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Pablo Escobar’s Hippos Keep Having Sex and
No One Is Sure How to Stop Them

The drug lord is long gone, but his hippos are still terrorizing the
Medellin countryside.
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Introductio

When drug kingpin Pablo Escobar was killed by the Colombian National
Police in 1993, he left a vast and bloody legacy in his wake. The Medellin
Cartel boss is regarded as one of the most prolific criminals in history, and is
notorious for having built a cocaine-fueled empire on the bodies of
thousands of murdered individuals.

But El Patron is also remembered by more than 50 hippopotamuses
(Hippopotamus amphibius) that currently roam free near his palatial estate,
Hacienda Napoles. Escobar's captive hippos were never meant for the rivers
and estuaries of northern Colombia, yet since his death they've behaved as
wild animals are wont to: by vigorously breeding and multiplying, slowly

establishing th as the largest invasive species in the world.

Today, it appears their troublesome reign is nowhere near ending because

no one really knows how to stop them.
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Introduction

In 1937, two cocks and six hen pheasants were introduced onto an island off the coast
of Washington. Over the next five years the population experienced exponential
growth (Lack 1954):
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Discrete versus continuous time

In the first lecture, we referred to Population Dynamics as “Population Book-keeping”
— We created a simple model containing:
— B: number of births
— D: number of deaths
— I: number of immigrants

— E: number of emigrants
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— We created a simple model containing:
— B: number of births
— D: number of deaths
— I: number of immigrants

— E: number of emigrants
N[t+1] = N[t] + B[t]-D[t]+I[t]-E[t]

This model is in discrete time. The population’s state at time t + 1 depends on its
state at time t. This equation is referred to as a recursion equation.

In contrast, the HIV example we looked at was in continuous time:

dR[t]
dt

=7 - pR[t] - BV[t]R[t]

Continuous time equations are referred to as differential equations.

How you analyze a model and the behaviour of the model both can depend on
whether time is discrete or continuous.
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Density-independent and density-dependent population growth

Population abundances change over time in response to:

— food/resource availability
— weather

— competition

— predation

disease
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Population abundances change over time in response to:

— food/resource availability
— weather

— competition

— predation

— disease

The simplest models describing population size are exponential growth and logistic
growth, which assume:

constant food and resource availability
— a constant environment

— no interactions with other species

— no disease

The exponential model also assumes no competition among the members of a species
for the available resources (density-independent), while the logistic model includes
competition within a species (density-dependent).

Both of these models can be described by equations in discrete or continuous time.

We'll start with the exponential model.
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If we assume that each individual produces, on average, b offspring, and has a
probability d of dying, then we can replace B[t] with bN[t] and D[t] with dN[t]:

N[t+1]= N[t]+bN[t]-dN[t]=N[t]+ (b-d)N[t]

(b—d) is a constant term referred to as the geometric rate of increase and often
denoted R.

N[t+1]=N[t]+RN[t] = (1+ R)N[t]

(1+ R) is a constant that is often replaced with .
N[t+1] = AN[t]

This is a recursion equation for exponential growth.
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Exponential Growth in Discrete Time

N[t +1]=AN[t]
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Exponential Growth in Discrete Time

N[t +1]=AN[t]

At time 0, there will be N[0] individuals, by definition.
At time 1, there will be N[1] = AN[0] individuals.
At time 2, there will be N[2] = AN[1] = A(AN[0]) = A>N[0] individuals.

At time t, there will be N[t] = AN[t —1] = --- = A*N[0] individuals.
This yields the general solution:

N[t] = A*N[0]
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Exponential Growth in Discrete Time

General solution: N[t] = AfN[0], N[0] = 5.
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Exponential Growth in Discrete Time

General solution: N[t] = AfN[0], N[0] = 5.
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Calculating A

Suppose we have some population counts. How do we calculate A7
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Calculating A

Suppose we have some population counts. How do we calculate A7

GO WN R~ Ot

Re-arranging N[t + 1] = AN[t] gives us:

Ao N[t+1]
CN[t)
With this equation and our data, we can calculate 5 estimates of \:
A1 =5/1=5
A =35/5=7

A3 =80/35=12.29

A4 =326/80 = 4.075

A5 =1956/326 = 6

The average of these, 4.87, gives us an estimate of .
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Exponential Growth in Continuous Time
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Exponential Growth in Continuous Time

The model of exponential growth in continuous time follows from the assumption that
each individual reproduces at a constant rate r = b — d, regardless of population size.

If there are N[t] individuals in the population at time t, then the rate of change of the
whole population will be:

dN[t]
dt

= bN[t] - dN[t] = rN[t]

This is the differential equation describing the rate of change of the population size.

What is the solution to this differential equation?

dN
g =rN Now, substituting t = 0, we can solve for C,.
%dN = rdt N[0]=e"C = G
1 and thus we have
f N = / rdt
_art
In(N[t]) = rt + 1 N[t] = e"N[O]
N[t] _ ert+C1
N[t] = Tl = "G,
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Exponential Growth in Continuous Time

General solution: N[t] =e"N[0]

General solution from discrete time model: N[t] = A*N[0]
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Exponential Growth in Continuous Time

General solution: N[t] =e™N[0]
General solution from discrete time model: N[t] = A*N[0]
Notice that these are the same if we define A = e”.

Also notice that there can be exponential decline in population size if A <1 in the
discrete time model or r < 0 in the continuous time model.

Exponential growth cannot, however, continue indefinitely.

Had the pheasants continued to grow exponentially, there would have been 7 million
of them by the year 1950 and 10%® by now — which at 2 kg per pheasant is 3000 times
the mass of the earth!!

In fact, Lack observed that “the figures suggest that the increase was slowing down
and was about to cease, but at this point the island was occupied by the military and
many of the birds shot.”
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