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Introduction to Matrix Algebra

Aim: To introduce matrix notation and rules of matrix addition and multiplication.

We just introducted models with more than one variable. For instance, the
well-studied Lotka-Volterra models describe the situation in which there are competing
species, whose growth rates depend on exactly how many individuals of each species
are present.

Let’s start by re-examining the model we just looked at tracking the number of birds
on each of two islands. Rather than N1[t] and N2[t], here we’ll use xt and yt .
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Why do we need matrices?

Recall that:

α equals the dispersal rate from island 1 to island 2

β equals the dispersal rate from island 2 to island 1

Under these definitions, the number of birds on each island in the next generation will
equal:

xt+1 = (1 − α)xt + βyt
yt+1 = αxt + (1 − β)yt

These equations are linear functions of the variables (i.e., they contain only constant
multiples of x and y and nothing more complicated such as x2 or ex ).
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Why do we need matrices?

xt+1 = (1 − α)xt + βyt
yt+1 = αxt + (1 − β)yt

Linear systems of equations like these can also be written in matrix form:

[xt+1

yt+1
] = [1 − α β

α 1 − β] [
xt
yt
]

vector = matrix vector

v⃗t+1 = M v⃗t

That is, the vector representing the number of birds on each island is written as the
product of a matrix times the vector in the previous time step.

There are rules of linear algebra that can help us solve this set of linear equations as
well as any other set of linear equations.

First we have to review some basics of linear algebra.
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What are vectors?

A column vector has elements arranged one on top of another, e.g.,

[5
2
] ,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
5
9
7

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, [x
y
] ,

⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

⋮
xn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

A row vector has elements arranged left to right, e.g.,

[5,2], [1,5,9,7], [x , y], [x , y , z], [x1, x2,⋯, xn]
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What are vectors?

The number of elements in the vector indicates its dimension. For instance, the [x , y]
coordinates drawn on a plane are in 2-dimensions:

0.0 1.0 2.0 3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

[1,2]

[2,3]
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What is a matrix?

An m × n matrix has m rows and n columns, e.g.,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x11 x12 ⋯ x1n

x21 x22 ⋯ x2n

⋮ ⋮ ⋮
xm1 xm2 ⋯ xmn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, [a b
c d

] ,
⎡⎢⎢⎢⎢⎢⎣

75 67
66 34
12 14

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦

The last example is a special type of matrix known as an identity matrix, with 1 on
the diagonal and 0 everywhere else.

We will write matrices in boldface (e.g., A) and vectors with an arrow on top (e.g., x⃗).
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Vector and matrix operations

Vector and matrix addition is straightforward:

[a
b
] + [c

d
] = [a + c

b + d
]

[a b
c d

] + [e f
g h

] = [a + e b + f
c + g d + h

]

Qualification: The vectors (or matrices) added together must have the same
dimension.
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Vector and matrix operations

Vector and matrix multiplication by a scalar (which may be a constant, a variable, or
a function (but not a matrix or a vector) is also straightforward:

α ∗ [a
b
] = [αa

αb
]

α ∗ [a b
c d

] = [αa αb
αc αd

]
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Vector and matrix operations

Vector and matrix multiplication is a bit trickier, but is based on the fact that a row
vector times a column vector is equal to the sum:

[a,b, c] ⋅
⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
= ax + by + cz

This is referred to as the dot product.

To multiply a matrix by a vector, this procedure is repeated first for the first row of
the matrix, then for the second row of the matrix, etc:

⎡⎢⎢⎢⎢⎢⎣

a b c
d e f
g h i

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

ax + by + cz
dx + ey + fz
gx + hy + iz

⎤⎥⎥⎥⎥⎥⎦
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Vector and matrix operations

To multiply a matrix by a matrix, this procedure is then repeated first for the first
column of the second matrix and then for the second column of the second matrix, etc:

[a b
c d

] [e f
g h

] = [ae + bg af + bh
ce + dg cf + dh

]

Qualification: The m × n matrix A can be multiplied on the right by B only if B is an
n × p matrix. The resulting matrix will then be an m × p matrix.

Notice that matrix multiplication is not commutative. That is, AB does not generally
equal BA.

On the other hand, matrix multiplication does satisfy the following laws:
(AB)C = A(BC) (associative law)
A(B + C) = AB +AC (distributive law)
(A +B)C = AC +BC (distributive law)
α(AB) = (αA)B = A(αB) (scalar multiplication)
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Vector and matrix operations

The transpose of a matrix is obtained by making the rows into the columns of a new
matrix:

⎡⎢⎢⎢⎢⎢⎣

a b c
d e f
g h i

⎤⎥⎥⎥⎥⎥⎦

T

=
⎡⎢⎢⎢⎢⎢⎣

a d g
b e h
c f i

⎤⎥⎥⎥⎥⎥⎦

The determinant of a 2 × 2 matrix is:

Det [a b
c d

] = ∣a b
c d

∣ = ad − bc

The determinant of a 3 × 3 matrix is:

RRRRRRRRRRRRR

x11 x12 x13

x21 x22 x23

x31 x32 x33

RRRRRRRRRRRRR
= x11 ∣x22 x23

x32 x33
∣ − x12 ∣x21 x23

x31 x33
∣ + x13 ∣x21 x22

x31 x32
∣
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The determinant of an n × n matrix is obtained by taking the first row and
multiplying the first element of the first row by the determinant of the matrix
created by deleting the first row and first column minus the second element of
the first row times the determinant of the matrix created by deleting the first row
and second column plus the third element... and so on.

∣M∣ =
n

∑
j=1

(−1)j+1x1j ∣M1j ∣

(M1j is the matrix M with the first row deleted and the j th column deleted.)
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Inverse matrices

A square m ×m matrix A is invertible if it may be multiplied by another matrix to get
the identity matrix. We call this second matrix the inverse of the first:

AA−1 = I = A−1A

There are rules to find the inverse of a matrix (when it is invertible), but for a 2 × 2
matrix, you can just use the following:

[a b
c d

]
−1

= 1

det
[ d −b
−c a

] = 1

ad − bc
[ d −b
−c a

] = [
d

ad−bc
−b

ad−bc
−c

ad−bc
a

ad−bc

]
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Eigenvalues & Eigenvectors

A number λ is an eigenvalue of matrix M if there exists a non-zero vector, v⃗ , that
satisfies the equation:

Mv⃗ = λv⃗

Every vector satisfying this relation is an eigenvector of M belonging to the eigenvalue,
λ.

The eigenvalues are also the roots of the equation Det(M − λI) = 0, which is how they
are usually found.

To find the eigenvalues of a matrix, we can rearrange the above equation, using the
distributive law for matrix multiplication:

Mv⃗ − λv⃗ = (M − λI)v⃗ = 0⃗

where I is the identity matrix, and 0⃗ is a vector of zeros.
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Eigenvalues & Eigenvectors

A matrix such as (M−λI), which equals zero when multiplied by some non-zero vector
v⃗ , is called singular.

Singular matrices have the property that their determinant equals zero.

This means that the determinant of (M − λI) equals zero, which is written as
∣M − λI∣ = 0.

This determinant is an nth degree polynomial in λ, the roots of which are the
eigenvalues of the matrix M: λ1, λ2, ...λn.

For example, in the n = 2 case,

(M − λI) = ( m11 − λ m12

m21 m22 − λ
)

so that

∣M − λI∣ = (m11 − λ)(m22 − λ) −m21m12 = λ2 − (m11 +m22)λ + (m11m22 −m21m12) = 0
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Eigenvalues & Eigenvectors

∣M − λI∣ = λ2 − (m11 +m22)λ + (m11m22 −m21m12) = 0

The two roots can be found using the quadratic formula:

λ1 =
−b +

√
b2 − 4ac

2a

and

λ2 =
−b −

√
b2 − 4ac

2a

are the two eigenvalues.

17 / 29



Eigenvalues & Eigenvectors

∣M − λI∣ = λ2 − (m11 +m22)λ + (m11m22 −m21m12) = 0

The two roots can be found using the quadratic formula:

λ1 =
−b +

√
b2 − 4ac

2a

and

λ2 =
−b −

√
b2 − 4ac

2a

are the two eigenvalues.

17 / 29



Eigenvalues & Eigenvectors

For an eigenvalue, λ, there are an infinite number of possible eigenvectors.

If v⃗ is an eigenvector of the matrix M corresponding to the eigenvalue λ, it must
satisfy:

Mv⃗ = λv⃗

For a 2 × 2 matrix M with eignevalues λ1 and λ2 you can find an eigenvector for λ1,
for example, by solving

[m11 m12

m21 m22
] [v1

v2
] = λ1 [v1

v2
] = [λ1 ∗ v1

λ1 ∗ v2
]

The first row of the matrix multiplication on the left hand side yields

m11 ∗ v1 +m12 ∗ v2 = λ1 ∗ v1

Any non-zero vector v⃗ which satisfies this equation is an eigenvector for eigenvalue λ1.

You could also use the second row of the matrix multiplication (and sometimes you
have to).

To find an eigenvector for eigenvalue λ2, simply repeat with λ2.
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Eigenvalues & Eigenvectors

Worked Example:

Let’s find the eigenvalue(s) for the matrix:

M = [ 1 1
−5 0

]

Det(M − λI) = 0

Det ([1 − λ 1
−5 0 − λ]) = 0

(1 − λ)(0 − λ) − (1)(−5) = 0

λ2 − λ + 5 = 0

(λ + 3)(λ − 2) = 0

(1)

and so the eigenvalues are λ1 = −3, λ2 = 2.
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Eigenvalues & Eigenvectors

Worked Example:

M = [ 1 1
−5 0

]

Let’s next find the corresponding eigenvectors:

λ2 = −3: An eigenvector must satisfy the equation:

[ 1 1
−5 0

] [v1

v2
] = −3 [v1

v2
]

This gives us two equations:
v1 + v2 = −3v1

and
−5v1 = −3v2

The first tells us that
v2 = −4v1

If we let v1 = 1, v2 must then equal −4 and, thus, [1,−4] is an eigenvector
corresponding to λ = −3.

Find an eigenvector for λ = 2.

and, finally, let’s check that we haven’t made any mistakes...
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Eigenvalues & Eigenvectors

Find the eigenvalue(s) and corresponding eigenvectors for the matrix:

M = [ 0 1
−2 −3

]
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Bases

A basis B of a vector space V is a linearly independent subset of V that spans V.

In R2, the vectors v1 = [1,0] and v2 = [0,1] represent a basis (and are called the
“standard basis”).

Any vector can be written as a linear combination of these two vectors. For example,
[2,−3] = 2 ∗ v1 − 3 ∗ v2.

Do the vectors v1 = [1,0] and v2 = [3,0] form a basis for R2. Why or why not?
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Why is this useful?

Lets investigate the dynamics of a system of equations in more than one variable.

Consider the recursion equations for any model that describes the change in state of a
population from one generation (xi [t]) to the next (xi [t + 1]). To make it easier to
write, we will use xi to denote the variables in the current generation and x ′i to denote
the variables in the next generation.

Here, we will consider only linear functions of the variables (e.g. x ′1 = m11x1 +m12x2

but not x ′1 = m11x1x2).

If there are n variables, then there will be n equations:

x ′1 = m11x1 +m12x2 +⋯ +m1nxn

x ′2 = m21x1 +m22x2 +⋯ +m2nxn

⋮
x ′n = mn1x1 +mn2x2 +⋯ +mnnxn

E.g., in a predator-prey model, n = 2, because we have to track both the number of
predators and the number of prey.

23 / 29



Why is this useful?

Lets investigate the dynamics of a system of equations in more than one variable.

Consider the recursion equations for any model that describes the change in state of a
population from one generation (xi [t]) to the next (xi [t + 1]). To make it easier to
write, we will use xi to denote the variables in the current generation and x ′i to denote
the variables in the next generation.

Here, we will consider only linear functions of the variables (e.g. x ′1 = m11x1 +m12x2

but not x ′1 = m11x1x2).

If there are n variables, then there will be n equations:

x ′1 = m11x1 +m12x2 +⋯ +m1nxn

x ′2 = m21x1 +m22x2 +⋯ +m2nxn

⋮
x ′n = mn1x1 +mn2x2 +⋯ +mnnxn

E.g., in a predator-prey model, n = 2, because we have to track both the number of
predators and the number of prey.

23 / 29



Why is this useful?

Lets investigate the dynamics of a system of equations in more than one variable.

Consider the recursion equations for any model that describes the change in state of a
population from one generation (xi [t]) to the next (xi [t + 1]). To make it easier to
write, we will use xi to denote the variables in the current generation and x ′i to denote
the variables in the next generation.

Here, we will consider only linear functions of the variables (e.g. x ′1 = m11x1 +m12x2

but not x ′1 = m11x1x2).

If there are n variables, then there will be n equations:

x ′1 = m11x1 +m12x2 +⋯ +m1nxn

x ′2 = m21x1 +m22x2 +⋯ +m2nxn

⋮
x ′n = mn1x1 +mn2x2 +⋯ +mnnxn

E.g., in a predator-prey model, n = 2, because we have to track both the number of
predators and the number of prey.

23 / 29



Why is this useful?

Lets investigate the dynamics of a system of equations in more than one variable.

Consider the recursion equations for any model that describes the change in state of a
population from one generation (xi [t]) to the next (xi [t + 1]). To make it easier to
write, we will use xi to denote the variables in the current generation and x ′i to denote
the variables in the next generation.

Here, we will consider only linear functions of the variables (e.g. x ′1 = m11x1 +m12x2

but not x ′1 = m11x1x2).

If there are n variables, then there will be n equations:

x ′1 = m11x1 +m12x2 +⋯ +m1nxn

x ′2 = m21x1 +m22x2 +⋯ +m2nxn

⋮
x ′n = mn1x1 +mn2x2 +⋯ +mnnxn

E.g., in a predator-prey model, n = 2, because we have to track both the number of
predators and the number of prey.

23 / 29



Why is this useful?

Lets investigate the dynamics of a system of equations in more than one variable.

Consider the recursion equations for any model that describes the change in state of a
population from one generation (xi [t]) to the next (xi [t + 1]). To make it easier to
write, we will use xi to denote the variables in the current generation and x ′i to denote
the variables in the next generation.

Here, we will consider only linear functions of the variables (e.g. x ′1 = m11x1 +m12x2

but not x ′1 = m11x1x2).

If there are n variables, then there will be n equations:

x ′1 = m11x1 +m12x2 +⋯ +m1nxn

x ′2 = m21x1 +m22x2 +⋯ +m2nxn

⋮
x ′n = mn1x1 +mn2x2 +⋯ +mnnxn

E.g., in a predator-prey model, n = 2, because we have to track both the number of
predators and the number of prey.

23 / 29



Why is this useful?

Because the equations are linear, we can also write these equations in matrix form:

x ′1 = m11x1 +m12x2 +⋯ +m1nxn

x ′2 = m21x1 +m22x2 +⋯ +m2nxn

⋮
x ′n = mn1x1 +mn2x2 +⋯ +mnnxn

becomes

⎛
⎜⎜⎜
⎝

x ′1
x ′2
⋮
x ′n

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

m11 m12 ⋯ m1n

m21 m22 ⋯ m2n

⋮ ⋮ ⋮
mn1 mn2 ⋯ mnn

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

x1

x2

⋮
xn

⎞
⎟⎟⎟
⎠

Denoting the matrix by M and the vector of xi by x⃗ , we can then write this equation as

x⃗ ′ =Mx⃗
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Why is this useful?

M is known as a transition matrix, since it describes how the population vector
changes from one generation to the next.

To find out where the population will be at some generation t (described by the vector
x⃗[t]), we can use the equation x⃗ ′ =Mx⃗ over and over again:

x⃗[t] =Mx⃗[t − 1] =M2x⃗[t − 2] = ⋯ =Mt x⃗[0]

In most cases, it will be hard to find out what Mt equals directly but we can use some
basic theorems from linear algebra to help.

This will enable us to determine what happens to the vector, x⃗ over time.
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Why is this useful?

If we let D denote the diagonal matrix whose diagonal elements are the eigenvalues of
M and A denote the matrix whose columns are the eigenvectors of M (placed in the
same order as the eigenvalues of D), then M = ADA−1.

Now, we can write
x⃗[t] =Mt x⃗[0]

as
x⃗[t] = (ADA−1)(ADA−1)⋯(ADA−1)x⃗[0]

which equals
= AD(A−1A)D(A−1A)⋯(A−1A)DA−1x⃗[0]

= ADtA−1x⃗[0]

The great thing about this is that, because D is a diagonal matrix, Dt is easy to
calculate.
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Why is this useful?

Specifically:

Dt =
⎛
⎜⎜⎜
⎝

λt1 0 ⋯ 0
0 λt2 ⋯ 0
⋮ ⋮ ⋮
0 0 ⋯ λtn

⎞
⎟⎟⎟
⎠

It would not have been so easy to find Mt!

This enables us to find the general solution to the recursion equations.

x⃗[t] =Mt x⃗[0] = ADtA−1x⃗[0]

This above method is referred to as a “change of basis”, because we changed our
vantage point from the original M matrix to the D matrix using the A matrix and
changed it back using A−1.
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Summary

Although a transition matrix may be difficult to iterate to determine how a linear
system of equations changes over time, we can transform the recursions into a new
basis (specified by the eigenvectors) in which the transition matrix is a diagonal matrix.

It is then easy to iterate the diagonal matrix to find out where the population will be
any time in the future.

Since a change in basis is simply a change in “vantage point”, this transformation
doesn’t change the behavior or the dynamics.

In fact, we can back-transform to get the general solution in the original basis from
the general solution in the new basis.
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Review

We will now review these steps for analysing linear equations.

1. Write the equations in matrix form (an n × n matrix).

2. Determine the n eigenvalues of the matrix.

3. Make a diagonal matrix, D, with one eigenvalue in each of the diagonal positions.

4. Determine the eigenvectors associated with each eigenvalue.

5. Make a transformation matrix, A, whose columns are the eigenvectors (placed in
the same order as the eigenvalues in matrix D).

6. Write the general solution of the linear equations as:

x⃗[t] = ADtA−1x⃗[0]

This method allows you to say exactly where the system will be at any time in the
future.

For example, you can determine what the stable equilibria are by determining where
the population will tend as time goes to infinity.
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