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Introduction

This is a class about models.

4 / 13



Introduction

It can be helpful to differentiate two major classes of models:

1. Statistical models

These are data-dependent models
that require data in order to test
hypotheses about the empirical
world.

2. Mathematical models

These are data-independent models
that usually generate empirically
testable hypotheses.

These can intersect (e.g., you could fit statistical models to generate parameter
estimates that then go into a mathematical model). We will focus on the latter here.
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Introduction

Within the class of Mathematical models, they can again be split into two helpful
categories:

1. Applied models

Stock-recruit (MSY)

These models aim to provide insight
into specific empirical systems.

Typically, these are parameter heavy
(in order to capture the biology of a
system) and do not generalize to
other systems.

2. Theoretical models

Predator-prey models (stable
limit-cycles)

These models aim to provide general
insights that improve our overall
understanding about how things
could/should work.

However, they lack the realism to be
accurately model specific systems.
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Introduction

Historically, mathematicians and
statisticians did everything by hand.

Today, we are fortunate to live in
the age of computers. It is no longer
necessary to be mathematicans to
analyze fairly sophisticated models.

For models that cannot be “solved”
by computers, one can run
simulations using R, C, C++, for
example.

Our goal in this class is to learn to
use computer simulations to model
basical population dynamics.
Ultimately, in three weeks, you
should be able to analyze your own
models!
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Example model

Mathematics permeates biology, from simple back-of-the-envelope calculations to the
development of sophisticated mathematical models.

As an example, in any given issue of Nature/Science, several of the biological articles
are likely to be based on research involving mathematical models.

A good example is a paper by Phillips:

Phillips, A. N., 1996. Reduction of HIV Concentration During Acute Infection:
Independence from a Specific Immune Response. Science 271:497-499.

8 / 13



Example model

Mathematics permeates biology, from simple back-of-the-envelope calculations to the
development of sophisticated mathematical models.

As an example, in any given issue of Nature/Science, several of the biological articles
are likely to be based on research involving mathematical models.

A good example is a paper by Phillips:

Phillips, A. N., 1996. Reduction of HIV Concentration During Acute Infection:
Independence from a Specific Immune Response. Science 271:497-499.

8 / 13



Example model

Mathematics permeates biology, from simple back-of-the-envelope calculations to the
development of sophisticated mathematical models.

As an example, in any given issue of Nature/Science, several of the biological articles
are likely to be based on research involving mathematical models.

A good example is a paper by Phillips:

Phillips, A. N., 1996. Reduction of HIV Concentration During Acute Infection:
Independence from a Specific Immune Response. Science 271:497-499.

8 / 13



Example model

Excerpts from the paper:

− The model is defined by four equations describing the interrelated changes over
time in the number of activated, uninfected CD4 lymphocytes (R), latently
infected cells (L), actively infected cells (E), and free virions (V ).

− These equations can be explained as follows.
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Example model

Activated, uninfected CD4 lymphocytes arise at a constant rate Γτ , where Γ is the
rate at which new, uninfected CD4 lymphocytes arise and τ is the proportion that are
activated and are removed by HIV-independent death at rate µ or by infection at rate
βV .

dR

dt
= Γτ−µR−βVR

Upon infection, a proportion p of cells become latently infected, and these are
removed either by HIV-independent cell death or by activation at rate α.

dL

dt
= pβRV−µL−αL (1)

Actively infected cells are generated immediately after infection or from the activation
of latently infected cells before they die at rate δ.

dE

dt
= (1 − p)βRV+αL−δE (2)

Free virions are produced at rate π by actively infected cells and removed at rate σ.

dV

dt
= πE−σV (3)
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Example model

Figure: Flow diagram.
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Example model

Reduction of HIV Concentration During
Acute Infection: Independence from a

Specific Immune Response
Andrew N. Phillips

After infection with the human immunodeficiency virus (H IV), the concentration of the virus
in the person's plasma increases. The subsequent decrease in concentration a few weeks
later was thought to result from an HIV-specific immune response. This purported causal
relation is investigated with a model of the dynamics of early HIV infection that incor-
porates no increase in the rate of removal of free virions or virus-infected cells. A pattern
of changes in virus concentration similar to that observed in patients is predicted by the
model. Thus, the reduction in virus concentration during acute infection may not reflect
the ability of the HIV-specific immune response to control virus replication.

Within a few months of infection with
HIV, the concentration of the virus in plas-
ma tends to increase transiently (1, 2). It
has been assumed that the concentration
then falls because of the host's HIV-specific
immune response, which has been demon-
strated in some patients around this time
(3). A mathematical model of the popula-
tion dynamics of early HIV infection was
defined to investigate this causal relation.

The model considers a notional repre-
sentative quantity of tissue or blood that
would on average contain 1000 CD4 lym-
phocytes in an uninfected individual. This
could be, for example, 1 mm3 of peripheral
blood or a much smaller volume of T cell-
rich areas of lymph nodes. The total
(whole-body) inoculum of HIV was as-
sumed to consist of 100 virions, but there
were initially no infected cells. The model
is defined by four equations describing the
interrelated changes over time in the num-
ber of activated, uninfected CD4 lympho-
cytes (R), latently infected cells (L), active-
ly infected cells (E), and free virions (V).
These equations can be explained as fol-
lows. Activated, uninfected CD4 lympho-
cytes arise at a constant rate FT, where F is
the rate at which new, uninfected CD4
lymphocytes arise and T is the proportion
that are activated, and they are removed by
HIV-independent death at rate pi or by
infection at rate fV

dR
d = FT - pR- RVdt (1)

Upon infection, a proportion p of cells be-
come latently infected, and these are re-
moved either by HIV-independent cell
death or by activation at rate ox

(2)

Actively infected cells are generated imme-

HIV Research Unit, Department of Primary Care and
Population Sciences, Royal Free Hospital School of Med-
icine, Rowland Hill Street, London NW3 2PF, UK.

diately after infection or from the activa-
tion of latently infected cells before they die
at rate 8

dE
d = (1-p)RV+ oL-bE (3)dt

Free virions are produced at rate wr by ac-
tively infected cells and removed at rate a

dV
dt = rE-UV (4)

Imporantly, the appearance of an immune
response to HIV some weeks to months
after infection is ignored; the rates of re-
moval of free virions (a) and infected cells
(b) were assumed to remain constant over
time from infection.

This model is similar to basic versions of
models of HIV infection previously defined
by others (4, 5) and is adapted from the
model presented by McLean et al. (4). The
model, however, has not previously been
used to study primary (acute) HIV infec-
tion. The patterns generated by the model

(s
4)

0
0.
E

0Rlo

(Fig. 1, with parameter values from Table 1)
approximate those actually observed in pa-
tients (1, 2, 6), with a transient peak in
virus concentration (to a concentration
equivalent to about 107 RNA copies per
milliliter) a few weeks after infection and a
corresponding rapid decline in CD4 lym-
phocyte count that then stabilizes.

The rapid decline of the virus concentra-
tion after its high peak a few weeks after
initial infection (Fig. 1) was not a result of the
introduction of any immune response, as no
increases in the rates of removal of free virions
or virus-infected cells at the time of the peak
were incorporated into the model. The de-
crease was simply a result of population dy-
namics. The determinant of free-virus con-
centration over the short term is the number
of free virions produced by an average virion
during the course of a generation. This num-
ber rises rapidly in the first weeks after infec-
tion because free virions can find suitable
activated, uninfected cells to infect relatively
easily, and these newly infected cells in turn
produce more virions; the average number of
new virions produced per virion in one gen-
eration is above one, and therefore, their
number increases. Numbers of infected cells
and free virions thus become high. However,
the decline in the number of activated unin-
fected cells available (as a result of the pre-
mature death of cells that become infected)
means that free virions find it relatively more
difficult to find suitable uninfected cells to
infect and thus to reproduce themselves. At
some point the number of free virions pro-
duced by an average virion during the course
of a generation declines below one, and the
number of free virions thus begins to decrease.
After the initial peak of virus, the model
predicts an equilibrium state with total CD4
lymphocyte count [1000(1 - T) + R + E +
LI, R, E, L, and V remaining constant for an

lu

Ca

Fig. 1. Temporal changes in the number of (A) total CD4 lymphocytes [1000(1 - T) + R + L + E] and free
virions (V) and (B) activated, uninfected CD4 lymphocytes (R), latently infected cells (L), and actively
infected cells (E) in the first 120 days after HIV infection as predicted by the model on the basis of a
simulation with iterations of step length 1 hour and 20 min. The total (whole-body) inoculum of HIV was
assumed to consist of 100 virions (and no infected cells); thus, there were initially 4 x 10-7 virions in the
quantity being considered.
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A decrease in virus after initial infection was originally thought to result from an
HIV-specific immune response.

The model presented here does not include any increases in the rate of removal of HIV
after infection and shows such a decrease can still occur.
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HIV-independent death at rate pi or by
infection at rate fV

dR
d = FT - pR- RVdt (1)

Upon infection, a proportion p of cells be-
come latently infected, and these are re-
moved either by HIV-independent cell
death or by activation at rate ox

(2)

Actively infected cells are generated imme-

HIV Research Unit, Department of Primary Care and
Population Sciences, Royal Free Hospital School of Med-
icine, Rowland Hill Street, London NW3 2PF, UK.

diately after infection or from the activa-
tion of latently infected cells before they die
at rate 8

dE
d = (1-p)RV+ oL-bE (3)dt

Free virions are produced at rate wr by ac-
tively infected cells and removed at rate a

dV
dt = rE-UV (4)

Imporantly, the appearance of an immune
response to HIV some weeks to months
after infection is ignored; the rates of re-
moval of free virions (a) and infected cells
(b) were assumed to remain constant over
time from infection.

This model is similar to basic versions of
models of HIV infection previously defined
by others (4, 5) and is adapted from the
model presented by McLean et al. (4). The
model, however, has not previously been
used to study primary (acute) HIV infec-
tion. The patterns generated by the model

(s
4)

0
0.
E

0Rlo

(Fig. 1, with parameter values from Table 1)
approximate those actually observed in pa-
tients (1, 2, 6), with a transient peak in
virus concentration (to a concentration
equivalent to about 107 RNA copies per
milliliter) a few weeks after infection and a
corresponding rapid decline in CD4 lym-
phocyte count that then stabilizes.

The rapid decline of the virus concentra-
tion after its high peak a few weeks after
initial infection (Fig. 1) was not a result of the
introduction of any immune response, as no
increases in the rates of removal of free virions
or virus-infected cells at the time of the peak
were incorporated into the model. The de-
crease was simply a result of population dy-
namics. The determinant of free-virus con-
centration over the short term is the number
of free virions produced by an average virion
during the course of a generation. This num-
ber rises rapidly in the first weeks after infec-
tion because free virions can find suitable
activated, uninfected cells to infect relatively
easily, and these newly infected cells in turn
produce more virions; the average number of
new virions produced per virion in one gen-
eration is above one, and therefore, their
number increases. Numbers of infected cells
and free virions thus become high. However,
the decline in the number of activated unin-
fected cells available (as a result of the pre-
mature death of cells that become infected)
means that free virions find it relatively more
difficult to find suitable uninfected cells to
infect and thus to reproduce themselves. At
some point the number of free virions pro-
duced by an average virion during the course
of a generation declines below one, and the
number of free virions thus begins to decrease.
After the initial peak of virus, the model
predicts an equilibrium state with total CD4
lymphocyte count [1000(1 - T) + R + E +
LI, R, E, L, and V remaining constant for an

lu

Ca

Fig. 1. Temporal changes in the number of (A) total CD4 lymphocytes [1000(1 - T) + R + L + E] and free
virions (V) and (B) activated, uninfected CD4 lymphocytes (R), latently infected cells (L), and actively
infected cells (E) in the first 120 days after HIV infection as predicted by the model on the basis of a
simulation with iterations of step length 1 hour and 20 min. The total (whole-body) inoculum of HIV was
assumed to consist of 100 virions (and no infected cells); thus, there were initially 4 x 10-7 virions in the
quantity being considered.
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A decrease in virus after initial infection was originally thought to result from an
HIV-specific immune response.

The model presented here does not include any increases in the rate of removal of HIV
after infection and shows such a decrease can still occur.
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What is population dynamics?

So, what is “population dynamics”?

You could think of it as “Population Book-keeping”

− used to investigate how populations change (or stay the same!) over time

− described by fundamental statistics:

− B: number of births

− D: number of deaths

− I : number of immigrants

− E : number of emigrants

Nt+1 = Nt +Bt−Dt + It−Et

This equation will form the basis for the first models we will investigate in this class.
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