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Lotka-Volterra model of competition

We are next going to examine a model that describes the dynamics of a system in
terms of non-linear equations in more than one variable.

With occasional exceptions, non-linear systems of equations do not yield general
solutions (i.e., they are often intractable).

After examining a deterministic model, we will incorporate demographic stochasticity
(a property of every ecological system).
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Lotka-Volterra model of competition

Species do not exist in isolation of one another.

The simple models of exponential and logistic growth fail to capture the fact that
species can

— compete for resources

assist one another
— exclude one another

kill one another

Here we will generalize the logistic model to take into account resource competition
between two species.
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Lotka-Volterra model of competition

Model parameters:

Ny = number of individuals of species 1

N> = number of individuals of species 2

r1 = intrinsic growth rate of species 1

rp = intrinsic growth rate of species 2

K31 = carrying capacity of species 1 when species 2 is absent

K> = carrying capacity of species 2 when species 1 is absent
Model assumptions:

Competing species use up some of the resources available to a focal species (as if
there were actually more individuals of the latter species):

# of individuals using resources of species 1 equals: Ny + a12No

g2 is called the competition coefficient and measures the effect of an individual
of species 2 on an individual of species 1.

Similarly:

# of individuals using resources of species 2 equals: Ny + aip1 Ny
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Lotka-Volterra model of competition

The assumption of the logistic model is that the number of offspring per parent
decreases linearly with the number of individuals (of species 1) currently in the
population.

With a second competing species also present, the number of offspring per parent
depends not only on Ny, but also on the Na:

. . . Ny + N,
# of offspring per parent in species 1=1+n (1 B
1
Number of offspring r, =02
per parent in species 1 K1 =100
s Oy~ 0.5
Olpy= 0.5
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Lotka-Volterra model of competition

The assumption of the logistic model is that the number of offspring per parent
decreases linearly with the number of individuals (of species 1) currently in the
population.

With a second competing species also present, the number of offspring per parent
depends not only on Ny, but also on the Na:

N N.
# of offspring per parent in species 1 =1+ r (1 - %)
1
Therefore, the population size in the next generation will equal:
Ny (t Na(t
Ni(t+1) = Ny (t) (1+ n (1_ M))
Ki
No(t Ny (t
No(t+1) = No(t) (1 +n (1 - W))
2
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Lotka-Volterra model of competition

In both the discrete and continuous cases:

If a1 =0, then the dynamics of species 1 will follow the logistic equation we analysed
before.

If ap1 =0, then the dynamics of species 2 will follow the logistic equation we analysed
before.

If 12 = 1, then individuals of species 2 compete for the resources of species 1 just as
strongly as do members of species 1 (interspecific competition is as strong as
intraspecific competition).

If 12 < 0, then the presence of species 2 increases the resources available to species 1.

If both a12 and ap; are negative, the species are said to have a mutualistic
relationship.

If 12 or a1 is negative and the other is zero (or very nearly zero), the species are
said to have a commensal relationship.

If one of the two is positive and one is negative, the species are said to have a
parasitic relationship.

If both are positive, the species are said to have a competitive relationship.
We will analyse the effects of competition (with a12 >0 and a1 > 0) on the dynamics

of two species.
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Preliminary Graphical Analysis

The first step of an analysis might be to graph examples to see what happens to each
of the species under different parameter conditions:

Na(e+1) = Nl<t>(1+,1(1_ M))
1

Na(t +1) = N (1) (1 ‘n (1 - M))
2

<<< Code interlude >>>
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Preliminary Graphical Analysis
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Model oddity?

When | print the output, it looks like this:

What's unrealistic about this?

How might we fix it?

9/15



Model oddity?

First option is we could round.
So, replace this:

N1[t] <- N1[t-1] * (1+ri*x(1-(N1[t-1] + a12*N2[t-1])/k1))
N2[t] <- N2[t-1] * (1+r2x(1-(N2[t-1] + a21x*N1[t-1])/k2))

with this:

N1[t] <- round(N1[t-1] * (1+r1*(1-(N1[t-1] + a12*N2[t-1]1)/k1)))
N2[t] <- round(N2[t-1] * (1+r2x(1-(N2[t-1] + a21xN1[t-1])/k2)))

Seems all sorted, right?
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Model oddity?

but hold on! ... for very slow growth rates ...

becomes

The take-away here is that every decision you make could have unforseen
consequences, and you need to think about what these may be.

In general, when building a simulation model, you want to be wary of including steps
that don't have a natural biological interpretation. E.g., what process does
“rounding” correspond to in nature?
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Incorporating variable offspring number

Back to our model - In nature, individuals have some number of offspring that could
be considered a random draw from some distribution (e.g., healthier individuals might
make more babies, but not necessarily every time).

Let's incorporate this stochastic process into our model and, in doing so, fix our
non-integer problem.
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Incorporating variable offspring number

For “number of babies,” it is common to use a Poisson distribution (number of
offspring are generally Poisson distributed).

Na(e+1) = Nl<t>(1+,1(1_ M))
1

Na(t +1) = N (1) (1 ‘n (1 - M))
2

Our original code:

N1[t] <= Ni[t-1] * (1+ri*x(1-(N1[t-1] + a12+N2[t-1])/k1))
N2[t] <- N2[t-1] * (1+r2*(1-(N2[t-1] + a21*N1[t-1])/k2))

can be replaced with*:

N1[t] <- sum(rpois(n=N1[t-1],

lambda=(1+ri*(1-(N1[t-1] + al2xN2[t-1])/k1))))
N2[t] <- sum(rpois(n=N2[t-1],

lambda=(1+r2*(1-(N2[t-1] + a21*N1[t-1])/k2))))

*We can do this more compactly, using the fact that a sum of a Poisson draws is also
a Poisson draw (we will see in workshop).
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Incorporating variable offspring number

Population size

Population size
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... with stochasticity

With stochasticity, dynamics are
qualitatively different here! Species 1
goes extinct!
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Incorporating variable offspring number

Here, we've added demographic stochasticity.

Stochastic processes are also probably appropriate in other places in the model (e.g.,
we could build a more complex model where individuals might interact
probabilistically, so perhaps some individuals of species 1 bump into more individuals
of species 2 than others, and so on). Doing this would, however, require tracking
individuals, which we have not done yet.

When adding stochastic processes, it is important to ask yourself whether they are is
essential. While biologically plausible, it only makes sense to add it if you think it will
matter in important ways.
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