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Logistic Growth

Although populations may initially experience exponential growth, resources eventually
become depleted and competition becomes more severe.

This suggests that we must change the assumption that each individual will have the
same number of offspring on average, regardless of the population size.
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Logistic Growth in Discrete Time
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Logistic Growth in Discrete Time

0 50 100 150 200
−1

0

1

2

3

4

5 r  = 1,  K  = 100
r  = 2,  K  = 100
r  = 1,  K  = 50

N
um

be
r 

of
 o

ffs
pr

in
g 

pe
r 

pa
re

nt

Population size,  Nt

The expected number of offspring may depend on population size in any number of
ways.

The logistic equation assumes that the expected number of offspring decreases linearly
with population size:

Expected number of offspring per parent = 1 + r (1 − N[t]
K

)

A parent has, on average, one offspring if
r = 0 or if (1 −N[t]/K) = 0.
The latter holds when N[t] = K .

r is known as the intrinsic rate of growth, because it measures whether the
population tends to grow (r > 0) or shrink (r < 0).

K is known as the carrying capacity, because it measures the population size at which
the population produces exactly enough offspring to just replace itself.
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Logistic Growth in Discrete Time

The population size in the next generation is the expected number of offspring per
parent times the total number of parents:

N[t + 1] = (1 + r (1 − N[t]
K

))N[t]

This is the recursion equation describing the change in population size from
generation to generation under the logistic model.

This recursion is:

− a function of two parameters (r ,K)

− a non-linear function of one variable (N[t])
Non-linear means that there is a term in the equation where the variable is taken
to some power other than 1.

The change in population size from one generation to the next, ∆N, is given by

∆N = N[t + 1] −N[t] = r (1 − N[t]
K

)N[t]

When will the population grow in size?
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Logistic Growth in Discrete Time

N[t + 1] = (1 + r (1 − N[t]
K

))N[t]
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Logistic Growth in Continuous Time
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Logistic Growth in Continuous Time

The model of logistic growth in continuous time follows from the assumption that
each individual reproduces at a rate that decreases as a linear function of the
population size.

Rate of reproduction per parent = r(1 −N[t]/K).

If there are N[t] individuals in the population at time t, then the rate of change of the
population size will be:

dN[t]
dt

= r (1 − N[t]
K

)N[t]

This is the differential equation describing the rate of change in population size in the
logistic model.
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Logistic Growth in Continuous Time

Connection

The logistic equation reduces to the exponential equation under certain circumstances.

If K equals infinity, N[t]/K equals zero and population growth will follow the equation
for exponential growth.

If the population size, N[t], is much smaller than the carrying capacity, K , then
N[t]/K is small. In this case, the population will grow nearly exponentially (until the
it is no longer much smaller than K).
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Logistic Growth in Discrete vs Continuous Time

We can use the definition of the derivative to show that the continuous and discrete
time versions of the logistic are equivalent to each other as long as r is small.

Mathematical aside: Definition of the derivative:

df

dt
= lim

∆t→0

f (t +∆t) − f (t)
∆t

= lim
∆t→0

∆f

∆t

According to the discrete time model, as long as r is small, the population will change
(approximately) by:

∆N = r∆t (1 − N[t]
K

)N[t]

over the time interval ∆t near generation t as long as ∆t is not too great.

Using the definition of the derivative, we can use this equation to define the derivative
of the population size with respect to time in the discrete model:

dN

dt
= lim

∆t→0

∆N

∆t
= r (1 − N[t]

K
)N[t]

This is the same equation that we derived assuming a continuous time model.

If r is large, however, then the population can change in size rapidly over short periods
of time and the discrete and continuous time models give very different answers.
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An Example of Logistic Growth

Dr. Otto cultured haploid and diploid populations of Saccharomyces cereviseae. She
observed the following growth for the two types of cells:
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Although the population grows nearly exponentially at first, growth decreases as the
population size increases (density-dependent growth is observed).

The equilibrium population size (K) is larger for the haploid cells, but do haploid and
diploid cells have different intrinsic rates of increase (r)?
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An Example of Logistic Growth

By fitting the logistic equation to the data:

haploid: r = 0.62, K = 3.6 ∗ 108

diploid: r = 0.57, K = 2.0 ∗ 108

The r do not differ greatly (and are not significantly different for this data).

With these parameter estimates, the logistic model nicely fits the data:
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Note: This may be a bit misleading, as such excellent model fits are not often
observed outside of the laboratory with organisms other than microorganisms.
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