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S1 MODEL DESCRIPTION
We consider an individual-based model with discrete non-
overlapping generations in one- or two-dimensional continuous
space with wrap-around boundaries. Below, we describe the
two-dimensional model, from which the corresponding one-
dimensional model is readily generated by removing the spatial
y-dimension. Each individual has a spatial location and is
characterized by a display trait (expressed only in males) and a
preference trait (expressed only in females). In our main set of
model runs, these traits are assumed to be governed by separate
unlinked haploid loci, each with two alleles (display alleles are
denoted by Q/q and preference alleles by P/p). Each generation,
N individuals are produced and compete for resources, with those
experiencing stronger competition being more likely to die before
reaching reproductive maturity. Resources in our model may be
interpreted in the broadest possible sense, describing the biotic
and abiotic factors that are subject to local ecological competition.
Among the individuals surviving ecological competition, females
choose mates, with the probability of a speci�c male being chosen
depending on her mating preference and the spatial distance
separating them. Females produce o�spring in proportion to their
fecundities. O�spring then disperse from their natal location and
the parents die. Below we detail these steps in the order in which
they occur. �e names and descriptions of parameters and variables
are listed in Table S1.

S1.1 Competition for resources
�e habitat at each location (x , y) is characterized by the local
density k(x , y) of available resources.�e total amount of resources
over the spatial arena is given by K = ∬ k(x , y) dx dy. �e
function relating resource gain to survival is chosen such that if
every individual received an equal share of these resources, the
expected number of survivors would beK. Consequently, we refer to
k(x , y) as the local carrying capacity and to K as the total carrying
capacity. Except for Figs. 4 and S7, we investigate a local carrying
capacity that is symmetrically bimodal, with two peaks located at
(x , y) = (0.25, 0.25) and (x , y) = (0.75, 0.25). If constructed
simply by summing two Gaussians centred at these peaks, resource
availability would not be symmetric about the peaks. To avoid such
an asymmetry, we construct a periodic landscape given by
k(x , y) =

(b +∑
i , j

exp(−
(x−(0.25 + i/2))2 + (y−(0.25 + j/2))2

2σ 2
k

))k0 ,
(1)

for x in [0, 1] and y in [0, 0.5], where the sum is taken over all pairs of
integers, andwhere σk denotes the widths of theGaussian peaks.�e
parameters b and k0 allow us to adjust the average height and degree
of variation in k(x , y). Speci�cally, the height is adjusted such that
the total carrying capacity equals K, and the degree of variation is
adjusted to give the desired relation between peaks and troughs. For
the local carrying capacity in Eq. 1, it is natural, for easy comparison
between the one-dimensional and the two-dimensional model, to
measure the degree of spatial variation along the transect spanning
both peaks as

v =
max k(x , y) −min k(x , y)

min k(x , y)
. (2)

A value of v = 0.25 therefore means that the local carrying capacity
is 25% higher at the peaks than at the troughs between them.

Table S1 ∣Model parameters and model variables

Symbol Eq. Description

Model parameters
a Strength of selection against Q-bearing males (only

S2.10)
k(x , y) 1 Local carrying capacity at location (x , y)
l 12 Strength of mating-dependence in male dispersal

(only S2.1)
m 11 Strength of mate-search costs
smax 6 Maximum survival probability
v 2 Spatial variation in local carrying capacity
K Total carrying capacity
N Number of o�spring
α 8 Strength of female preference
fmax 9 Maximum female fecundity
λ 13 Strength of density-dependent competition
σf 7 Width of female-preference distribution
σk 1 Width of peaks in local carrying capacity
σm Width of movement distribution
σo Width of o�spring distribution (only S2.9)
σp 14 Width of female preference (only S2.9)
σs 4 Width of competition distribution
Model variables
ci 11 Mate-search costs of female i
dij 4 Spatial distance between individuals i and j
eij 7 Propensity for female i to encounter male j
fi 9 Fecundity of female i
nij 4 Competitive e�ect of individual j on individual i
pij 8 Propensity for female i to choose male j as a mate
si 6 Survival probability of individual i
µi 10 Local density of preferred males as seen by female i
ρi 3 Resource share of individual i

For Fig. S7, landscapes are generated in a similar way, except that the
heights andwidths of the two peaks di�er. For Fig. 4, the landscape is
generated by adding white noise to the baseline level, �ltered to have
a reasonable amount of spatial autocorrelation,with the highest peak
set to twice the height of the lowest trough.
�rough competition, each individual obtains a share of the local

carrying capacity, which we refer to as its resource share,

ρi =
k(xi , yi)
∑ j nij

, (3)

where nij is the contribution of individual j to the e�ective density
of competitors at the location of individual i, and the sum extends
over all N individuals. �e competitive impact of individual j
on individual i decreases with the distance dij separating them,
according to a Gaussian function with standard deviation σs,

ni j = exp(−d2
ij/(2σ

2
s ))/(2πσ

2
s ) ; (4)

in the one-dimensional model, the divisor is
√
2πσs. Note that the

e�ect nii of an individual i on itself declines as σs increases, because
the individual then competes for resources over larger distances and
thus has less of a negative impact on its available resources.
As de�ned, the resource share of an individual i is typically near

K/N . �is can be seen by assuming that the N individuals in the
population are distributed over the arena according to the local
carrying capacity, so that their expected density is N k(x , y)/K.
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Figure S1 ∣ Variation in three components of �tness as a function of
the local carrying capacity experienced by each individual at t = 1000
for the model run in Fig. 1d. Individuals are coloured according to their
genotype at the display locus. a, Resource share ρi in males and females.
b, Survival probability si of males and females. c, Mate-search costs ci
of females that survive competition. �ick lines show least-squares linear
regressions.

Replacing the sum over individuals in Eq. 3 with an integral over
space, we obtain

ρi =
k(xi , yi)

∬
N k(x ,y)

K
exp(−((xi−x)2+(yi−y)2)/(2σ 2

s ))

2πσ 2
s

dx dy

= K/N + O(v) ,

(5)

where the second line assumes that spatial variation in the local
carrying capacity is low. In our individual-based model runs,
departures from the above occur due to clumping, fecundity
variation over space (Section S1.4), as well as discrepancies due to
replacing the sum in Eq. 3 with the integral in Eq. 5 (especially when
σs is very small or large relative to the arena). �at said, the mean
resource share is typically close to K/N in our model runs.
In Fig. S1 we show the e�ect of spatial variation in local carrying

capacity k(xi , yi) on various components of �tness, including the
resource share ρi . Interestingly, ecological competition is weaker
(ρi is higher) in regions of low carrying capacity (Fig. S1a),
increasing the survival probability si of individuals in these regions
(Section S1.2 and Fig. S1b).�is occurs because females are less likely
to encounter preferred males wherever the carrying capacity is low,
causing their fecundity to be lower due to increased mate-search
costs ci (Section S1.4 and Fig. S1c). Consequently, fewer o�spring are
produced than expected based on the low local carrying capacity,
resulting in weaker competition among those o�spring. �e net
result of lower ecological competition and higher mate-search costs
in regions with low local carrying capacity is that females have
roughly equal �tness across space.

S1.2 Survival
We assume that individuals that gain more resources are more
likely to survive to reproductive maturity. �e probability si of such
survival is assumed to be zero when an individual fails to gain any
resources, to rise approximately linearly with its resource share ρi
when that share is small, and to taper o� at a maximum survival
probability of smax (ranging between 0 and 1). Speci�cally, we use a

hyperbolic (or Holling type-2) function27 to relate resource share to
the probability of survival,

si =
smax

1 + r/ρi
, (6)

where r is the resource share that must be obtained for an individual
to survive with a probability equal to half the maximum survival
probability. Unless stated otherwise, we assume that the maximum
probability smax of surviving to reproductive maturity equals 1.
�e value of r is chosen to ensure that, on average, K individuals

survive to reproduce if all individuals obtain an equal share of
resources (ρi = K/N). By setting the expected survival probability
si to K/N in Eq. 6 and substituting ρi = K/N , we obtain r =
smax − K/N . With this choice of r, approximately K individuals
survive each generation (with a variance that is typically small).
For example, in Fig. S1, the average survival probability is 0.484,
close to the expected value of K/N = 0.5. While competition for
resources causes substantial mortality, survival probabilities across
the arena di�er only slightly (Fig. S1b). Importantly, the survival of
an individual does not depend on whether or not it is a hybrid.

S1.3 Mating
Of the individuals that survive to mate, the probability that female
i chooses male j as a mate depends on whether his display trait
matches her preference trait and on the spatial distance separating
them. Females bearing a P (p) allele prefer males bearing a Q (q)
allele by a factor α. We assume that females encounter males in the
vicinity of their home location. Speci�cally, each female spends a
proportion of time at distance dij from her home that is described
by a Gaussian distribution with standard deviation σf , so that her
encounter probability eij with a male at distance dij is proportional
to

eij = exp(−d2
ij/(2σ

2
f ))/(2πσ

2
f ) ; (7)

in the one-dimensional model, the divisor is
√
2πσf . In our main

model, we assume that females encounter resources and males over
the same spatial scales (i.e., σf = σs); we relax this assumption in
Fig. S6. �e probability that female i chooses male j as a mate is
proportional to

pij = αδij−1eij , (8)

where δij equals 1 when the display trait of male j matches the
preference trait of female i, and 0 otherwise. Once a female chooses
a mate, we assume that all her o�spring are sired by that male
(monogamy).

S1.4 Reproduction
�e fecundity of a female i is given by

fi = fmax(1 − ci) , (9)

where fmax is the maximum fecundity and ci (ranging from 0 to 1)
measures the cost associatedwith �nding a preferredmate for female
i. �e factor 1− ci is assumed to be zero when there are no preferred
males locally, to rise approximately linearly with the local density of
preferred males,

µi = ∑
males j

pij , (10)
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Figure S2 ∣ Mate-search costs for the model run in Fig. 1d. Panels in
column a are identical to those in Fig. 1d, except that only females are
shown and they are coloured according to their preference allele. Panels
in column b show the costs associated with searching for a mate and
rejecting non-preferred males for each female (Eq. 9), as a function of
her location y. Here, withm/K = 1, female fecundity is typically only halved
by mate-search costs.

and to taper o� at 1 when preferred mates are readily encountered,
resulting in maximal fecundity. Speci�cally, we use a hyperbolic
(or Holling type-2) function28,

1 − ci =
1

1 +m/µi
, (11)

where m is the value of µi at which a female’s fecundity is halved
by mate-search costs. Because µi is obtained by summing over the
entire male population, its value can be large, on the order of the
number of surviving males, so values of m on the order of the
surviving population’s size K are needed for costs to be appreciable.
�is is why we express m relative to K, specifying the ratio m/K in
the �gures. We refer to ci as the mate-search cost of female i and to
m as the strength of mate-search costs.
Unless noted otherwise, we use m = 500. In our main set of

model runs (with m/K = 1), mate-search costs reduce female
fecundity by about 50%, on average, from the maximum fecundity
(Fig. S1c), with relatively minor di�erences in fecundity among
females over space. Other values of m are explored in Fig. 3. For
m = 0, all females have equal and maximal fecundity. As m is
raised, fecundity declines and becomes more variable, with females
in low-density regions or surrounded bynon-preferredmales having
lower fecundity (Fig. S2).
A�er mating, o�spring are produced. Inheritance at both loci

is Mendelian, and we assume no linkage between the display and
preference loci, except where noted (Section S2.9). To allow us to
explore various parameters relating to competition andmate-search
costs independently, we hold the total number of o�spring constant
at N . For each o�spring, a mother is chosen in proportion to the
females’ fecundities. Consequently, the maximum fecundity fmax
only matters insofar as it is high enough to result in at least N
o�spring being produced across the population. Similar patterns
are observed when fmax is �xed and o�spring numbers are given
by a Poisson distribution with a mean of fi for each female (data
not shown). We consider N to be the total number of o�spring
surviving the phase during which resources are largely provided by
the parents, a�er which the o�springmove and begin the next phase
of competition for resources.
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Figure S3 ∣ E�ects of mating-dependent dispersal in males. Panels show
distributions of allele frequencies at the display locus through time across
1000 replicate model runs in a two-dimensional landscape with a uniform
local carrying capacity; coexistence occurs only when these frequencies
remain intermediate. Darker shading indicates a higher probability of
observing a given frequency of the Q allele. Panel a is identical to Fig. 2b.
Panel b is the same as a, except with mating-dependent dispersal in males
(l = 100). Results for other values of l are qualitatively identical. Model runs
are initialized as in Fig. 2. All other parameters are as in Fig. 1b.

S1.5 Movement
Each o�spring moves from its mother’s location according to
a distance drawn from a Gaussian function with mean 0 and
standard deviation σm.Movements occur in all directions with equal
probability.

S2 MODEL EXTENSIONS
To assess the robustness of our results, we consider several
extensions and/or modi�cations to our main model described
above.

S2.1 Allowing mating to impact dispersal
To compare our results with those of Payne and Krakauer16,
we consider mating-dependent dispersal. In their model, male
movement distances are lower for males with better mating
prospects, and we thus assume that the movement distance of male
j is drawn from a Gaussian function with mean 0 and standard
deviation

σm, j = σm exp( − l ∑i pij
∑i ,k pik

) , (12)

where l determines how quickly movement distances decrease with
increasing mating prospects and pij is given by Eq. 8 in Section S1.3.
For l = 0, the above reduces to our main model. We �nd
that the addition of mating-dependent dispersal in males extends
coexistence times only marginally, if at all (compare Fig. S3a to
S3b). We also examine the related case in which males with low
mating prospects move farther, but again, coexistence times are not
appreciably prolonged in our individual-based model.

S2.2 Introducing multiple allelic types
To examine whether long-term coexistence of more than two types
is possible, we extend our main model so that one of n alleles
p1 , . . . , pn can occur at the preference locus and one of n alleles
q1 , . . . , qn can occur at the display locus. Speci�cally, in Fig. 4,
we consider n = 10 preference and display types. A female with
preference allele pi prefers males with display allele qi to all other
males by the factor α. All other components of mate choice remain
the same as for our main model with n = 2 mating types.
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Figure S4 ∣ Conditions for long-term coexistence with competition-
dependent fecundity (Section S2.3) in a two-dimensional bimodal
landscape. All parameters are as in Fig. 3.

S2.3 Allowing competition to impact fecundity
In our main model, competitive interactions reduce the survival
probability of an individual. Alternatively, individuals that gain
fewer resources might survive, but have lower fecundity. To explore
this possibility, we allow all N o�spring to survive, while reducing
their reproductive success according to the impact of competition,
as measured by si . Speci�cally, for males, the probability of being
chosen as a mate is set to pij = αδij−1eijsi . Likewise for females,
fecundity is set to fi = fmax(1 − ci)si . Such competition-dependent
fecundity generates less demographic stochasticity, because all
individuals reach reproductive maturity and can mate, albeit with
reduced probability when their resource share ρi is low. Indeed,
all else being equal, incorporating competitive e�ects on fecundity,
rather than survival, enables long-term coexistence over a wider
range of parameters (compare Fig. S4 to Fig. 3).

S2.4 Altering the strength of density-dependent competition
We de�ne the strength of density-dependent competition as

λ = r/(1 − K/N), (13)

with r = smax − K/N (Section S1.2). In our main model, the
maximum survival rate smax is set to 1 so that λ = 1, indicating that
survival is strongly density-dependent. At the other extreme, if smax
is set to K/N , all individuals survive with probability smax = K/N ,
regardless of their resource share, so there is no density-dependent
e�ect on survival (λ = 0). As shown in Fig. S5b, coexistence
does not occur in the absence of density dependence (λ = 0);
spatial variation in local carrying capacity then becomes irrelevant
and cannot stabilize mating domains in space. As the importance
of competition increases (larger λ, or equivalently, larger smax),
long-term coexistence can occur over a wider range of parameters.
Once about half of the mortality is due to density-dependent
competition (λ > 0.5), results become similar to those for λ = 1.

S2.5 Altering the impact of ecological competition
We explore the impact of ecological competition by varying the
expected survival probability s̄ = K/N of o�spring, while the
total carrying capacity K and the strength λ of density-dependent
competition are held constant (Fig. S5c).When the impact of ecolog-
ical competition is small (s̄ near 1), long-term coexistence requires
much higher levels of spatial variation in local carrying capacity.
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Figure S5 ∣ Minimum level of spatial variation v in local carrying
capacity needed to ensure long-term coexistence (shaded regions) in a
two-dimensional bimodal landscape. �e spatial variation v is increased
until the average persistence time of 20 replicate runs exceeded 10K
generations (vertical lines indicate standard errors). a, E�ect of the
strength α of female preference. Coexistence becomesmore likely as female
preferences become stronger (larger α), although once preference exceeds
α ≈ 5, its impact is small. b, E�ect of the strength λ of density-dependent
competition (varying smax while holding K = 500 and N = 1000 constant).
�e limit λ = 0 corresponds to completely density-independent survival,
while the limit λ = 1 corresponds to completely density-dependent survival.
c, E�ect of the expected survival probability K/N (varying N while holding
K = 500 and λ = 1 constant). Values near K/N = 0 correspond to very
strong ecological competition, while the limit K/N = 1 corresponds to
no ecological competition. d, E�ect of the total carrying capacity K and
m/K = 1 constant). All other parameters are as in Fig. 1d.

Once ecological competition is su�ciently strong (removing at least
40% of o�spring; s̄ < 0.6), results become less sensitive to s̄.

S2.6 Altering the degree of demographic stochasticity
If each of N o�spring survives with probability s̄, the number of
mating individuals follows a binomial distribution with mean Ns̄
and variance Ns̄(1 − s̄). �e resultant coe�cient of variation thus
equals

√
1/s̄ − 1/

√
N , which grows as s̄ shrinks. �e associated rise

in demographic stochasticity with smaller s̄ may contribute to the
slight rise in spatial variation in local carrying capacity required for
maintaining long-term coexistence below s̄ = 0.5 in Fig. S5c.
�e e�ects of demographic stochasticity can also be seen in

Fig. S5d, where the total carrying capacity K is varied (together with
the time point at which coexistence is evaluated, at generation 10K),
while the strength λ of density-dependent competition and the
expected survival probability s̄ = K/N are held constant. Because
we are interested in the e�ects of population size per se, we also
hold constant the relative strength of mate-search costs (m/K = 1),
so the ease with which females encounter preferred mates
remains una�ected by changes in K. All else being equal, larger
population sizes facilitate the long-term maintenance of coexisting
types, as expected given the associated reduction in demographic
stochasticity (the aforementioned coe�cient of variation falls in
proportion to 1/

√
N).

S2.7 Altering the spatial scales of competition, mate search,
and movement

In our main model, we equate the spatial scales of three processes:
competition (σs = 0.05), mate search (σf = 0.05), and movement
(σm = 0.05). Fig. S6 shows what happens when those three
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Figure S6 ∣ Minimum level of spatial variation v in local carrying
capacity needed to ensure long-term coexistence in a two-dimensional
bimodal landscape. �e spatial variation v is increased until the average
persistence time of mating types in 20 replicate runs exceeded 10K
generations (vertical lines indicate standard errors). �e three curves show
the e�ects of the width σs of the competition distribution (red), the width σf
of the mate-search distribution (green), and the width σm of the movement
distribution (blue), while holding all other parameters constant at their
values in Fig. 1d. In the other �gures, the following values (indicated by the
vertical dashed line) are used: σs = 0.05, σf = 0.05, σm = 0.05.
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Figure S7 ∣ E�ects of altering the shape of the local carrying capacity
(Eq. 1) in a two-dimensional bimodal landscape. Shading indicates how
long polymorphism persists at the display locus (darker = longer). Each cell
represents the mean time to loss of polymorphism for 10 replicate model
runs. Side panels indicate the extent of spatial variation in local carrying
capacity along transects at y = 0.25 for nine parameter combinations
indicated by the closest open circle. �e inset at the bottom center
corresponds to the parameter combination used in Fig. 3. Spatial variation
in local carrying capacity is relatively weak throughout this �gure, with v
ranging from 0.28 for σk = 0.01 (far le�) to 0.049 for σk = 0.2 (far right).
All other parameters are as in Fig. 1d.

spatial scales are varied independently. Coexistence is easier to
maintain if female mate search and movement are more localized
(smaller σf and smaller σm), because mating types predominating
in di�erent spatial regions then undergo less mixing. By contrast,
coexistence is easier tomaintain if competition occurs across awider
spatial range (larger σs), because individuals near the resource peaks

0 0.25 0.5
0.0

0.1

0.2

0.3

a
t  = 5,000

0 0.25 0.5

b
t  = 25,000

Allelic, free recombination
Allelic, no recombination
Quantitative,  σp  = 0.1
Quantitative,  σp  = 0.2
Quantitative,  σp  = 0.3

Spatial variation in local carrying capacity,  v 

Va
ria

nc
e 

in
 d

is
pl

ay
 tr

ai
t

Figure S8 ∣E�ects of changes in genetic architecture in a two-dimensional
bimodal landscape. Variance in display trait a�er 5, 000 (a) and 25, 000 (b)
generations for a variety of genetic architectures, averaged over 20 replicate
model runs (vertical lines indicate standard errors). �e dashed line
indicates the maximum possible variance in the allelic model (0.25). For
determining variances in the allelic model, alleles Q and q are assigned
trait values 0 and 1, respectively. In the quantitative genetic model, the
initial preference/display trait values are set to 0/0 or 1/1 (corresponding to
P/Q or p/q in the allelic model) with equal probability, yielding an initial
variance of 0.25. Over time, the variance of 0.25 can be exceeded due to
random genetic dri�. For comparison, the red curve shows results of our
main model. Model runs are initialized as in Fig. 2. All other parameters
are as in Fig. 1; in the quantitative genetic model, σo = 0.01.

then compete more strongly for resources in the troughs, reducing
population density there and thus promoting isolation of themating
types predominating near each peak.

S2.8 Altering the shape of the local carrying capacity
We also explore the spatial scale of the resource distribution by
varying the width of its peaks, as well as their relative heights, in
Fig. S7. Coexistence persists as long as both peaks can maintain
localized clusters of individuals.

S2.9 Incorporating alternative genetic architectures
Our main model assumes free recombination between the trait
and preference loci. Fig. S8 explores the e�ect of linkage, �nding
no substantial di�erences between complete linkage and free
recombination between the preference and display loci.
To test whether our �ndings are robust to changes in the number

of loci, we consider a quantitative genetic model in which an
individual’s preference and display traits are determined by two
quantitative characters. �is model can be interpreted as assuming
that a large (in�nite) number of additive loci code for each of the
two traits. Complementing our main model, which features a �nite
number of alleles, this extension allows for arbitrarily many mating
types. In this quantitative genetic model, the probability that female
i mates with male j is proportional to

pij = exp(−(pi − q j)
2
/(2σ 2

p))eij , (14)

where pi − q j is the di�erence between the preference trait of
female i and the display trait of male j, σp denotes the strength
of female preference (smaller σp means females are choosier), and
eij is proportional to the encounter probability between female i
and male j, as de�ned in Eq. 7. O�spring trait values are drawn
from a Gaussian function centred at the mean of the parental
phenotypes for each trait, with a standard deviation σo thatmeasures
the variation among o�spring due to segregation, recombination,
and mutation. All other details of the quantitative genetic model are
the same as for our main model.
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Figure S9 ∣ E�ects of asymmetric �tness costs of display traits in the
allelic model in a two-dimensional bimodal landscape. Variance in display
trait a�er 5, 000 (a) and 25, 000 (b) generations when males bearing the
(vertical lines indicate standard errors). �e dashed line indicates the
maximum possible variance in this allelic model (0.25). For comparison,
the red curve (identical to that in Fig. S8) shows results of our main model,
corresponding to the limit a = 0. Model runs are initialized as in Fig. 2.
All other parameters are as in Fig. 1.

Despite the di�erent genetic assumptions, the behaviour of the
quantitative geneticmodel closely resembles that of the allelicmodel
(Fig. S8). Long-term coexistence ofmating domains is again possible
over a wide range of parameters, provided female preferences are
su�ciently strong (small σp). As in the allelic model, loss of mating
domains in the quantitative geneticmodel, when it happens, tends to
occur through the replacement of one type by the other. Compared
with the allelic model, the quantitative genetic model exhibits two

additional mechanisms through which mating domains may be
lost. First, when female preference is weak (large σp), interbreeding
between adjacent mating domains may become so common that
the resultant o�spring form their own mating domains, facilitating
the merging of the original domains. Second, the random dri� of
matched trait and preference values in one mating domain may
cause them to coincide by chance with the values in an adjacent
mating domain, so the two originally separate domains may merge
due only to the random genetic dri� of quantitative mating traits
that results from segregation, recombination, and mutation in �nite
populations.

S2.10 Incorporating asymmetric display costs
Display traits can incur �tness costs in males. Our main model
assumes that such costs, if present, a�ect all individuals equally. It
may o�en be the case, however, that display traits di�er in their
e�ects on �tness. We therefore examine what happens when the Q
allele causes males to have a reduced survival probability relative
to those carrying the q allele (i.e., for Q-bearing individuals, the
survival probability si is reduced by a factor 1 − a, with a ranging
between 0 and 1). Provided that the resultant cost is not so strong that
the stabilizing e�ect of spatial variation in local carrying capacity
is overwhelmed by selection against Q-bearing males, our main
�ndings remain largely unchanged (Fig. S9).
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