

Workshop 3: Numerical Analyses

Now that you are masters of plotting, let's run some models and create some plots. You're welcome to use any plotting commands that you are familiar with (e.g., `ggplot`, if you are so inclined).

If statements

`if` and `else` (and, in R, you even have `ifelse`) statements are great ways for making decisions based on conditions, or “booleans”. For example, try this:

```
for(i in 1:10) {  
  if(i<=5) {  
    print(paste(i, 'is less than or equal to 5'))  
  } else {  
    print(paste(i, 'is greater than 5'))  
  }  
}
```

Note in the above the `i<=5` stands for “i less than or equal to 5.” This is a *boolean*. Try replacing the `<=` with each of:

```
<  
>  
>=  
==  
!=
```

1. Write a function that takes a single integer as an argument and prints out a statement telling the user whether that integer is odd or even.

Recursive functions

In class, we have learned about discrete time models (aka, “recursion equations”). **Recursive functions** are also common-place in computer programming. A recursive function is a function that calls itself, kind of like looking at a mirror in a mirror.

Now, let's write a basic function that calls itself. We'll use exponential growth as our example:

$$N[t + 1] = (1 + r)N[t]$$

You might think to implement this with the following code

```
N <- function(r, t) {
  return((1+r) * N(r, t-1))
}
```

But what happens if you try calling this function with, say $r = 0.1$ and $t = 5$?

```
N(r=0.1, t=5)
```

You should get some sort of error. The problem is that, as currently formulated, you've sent the computer into an infinite recursion - the it keeps calling itself... first with $t = 4$, then $t = 3$, and so on. It doesn't know to stop when $t = 0$. So, we need to add a break condition, that gets the recursion to stop, and then backtrack all the way out. We'll use an **if** statement to accomplish this.

```
N <- function(r, N0, t) {
  if(t==0) {
    return(N0)
  } else {
    return((1+r) * N(r, N0, t-1))
  }
}
```

Here, we've also added an argument, $N0$ which is our initial population size (e.g., the one at time $t = 0$). Try calling this function with some different values of r , $N0$, and t .

```
N(r=0.1, N0=10, t=10)
```

1. Use your recursive function, and potentially a **for** loop or an **sapply** statement to create a plot similar to the one I showed in lecture 1b (see below).

To add a legend to your plot like I have, you can use the following:

```
legend('topleft',
  legend=c(expression(italic(lambda)~' = 1.1'),
           expression(italic(lambda)~' = 1.0'),
           expression(italic(lambda)~' = 0.9)),
  col=c('blue','black','red'),
  pch=16,
  pt.cex=0.5,
  bty='n')
```

Numerical iteration

While recursive functions are fun, they are not the most efficient way to numerically iterate a model. This is because, in order to calculate $N[5]$, you need to calculate $N[4]$, $N[3]$, and so on. Then, in order to calculate $N[6]$, you need to re-calculate all these again! So, let's do this another way - by just setting an initial population size and iterating forwards in time. First, let's write a function that calculates $N[t+1]$ given $N[t]$

```
N.next <- function(r, N.current) {  
  return((1+r)*N.current)  
}
```

Now, let's suppose we have a population size of 10 and $r = 0.1$ and let's calculate the population size in the next three generations:

```
N1 <- 10  
N2 <- N.next(r=0.1, N.current=N1)  
N3 <- N.next(r=0.1, N.current=N2)  
N4 <- N.next(r=0.1, N.current=N3)
```

and then let's see what we got:

```
c(N1, N2, N3, N4)
```

1. Use a **for** loop to automate this process, calculating the population size over 20 generations.
2. The discrete time equation for logistic growth that we examined in class was:

$$N[t+1] = \left(1 + r \left(1 - \frac{N[t]}{K}\right)\right) N[t]$$

Following the same steps as for the exponential model above, generate a couple plots akin to those I presented in lecture, e.g.,

3. In lecture, I presented a bifurcation plot for the logistic growth model (with $K = 1000$), below

Here, the x -axis is the growth rate, r , and the y axis shows the population sizes at equilibrium. Create a version of this figure yourself. The `seq` command may be helpful for quickly generating a vector of r values to use.