
Workshop 2: Graphics

The purpose of this exercise is to tour the graphics capabilities of base R.

Probability distributions

Before we tackle plotting, it will be useful to learn how to draw some random numbers, so
that we can quickly create things to plot (and this will also be useful later on when adding
stochasticity to simulation models).

R has many built in probability distributions. For each distribution, you can access the
density, probability, and quantile functions, or draw randomly from that distribution. For
example, for a uniform distribution, dunif, punif, qunif and runif accomplish each of
these functions respectively. Similarly, for a Normal distribution, you’d use dnorm, pnorm,
qnorm, rnorm. For example, to draw one random number from a uniform distribution, you
could use:

runif(n=1)

or to draw 5, you could use

runif(n=5)

To draw 10 random numbers from a normal distribution (with a mean of zero and standard
deviation of 1), you could use:

rnorm(n=10)

To draw 10 random numbers from a normal distribution with a mean of 3 and standard
deviation of 2, you could use:

rnorm(n=10, mean=3, sd=2)

1. Use the mean and sd function to confirm that, for a large number of draws, the rnorm

command does, indeed, give you a mean and standard deviation very close to the
specified values.

Basic plotting

At the most basic level, you can use the plot command to generate a simple plot of some
points. For example:

1

plot(x=1:5, y=c(1,5,4,2,3))

There are a number of options that you can pass to the plot command. For example,
compare the above to:

plot(x=1:5, y=c(1,5,4,2,3), pch=16, col='red', las=1,

xlab='Speed ', ylab='Distance ')

Other useful commands for adding to existing plots are the points and lines commands. It
can sometimes be useful to create an initially empty plot, and then to add points and lines
after. To do this, you also need to specify the x− and y−limits of the plot. For example:

plot(NA , las=1,

xlab='Speed ', ylab='Distance ',
xlim=c(1,5), ylim=c(0,10))

points(x=1:5, y=c(1,5,4,2,3), pch=16, col='red')l

1. Use an apply statement of your choice (see previous workshop) to generate a set of
values for a parabola and then create a plot of these points.

2. Use the lines command to add lines connecting consecutive points.

3. Now try adding a smooth parabola (rather than the straight line segments from the
previous step) using the curve command. You will need to use the option add=TRUE

in order to add the curve to the existing plot - otherwise curve will create its own new
plot.

4. Use the abline command to add a horizontal, vertical, and sloped line to the plot.

Your final figure should be some variant (e.g., contain all the components) of this figure:

−4 −2 0 2 4
0

5

10

15

20

25

x

y

Arrows and polygons

It is often useful to add measures of uncertainty to plots. Two helpful commands for this
are arrows and polygon.

2

Using the above probability commands, let’s generate some random data. Suppose we have
10 estimates of body size for individuals of age 1 through 10 (and that body size grows
logarithmically with age):

age <- 1:10

body.size <- rnorm(10, mean=log(age), sd =0.1)

Note that, by passing in a vector of values in for the mean argument in the rnorm function,
each random draw will be drawn with a different mean. In this case, body sizes will, on
average, get larger for each age. Now, let’s suppose these are estimates and there is some
uncertainty surrounding these estimates (I’m just making up “data” here...):

uncertainty <- runif (10)

1. Plot these data, and use the arrows command to add error bars that show the uncer-
tainty. Your figure should look something like this:

2 4 6 8 10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Age

B
od

y
S

iz
e

2. Now try creating a shaded polygon, using the polygon command to show the uncer-
tainty, rather than error bars (or show both!). Your figure should look something like
this:

2 4 6 8 10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Age

B
od

y
S

iz
e

3

2D plots

Often times, it useful to generate 2D plots. The image command is useful for that. It
requires a matrix of data (which is just a 2D vector) for input and I often find it confusing
to get the orientation right. Plotting small simple matrices can help you orient. E.g.,

mm <- matrix(c(0,0,1,2), ncol =2)

and we can then plot using the default orientation and colour palette

image(mm)

We can then re-order the matrix so that, in the plot, the cells are in the same location as
displayed in the matrix (e.g., bottom left cell is bottom left corner of matrix). And let’s
change to a grayscale as well.

mm.reordered <- t(mm[nrow(mm):1,])

image(mm.reordered , col=gray (10:0/10), las=1)

Now, if we were doing something interesting, it could be that we vary two parameters, say
α and β, and measure some response (e.g., population size). I could then present that data
in an (much higher resolution) image as:

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

α

β

1. Play around with image, and make something creative! Can you draw a smiley face?

Vector graphics

Before discussing multi-panel plots and figure margins, it is important to discuss figure
formatting. In general, you should always use vector graphics formats (e.g., pdf). These
graphics do not pixelate as you enlarge them. In general, it is a good habit to write these files
directly from within R, rather than to save the figure manually from the console. The latter
process means that the configuration of your current R console will affect the dimensions of
the saved file (so can change each time you re-size R or Rstudio, for example). To write
directly to pdf, for example, you can do the following:

pdf('my_figure.pdf', height=3, width =3)

plotting commands here

4

dev.off()

This will save a figure of the specified height and width in your working directory with
filename my figure.pdf. The final dev.off() command closes the call to the pdf so, with-
out that, each subsequent plot command you execute will continue to write to your open pdf!

The resultant figure may look a little funny (e.g., big margins, huge text, compressed plot).
You can change the height and width, but you can also change the margins using the par

command. par has a huge number of options for configuring graphics (use ?par to learn
more). A helpful set to start with is:

par(oma=c(0.1 ,0.1 ,0.4 ,0.4), mar=c(3, 3, 0.1, 0.1), mgp=c(2,0.2,0))

Each plot has a set of inner margins (those that go around each panel) and a set of outer
margins (those that surround the set of all panels). mar (which stands for “margin”) governs
the former and oma (which stands for “outer margin”), the latter. The best way to learn
how these works is trial and error. Try playing around with some of the values in the par

command below to see what they do:

pdf('my_figure.pdf', height=3, width =3)

par(oma=c(0.1 ,0.1 ,0.4 ,0.4), mar=c(3, 3, 0.1, 0.1), mgp=c(2,0.2,0))

plot (1:10, xlab='x-label ', ylab='y-label', las =1)

dev.off()

Multi-panel plots

There are a number of ways to make multi-panel plots. One of the most flexible is the
layout command. layout requires a matrix as input, and this matrix specifies the locations
of the panels (the location of the 1 corresponds to the first panel, the location of the 2 to
the second panel, and so on). For example,

layout(matrix (1:2, nrow=1, ncol =2))

plot (1:10, pch=16, col='red')
plot (1:10, pch=16, col='blue')

will plot two adjacent panels, whereas,

layout(matrix (1:2, nrow=2, ncol =1))

plot (1:10, pch=16, col='red')
plot (1:10, pch=16, col='blue')

will plot two stacked panels. You can get very creative with your panel configuration by
using larger and more complex matrices. For example, have a look at the following matrix:

plot.mat <- matrix(c(0,1,0,4,

2,2,0,4,

0,0,3,4), nrow=3, ncol=4, byrow=TRUE)

and now, look at the locations of the following panels:

layout(plot.mat)

plot (1:10, pch=16, col='red')
plot (1:10, pch=16, col='blue')
plot (1:10, pch=16, col='green4 ')
plot (1:10, pch=16, col='purple ')

5

You can even specify heights and widths for the rows and columns of the matrix to further
refine your figure. E.g., see below. Note, I’ve put this inside a pdf command and added a
call to par, so that I can control margins. You’ll have to open the resultant pdf to see this
one.

pdf('my_figure.pdf', height=6, width =6)

par(oma=c(0.1 ,0.1 ,0.4 ,0.4), mar=c(3, 3, 0.1, 0.1), mgp=c(2,0.2,0))

layout(plot.mat , widths=c(1,1,1,3), heights=c(1,3,2))

plot (1:10, pch=16, col='red')
plot (1:10, pch=16, col='blue')
plot (1:10, pch=16, col='green4 ')
plot (1:10, pch=16, col='purple ')
dev.off()

Here’s a figure I recently made for a project that used almost entirely syntax we have covered
so far (e.g., image and layout). In addition, legend lets you add a legend and mtext is
useful for adding text in specified locations. Nothing was done outside R.

Era 1 Era 2

No visit occurred
Visit occurred, nothing detected
At least one species detected
Species i detected

Range of

species i , Ri

Site 1

Site 2

...

1 2 3
Visit

1 2 3
Visit

 SSall,all , MSall,all MSrange,all

 MSrange,detected MSrange,visits

The layout and par command for this figure are:

layout(matrix(c(1,0,2,0,3,4,4,4,4,4,4,4,

1,0,2,0,3,0,0,0,0,0,0,0,

1,0,2,0,3,0,5,6,0,7,8,0,

1,0,2,0,3,0,0,0,0,0,0,0,

1,0,2,0,3,0,9,10,0,11,12,0),

5, 12, byrow=TRUE),

heights=c(1 ,0.4 ,1.5 ,0.2 ,1.5),

widths=c(0.1 ,0 ,0.25 ,0.05 ,0.25 ,0.3 ,0.07 ,0.07 ,0.3 ,0.07 ,0.07 ,0.3))

par(oma=c(2,4,0,0), mar=c(0.1, 0.1, 1, 0.1),

mgp=c(2,0.2,0), tcl=0, cex.axis =0.7, cex.main =0.7)

6

1. Using the layout command and multiple plot commands (or a single plot command
wrapped up inside a function!), create a figure of a clock (something similar to the
below figure - but feel free to do better):

1

1 1

1

1 2

1

1 3

1

1 4

1

1 5

1 6
1

1 7
1

1 8
1

1 9
1

1 10
1

1 11
1

1 12

1

1

2. Make a multi-panel figure containing at least four different panels (but more if you
want), to present whatever you want (fake data, real data, cool patterns, etc). The
goal here is to impress me with your base R graphics capabilities by making something
beautiful (and not to worry about actual visualization of data). This should be more
impressive than the clock from above.

7

	Probability distributions
	Basic plotting
	Arrows and polygons
	2D plots
	Vector graphics
	Multi-panel plots

