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Two patch dispersal

Island 1 Island 2

N1[t] N2[t]

αN1[t]

βN2[t]

Aim: To build and analyze a two-variable model.

Suppose we have a population of birds inhabiting two islands:

Suppose N1[t] birds are on island 1, and N2[t] are on island 2.

Individuals disperse from island 1 to island 2 at rate α and from island 2 to island 1 at
rate β.

This is a two-variable model (N1[t] and N2[t]).
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Questions

How does the number of birds on each island change over time?

Does it reach a stable equilibrium?

If a large proportion of birds from one island are removed (e.g. by a disease), how long
until the number on each island returns to equilibrium?
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The model

Island 1 Island 2

N1[t] N2[t]

αN1[t]

βN2[t]

From our diagram, we can find the number on Island 1 in the next generation:

N1[t + 1] = N1[t] − αN1[t] + βN2[t] = (1 − α)N1[t] + βN2[t]

The number on Island 2 would be:

N2[t + 1] = (1 − β)N2[t] + αN1[t]
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General solution

Island 1 Island 2

N1[t] N2[t]

αN1[t]

βN2[t]

Fortunately, the equilibria and general solution for this model are easy to derive.

There is only one equilibrium:

N̂1 =
β

(α + β)
(N1 +N2), N̂2 =

α

(α + β)
(N1 +N2)

General solution:
N1[t] = N̂1 + (N1[0] − N̂1)(1 − α − β)t

N2[t] = N̂2 + (N2[0] − N̂2)(1 − α − β)t
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Code

N1[t + 1] = (1 − α)N1[t] + βN2[t]

N2[t + 1] = (1 − β)N2[t] + αN1[t]

Let’s code this up in R:

## specify alpha and beta and number of iterations

alpha <- 0.01

beta <- 0.02

num.iter <- 250

## create empty values to store output

N1 <- rep(NA,num.iter)

N2 <- rep(NA,num.iter)

## set initial population sizes

N1[1] <- 20

N2[1] <- 980

## run the model

for(t in 2:num.iter) {
N1[t] <- (1-alpha) * N1[t-1] + beta * (N2[t-1])

N2[t] <- (1-beta) * N2[t-1] + alpha * (N1[t-1])

}
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Code

Plotting the output:
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Code

Plotting the output:
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. . . and with equilibrium lines.
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Two patch dispersal

Finally, we can answer our initial questions.

How does the number on each island change over time?

It seems to approach an equilibrium level for any values of α and β, however, some
combinations will lead to oscillatory dynamics. Note that we only explored two
combinations here.

Does it reach a stable equilibrium?

Yes. Based on analytical theory, it turns out that the number on island 1 at
equilibrium is β/(α + β)(N1 +N2) and island 2 is α/(α + β)(N1 +N2) .

If a large proportion of birds from one island are removed (e.g. by a disease), how
long until the number on each island returns to equilibrium?

We didn’t explore this, but could easily do so by simply changing our initial conditions.
One can use the general solution.
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Two patch dispersal

Before we move on, let’s look at our equations again:

N1[t + 1] = (1 − α)N1[t] + βN2[t]

N2[t + 1] = (1 − β)N2[t] + αN1[t]

These are linear functions of the variables and this means that they can be written in
matrix form:

[
N1[t + 1]
N2[t + 1]

] = [
1 − α β
α 1 − β

] [
N1[t]
N2[t]

]

Or, written another way,
N⃗[t + 1] =M ⋅ N⃗[t]

Here, M is sometimes referred to as the transition matrix.

As we had for exponential growth, this means that

N⃗[t] =Mt
⋅ N⃗[0]

where Mt is the matrix M, raised to the power of t.

To understand what this means, we’ll need to learn some linear algebra.
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