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Discrete versus continuous time

In the first lecture, we referred to Population Dynamics as “Population Book-keeping”

− We created a simple model containing:

− B: number of births

− D: number of deaths

− I : number of immigrants

− E : number of emigrants

N[t + 1] = N[t] +B[t]−D[t] + I [t]−E[t]

This model is in discrete time. The population’s state at time t + 1 depends on its
state at time t. This equation is referred to as a recursion equation.

In contrast, the HIV example we looked at was in continuous time:

dR[t]
dt

= Γτ − µR[t] − βV [t]R[t]

Continuous time equations are referred to as differential equations.

How you analyze a model and the behaviour of the model both can depend on
whether time is discrete or continuous.
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Density-independent and density-dependent population growth

Population abundances change over time in response to:

− food/resource availability

− weather

− competition

− predation

− disease

The simplest models describing population size are exponential growth and logistic
growth, which assume:

− constant food and resource availability

− a constant environment

− no interactions with other species

− no disease

The exponential model also assumes no competition among the members of a species
for the available resources (density-independent), while the logistic model includes
competition within a species (density-dependent).

Both of these models can be described by equations in discrete or continuous time.

We’ll start with the exponential model.
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denoted R.

N[t + 1] = N[t] + RN[t] = (1 + R)N[t]
(1 + R) is a constant that is often replaced with λ.

N[t + 1] = λN[t]

This is a recursion equation for exponential growth.
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Exponential Growth in Discrete Time

N[t + 1] = λN[t]

At time 0, there will be N[0] individuals, by definition.

At time 1, there will be N[1] = λN[0] individuals.

At time 2, there will be N[2] = λN[1] = λ(λN[0]) = λ2N[0] individuals.

⋯
At time t, there will be N[t] = λN[t − 1] = ⋯ = λtN[0] individuals.

This yields the general solution:

N[t] = λtN[0]
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Exponential Growth in Discrete Time

General solution: N[t] = λtN[0], N[0] = 5.
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Exponential Growth in Discrete Time

General solution: N[t] = λtN[0], N[0] = 5.
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Calculating λ

Suppose we have some population counts. How do we calculate λ?

t N[t]
0 1
1 5
2 35
3 80
4 326
5 1956

Re-arranging N[t + 1] = λN[t] gives us:

λ = N[t + 1]
N[t]

With this equation and our data, we can calculate 5 estimates of λ:
λ1 = 5/1 = 5
λ2 = 35/5 = 7
λ3 = 80/35 = 2.29
λ4 = 326/80 = 4.075
λ5 = 1956/326 = 6
The average of these, 4.87, gives us an estimate of λ.
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Exponential Growth in Continuous Time
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Exponential Growth in Continuous Time

The model of exponential growth in continuous time follows from the assumption that
each individual reproduces at a constant rate r = b − d , regardless of population size.

If there are N[t] individuals in the population at time t, then the rate of change of the
whole population will be:

dN[t]
dt

= bN[t] − dN[t] = rN[t]

This is the differential equation describing the rate of change of the population size.

What is the solution to this differential equation?

dN

dt
= rN

1

N
dN = rdt

∫
1

N
dN = ∫ rdt

ln(N[t]) = rt + C1

N[t] = ert+C1

N[t] = erteC1 = ertC2

Now, substituting t = 0, we can solve for C2.

N[0] = er0C2 = C2

and thus we have

N[t] = ertN[0]
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Exponential Growth in Continuous Time
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each individual reproduces at a constant rate r = b − d , regardless of population size.

If there are N[t] individuals in the population at time t, then the rate of change of the
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Exponential Growth in Continuous Time

General solution: N[t] = ertN[0]

General solution from discrete time model: N[t] = λtN[0]

Notice that these are the same if we define λ = er .

Also notice that there can be exponential decline in population size if λ < 1 in the
discrete time model or r < 0 in the continuous time model.

Exponential growth cannot, however, continue indefinitely.

Had the pheasants continued to grow exponentially, there would have been 7 million
of them by the year 1950 and 1028 by now – which at 2 kg per pheasant is 3000 times
the mass of the earth!!

In fact, Lack observed that “the figures suggest that the increase was slowing down
and was about to cease, but at this point the island was occupied by the military and
many of the birds shot.”
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