Numerical Analyses: Graphs
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Being able to “see” the results of a model is particularly important.
Often, the best first step in analysing a model is to graph the equations.

Today we will look at graphs that illustrate the behavior exhibited by the equations
that we have developed.

Discrete Time Continuous Time
Exponential Growth N[t+1] = (1+r)N[t] #Et] = rN[t]
Logistic Growth N[E+1] =(1+r(1— %)) npey | 9Nl =r(1— %)N[r]
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Exponential Growth Model (Discrete)

In this model, there is one parameter (r), where (1 + r) is the average number of
offspring per parent (we called this A when we looked at this model).

We will write a recursive function in R to generate values at different time points.
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Exponential Growth Model (Discrete vs. Continuous)

We can directly compare the discrete model (where growth is compounded per
generation) and continuous model (where growth is compounded continuously):

Discrete: n[t]=(1+r) "t*n0 (solid line)
Continuous: n[t]l=exp(r*t)*n0 (dashed line)
2000 — 2000 —
o 1500 — o 1500 —
N N
2] "
c c
.2 1000 — .2 1000 —
s s
3 3
S 500 S 500
0 — 0
\ \ \ \ \ \ \ \ \ T T \
0 20 40 60 80 100 0 20 40 60 80 100
Generation Generation

4/8



gistic Grow:

Model (Discrete

There are two parameters (K, r). The behavior doesn’'t change much with different
values of K (we'll use K =1000), but is extremely sensitive to the value of r.
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Logistic Growth Model (Discrete)

A bifurcation plot (with K =1000)
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Logistic Growth Model (Discrete)

The dynamics of the logistic equation are bizarre, to say the least.

The periodic cycles and the chaotic fluctuations may not, however, be particularly
relevant.

Hassell (1976) studied 28 insect populations. 26 of them exhibited values of r leading
to a stable equilibrium point, one led to a periodic cycle (the Colorado potato beetle),
and only one led to chaotic behavior (blowflies under laboratory conditions).
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Logistic Growth Model (Continuous)

The logistic model is extremely sensitive to the manner in which it is modeled.

The continuous and discrete time formulations agree when r is small, but lead to
completely different predictions when r is large.

Unlike for discrete time models, we cannot just “iterate” a differential equation to plot
it. Instead, we must solve the differential equation for a general solution (which is
difficult - here is some code that does it in Maple).

ode:=diff (n(t),t)=r*n(t)*(1-n(t)/K):
ics:=n(0)=n0:
dsolve({ode,ics},n(t));
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