
Workshop 3: Numerical Analyses

Now that you are masters of plotting, let’s run some models and create some plots. You’re
welcome to use any plotting commands that you are familiar with (e.g., ggplot, if you are so
inclined).

If statements

if and else (and, in R, you even have ifelse) statements are great ways for making
decisions based on conditions, or “booleans”. For example, try this:

for(i in 1:10) {

if(i<=5) {

print(paste(i, 'is less than or equal to 5'))
} else {

print(paste(i, 'is greater than 5'))
}

}

Note in the above the i<=5 stands for “i less than or equal to 5.” This is a boolean. Try
replacing the <= with each of:

<

>

>=

==

!=

1. Write a function that takes a single integer as an argument and prints out a statement
telling the user whether that integer is odd or even.

Recursive functions

In class, we have learned about discrete time models (aka, “recursion equations”). Recur-
sive functions are also common-place in computer programming. A recursive function is a
function that calls itself, kind of like looking at a mirror in a mirror.
Now, let’s write a basic function that calls itself. We’ll use exponential growth as our
example:

N [t + 1] = (1 + r)N [t]

You might think to implement this with the following code
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N <- function(r, t) {

return ((1+r) * N(r, t-1))

}

But what happens if you try calling this function with, say r = 0.1 and t = 5?

N(r=0.1, t=5)

You should get some sort of error. The problem is that, as currently formulated, you’ve
sent the computer into an infinite recursion - the it keeps calling itself... first with t = 4,
then t = 3, and so on. It doesn’t know to stop when t = 0. So, we need to add a break
condition, that gets the recursion to stop, and then backtrack all the way out. We’ll use an
if statement to accomplish this.

N <- function(r, N0, t) {

if(t==0) {

return(N0)

} else {

return ((1+r) * N(r, N0 , t-1))

}

}

Here, we’ve also added an argument, N0 which is our initial population size (e.g., the one at
time t = 0). Try calling this function with some different values of r, N0, and t.

N(r=0.1,N0=10,t=10)

1. Use your recursive function, and potentially a for loop or an sapply statement to
create a plot similar to the one I showed in lecture 1b (see below).
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To add a legend to your plot like I have, you can use the following:

legend('topleft ',
legend=c(expression(italic(lambda)~' = 1.1'),

expression(italic(lambda)~' = 1.0'),
expression(italic(lambda)~' = 0.9')),

col=c('blue','black ','red'),
pch=16,

pt.cex=0.5,

bty='n')
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Numerical iteration

While recursive functions are fun, they are not the most efficient way to numerically iterate
a model. This is because, in order to calculate N[5], you need to calculate N[4], N[3], and
so on. Then, in order to calculate N[6], you need to re-calculate all these again! So, let’s do
this another way - by just setting an initial population size and iterating forwards in time.
First, let’s write a function that calculates N[t+1] given N[t]

N.next <- function(r, N.current) {

return ((1+r)*N.current)

}

Now, let’s suppose we have a population size of 10 and r = 0.1 and let’s calculate the
population size in the next three generations:

N1 <- 10

N2 <- N.next(r=0.1, N.current=N1)

N3 <- N.next(r=0.1, N.current=N2)

N4 <- N.next(r=0.1, N.current=N3)

and then let’s see what we got:

c(N1, N2, N3, N4)

1. Use a for loop to automate this process, calculating the population size over 20 gen-
erations.

2. The discrete time equation for logistic growth that we examined in class was:

N [t + 1] =

(
1 + r

(
1 − N [t]

K

))
N [t]

Following the same steps as for the exponential model above, generate a couple plots
akin to those I presented in lecture, e.g.,
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3. In lecture, I presented a bifurcation plot for the logistic growth model (with K = 1000),
below
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Here, the x-axis is the growth rate, r, and the y axis shows the population sizes at equilibrium.
Create a version of this figure yourself. The seq command may be helpful for quickly
generating a vector of r values to use.
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