
Supplementary Information

S1 Genetic Algorithm

Here we describe, in detail, the genetic algorithm used to search for optimal mixes of

plants. The algorithm begins with a randomly created initial “population” of N plant

mixes. Each of these mixes contains a subset of k plants drawn from the list of all avail-

able plants. Each subsequent iteration then consists of “selection”, “recombination”, and

“mutation”. While we require that each plant mix contain the same number of plants, we

can also find the optimum size of a plant mix by comparing model runs across different

plant mix sizes.

We let f denote our optimality criteria. By evaluating f (M

i

) and f (M

j

), where M

i

and

M

j

are two mixes of plants, we can directly compare the quality of different mixes (e.g.,

f is a function that assigns numeric scores to mixes of plants based on the restoration-

specific criteria).

S1.1 Selection

To select the next generation of mixes, a list of s · N mixes is created by sampling from the

current population, with replacement. The plant mixes in this new list are then ranked

and sorted according to the selection criteria function, f . The best N mixes are then used

to create the next generation. Increasing s intensifies the strength of selection. However,

it also reduces the amount of variation that is maintained throughout the optimization

which can possibly slow the rate of convergence.
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S1.2 Recombination

A fraction y of the population is selected to “reproduce sexually”. For each sexually re-

producing plant mix, a mate is chosen, at random, from the population of mixes used

in the previous generation (choosing individuals from the previous generation as mates

helps maintain variation). Any plants present in both mixes are necessarily present in the

recombinant. The plants that are not common to both mixes are then ordered as though

they are genes along a chromosome (how exactly they are ordered does not matter). Be-

ginning with the focal parent, and travelling along the “chromosome”, recombination

events then occur between adjacent plants with probability r to form a new “recombi-

nant” list. The resultant plants are then combined with those that were common to both

parents to produce the full recombinant mix. These recombinant plant mixes are then

combined with the fraction (1 � y) of mixes that did not undergo recombination to com-

plete the production of the pre-mutation offspring generation.

S1.3 Mutation

Plants within each mix “mutate” with probability µ. A mutation event replaces a plant

in the mix with another plant, chosen at random, from those not already in the mix. In-

creasing µ increases the rate of production of novel mixes. However, it also increases the

probability that a good mix will be mutated to one that is not as good.
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S2 Objective functions

S2.1 Pollinator visitation

To maximize pollinator visitation, we use the plant-pollinator interaction data to first con-

struct an m ⇥ n “visitation matrix” (denoted V). The rows of V correspond to the polli-

nator species, the columns to the potential plant species, and the (i, j) entry indicates the

number of records of pollinator species i visiting plant species j. We compute the visi-

tation score of plant mix M, denoted fV(M), by subsetting the visitation matrix to those

plants present in M and then summing all matrix elements. Consequently, for a given mix

size k, fV is maximized by the k plants that received the most visits across the data-set.

S2.2 Pollinator richness

To compute the richness score of a plant mix M, denoted fR(M), we identify how many

rows in the subsetted visitation matrix described above for visitation contain a non-zero

entry. In other words, for a mix of a given size, fR is maximized by the plant mix that is

visited by the greatest number of pollinator species.

S2.3 Floral phenology

One could use floral phenology to select a plant mix in multiple ways, and exactly how

should depend on the data available and the goals of the restoration. Here we provide

two representative approaches.

The first requires a record of calendar dates on which each visitation occurred. We use

these to infer the duration of a flower’s “bloom period”, defining it for each plant species

as the range of dates spanning all recorded visits across all pollinators. Alternatively, if

direct phenological measurements of bloom were available, we could instead use those
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or, alternatively, one might wish to use percentiles instead of extremes. However, a full

evaluation of how one computes the bloom period of a plant species is not our goal here.

Once we have computed bloom periods, we then classify a pollinator as “supported” by

a mix if the bloom periods of the included plants visited by that pollinator collectively

cover the flight season of that pollinator. The phenology score for a particular mix, de-

noted by fT(M), is then equal to the number of pollinators whose flight seasons are fully

supported. Here, the subscript T is used to indicate that this metric is based on the timing

of interactions.

The second method is less data intensive, requiring bloom periods for the candidate

plant species but not visitation records. First, we split the season into some number of

time intervals (e.g., months or weeks). For plant species i, we define the matrix x where

x

i,j = 1 if plant species i flowers during time period j and 0 otherwise. Ideally, we want

to select plant mixes that have many species blooming in each interval and few intervals

with nothing blooming. If we let the vector y denote the number of species blooming in

interval j (specifically, y

j

= Â
i

x

i,j), then we can accomplish this by computing a modified

geometric mean of the elements of y. Specifically, we define

fB(M) = n

vuut
n

’
j=1

(y
j

+ 1) (S1)

where n denotes the number of time intervals or, equivalently, the length of the vector

y. Unlike the arithmetic mean, the geometric mean penalizes heavily mixes with small

values, thus favoring mixes that promote season-long evenness of flowering. However,

because the geometric mean is multiplicative, it equals zero when any single entry is zero.

Thus we add 1 to each entry in the above product. The subscript B is used here to indicate

that this metric is based on bloom periods.

Neither of these objective functions account for uncertainty in our knowledge of the
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timing of plant-pollinator interactions. For example, it is possible that our estimated flight

seasons or bloom periods for some species are too long or too short, or some phenologies

may change from year to year. One could accommodate such uncertainty by modifying

these functions appropriately. For example, in the case of fB, we could require that polli-

nator flight seasons be buffered on either side by some number of intervals. Optimizing

fT does not require any pollinator information, however, because it simply finds the mix

of plants that provides the most even floral sequence. In this case, one could shorten the

estimates of plant bloom periods by a given percentage before optimization, which would

force selection of mixes that have greater bloom overlaps.

S2.4 Composite objective functions

While the functions introduced above have all been constructed to evaluate single crite-

rion, construction of objective functions that simultaneously maximize multiple criteria

can be accomplished easily by combining these simpler functions. For example, to max-

imize both pollinator visitation and richness, the required objective function could be

constructed by multiplying together the appropriate simple objective functions, giving

fVR(M) = fV(M) ⇤ fR(M). By combining multiplicatively, the component objective func-

tions are weighted equally and thus the composite objective function will be maximized

by plant mixes that maximize this product. Thus, the units of measurement for each com-

ponent objective function need not be comparable. More complex methods for combining

these objective functions could also be constructed, should one want to weight visitation

more heavily than richness, for example.
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