al., 2005). Alternatively,
floral diversity at hedgerows may be responding to other factors
that are correlated negatively or positively with semi-natural
habitat. Since our floral diversity metric measured the diversity
of what was blooming at each sampling event (as opposed to
plant species diversity), changes in the floral diversity metric
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TABLE 1 | Effect sizes and standard errors (parentheses) for GLMM results of pollinator community response to years post restoration (ypr), floral diversity and natural

cover, showing the covariates retained in the final, most parsimonious model.

Predictor

Response ypr
Floral Natural Floral Natural

diversity cover diversity * ypr cover * ypr

Species abundance – 0.31(0.061)*** – – –

Species evenness (evar) – −0.043(0.013)** – – –

Species diversity (Shannon) 0.039(0.017)* 0.13(0.037)*** – −0.035(0.012)** –

Species richness (chao1) 0.076(0.023)** 0.19(0.048)*** 0.13(0.066)* −0.039(0.016)* –

Functional dispersion 0.010(0.0039)* 0.032(0.0098)** 0.019(0.0091)* −0.0069(0.0033)* –

Functional dispersion – reduced† – 0.027(0.0071)*** – – –

Significance is indicated by (*p < 0.05), (**p < 0.01), and (***p < 0.001).
†
In the reduced model, Functional dispersion was calculated omitting traits of nest location and sociality (see

text).

FIGURE 2 | Effect of floral diversity on (a) abundance, (b) estimated species richness, (c) species evenness, and (d) species diversity in bees. Points show calculated

values of each metric for each sample at each site within each year and lines show curves for best fit models, as presented in Table 1. Curves in (b,d) show the

predicted effect of floral diversity for for restorations of different ages (ypr) with colors corresponding to 0 (the minimum; red), 4.5 (the mean; orange), and 9 (the

maximum; green). All other parameters were set to their mean values.

may reflect slight site-to-site alterations in the timing or duration
of flowering, rather than addition of species. Such changes in
flowering phenology might be due to micro-climate, soil type, or

urban heat-island effects (Dunne et al., 2003; Neil and Wu, 2006;
Dahlgren et al., 2007) that could be correlated to the proportion
and distribution of nearby natural habitat.

Frontiers in Ecology and Evolution | www.frontiersin.org 6 October 2018 | Volume 6 | Article 170

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Kremen et al. Pollinator Communities Track Hedgerow Restoration

0.0

0.1

0.2

0.3

0.4

−2 −1 0 1 2

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●ypr=0

ypr=4.5

ypr=9

Floral diversity

F
u
n
c
ti
o
n
a
l 
D
is
p
e
rs
io
n

FIGURE 3 | Effect of natural cover on trait functional dispersion. Points show

calculated values for each site in each year and lines show model-estimated

curves. Curves show different restoration ages (ypr) with colors corresponding

to 0 (the minimum; red), 4.5 (the mean; orange), and 9 (the maximum; green).

All other parameters were set to their mean values. Unlike Figure 2, data from

multiple visits were pooled for each site within each year.

In contrast to floral diversity, we did not observe a significant
relationship between the amount of dead wood or bare ground as
hedgerows matured. Because above-ground nesting bees respond
positively to hedgerow additions (Kremen andM’Gonigle, 2015),
we expected that hedgerows would enhance woody material and
nesting sites. In contrast, the lack of change in bare ground with
hedgerow maturation corroborates our earlier results comparing
8 mature hedgerow sites and 8 controls, in which we found
no changes in 4 indicators of ground-nesting resources (bare
exposed ground, slope variability, surface soil compaction and
soil particle size) or in the nesting rates of ground-nesting bees
(Sardiñas et al., 2016). It may be that the quantification of dead
wood used here is not an accurate proxy for the amount of above-
ground wood or the availability of above-ground nesting sites.
The proxies used in our study and previously by Sardiñas et al.
(2016) were recommended by Potts et al. (2005) based on a study
in Israel, but these resources may be less applicable in other
regions. Until better methods for estimating nesting resources
are developed and validated, data on proxies for nesting site
resources should be carefully interpreted.

Finally, contrary to our expectations, local and landscape site
characteristics did not entirely replace years post restoration as
an explanatory variable, since bee species diversity, richness, and
functional diversity still responded positively to this variable.
The length of time since planting may be a proxy for other
unmeasured variables that are enhanced with time, such as
nesting resources, which we may have failed to measure
adequately. Examining the response to years post restoration in
more detail (Figure 4) shows that bee community responses to
shrub-based habitat enhancements take time—as we expected,
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consistent increases in species richness and other metrics relative
to non-restored conditions generally occurred after five or more
years had passed since restoration. The more variable behavior of
functional diversity may reflect a weaker ability to detect changes
in this metric, because of lower resolution in the metric (fewer
functional types than species), and lower power (annual vs. per
sample calculation of functional dispersion metric). The bee
community responses that we observed over the 9 years following
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planting may not represent saturated community responses. In
other studies in which we compared these “maturing” sites
with both “mature” (≫10 years) hedgerows and unrestored
controls, we found that mature hedgerows displayed greater beta
and functional diversity (Ponisio et al., 2016) than maturing
hedgerows. However both maturing and mature hedgerows
displayed substantial turnover in pollinators and plant-pollinator
interactions, indicating the dynamic nature of these communities
(Ponisio et al., 2017).

Crop-visiting species made up the majority of records in our
sample, primarily due to the dominance of two species in bee
communities, Lasioglossum (Dialictus) incompletum andHalictus
tripartitus. These two species dominate not only hedgerow and
control sites within agriculture but also nearby natural habitats
(Forrest et al., 2015). Not surprisingly, therefore, all significant
responses that we observed for the entire bee community were
also observed for the subset of crop-visiting species, except
for minor changes in the model for functional dispersion.
Hedgerows, therefore, enhance communities of crop-visiting
species and have the potential to support pollination services,
although the amount of support is likely to be crop, scale, and
context specific (Sardiñas and Kremen, 2015).

Bee species richness and functional diversity were both
positively associated with the amount of surrounding natural
cover. Natural habitat patches may supply colonists to maturing
and mature hedgerows, and may specifically enrich certain
functional types. To query this hypothesis, we examined the
correlations between average trait states at our hedgerow and
control sites (i.e., trait values weighted by relative abundances)
and surrounding natural habitat. Sociality and nest location were
significantly correlated to natural cover, with solitary, above-
ground nesting bees more likely to be associated with natural
cover. After removing sociality and nest location traits and re-
calculating the functional dispersion metric, we no longer found
any significant effect of surrounding natural habitat but only
floral diversity (Table 1). These findings suggest that nearby
natural habitat may contribute solitary and above-ground nesting
colonists to hedgerow sites, and aligns with a study conducted
in the same region showing that farmed land, whether organic
or conventional, imposes strong filters on bee functional types,

weeding out bees with above-ground nesting and solitary traits
found in adjacent natural habitats (Forrest et al., 2015). Through
habitat creation and subsequent community assembly, hedgerow
plantings, in combination with nearby natural habitat remnants,

may reverse some of the functional and community disassembly
that occurs as natural habitats are converted to farmlands.
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