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The purpose of graphs

Causes of deaths in the

British Army during the

Crimean War (area of pie

= number of deaths); F.

Nightingale, 1858.

The human eye is a natural pattern
detector, adept at spotting trends and
exceptions.

Graphs enable visual comparisons of
measurements between groups and expose
relationships between variables.

They are the best method available for
discovering patterns in your data.
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The purpose of graphs

Graphs are the best method for communicating results.

1. Frequency distributions
− The location, spread, shape

of distribution

known vertebrate speciation
models, the sympatric sticklebacks
of Enos Lake (Vancouver Island,
Figure 1A). Enos Lake is one of six
lakes along the British Columbia
coast that once harbored endemic,
postglacially arisen species pairs
of sympatric sticklebacks, a larger
benthic and a smaller limnetic
species [13]. The Enos Lake pair is
the best studied of these. The
species differed in size, shape,
habitat, feeding, color vision and
male breeding colors [3]. Some
gene flow between them has
probably always occurred [13],
but it was strongly constrained
by several different and
synergistically interacting forces:
nesting site segregation, size
assortative mate choice, sexual
selection and ecological selection
against the intermediate
morphology [3].

Several years ago, indications
appeared that the species pair may
be collapsing into a hybrid swarm.
Kraak et al. [14] reported 17%
intermediate phenotypes in July
1999, many more than the 1%
reported in samples from the 1980s
and early 1990s [13]. Taylor et al.
[11] conducted a morphological
analysis for samples spanning
a time frame of 1977 to 2002, and
a genetic analysis for samples from
1994 to 2002. Two distinct and non-
overlapping morphological groups
were evident in 1977 and 1988, but
by 1997 these got replaced by
a single highly variable cluster
(Figure 1B). Microsatellite DNA
analysis of a sample from 1994
indicated two genetically distinct
populations, but only a single
population was evident in 1997 and
later years, including distinct
hybrid genotypes.

Even though the exact causes of
the breakdown of reproductive
isolation in the Enos Lake
sticklebacks are not yet known, the
temporal coincidence with
important changes in the habitat is
highly suggestive. The Signal
crayfish (Pascifasticus lenisculus)
became established after the late
1980s, and the lake changed
dramatically from relatively clear
with a zone of submerged
vegetation to now highly turbid
without submerged macrophytes.
Taylor et al. [11] suggest the most
obvious effect of crayfish in Enos
Lake is the destruction of aquatic
vegetation and an associated
increase in turbidity from crayfish
movements. Increased turbidity
makes mate choice less effective.
Destruction of the macrophytes
removes nesting habitat
partitioning. The distribution of
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Figure 1. Three examples of speciation reversal.

(A) Males in nuptial coloration of the endemic stickleback species pair of Enos Lake, benthic (top) and limnetic (bottom). (B) Samples
of Enos lake stickleback from 1977 (B, benthic; L, limnetic) and 2002 plotted along the first and second axis of morphological var-
iation. Ellipses encircle about 95% of the individuals. (C) Gill rakers of the sparsely rakered Coregonus hoyi (left) and the densely
rakered C. artedi, adapted to feed on benthic versus planktonic food respectively. (D) Heads of C. hoyi (left) and C. artedi (right).
(E) Frequency distributions of gill raker counts in C. artedi (gray in top panel), and C. hoyi (gray in bottom panel) from 1984/85,
and (white) in C. hoyi (left) and C. artedi (right) in 1917. (F) Males in nuptial coloration of the cichlid species pair Pundamilia pundamilia
and P. nyererei. (G) Frequency distributions of male nuptial colour phenotypes — 1, no red on body like the top fish (F); 6, very red like
the bottom fish in (F) — at a clear water station (top panel; note that absolute frequencies cannot be directly compared between the
two species because the blue and red species live in different microhabitats that require different fishing techniques) and a turbid
water station (bottom panel). A, courtesy Eric B. Taylor/University of British Columbia; B, adapted from [11]; C,D, courtesy John
D. Lyons/Wisconsin Department of Natural Resources; E, adapted from [15]; F,G, courtesy O. Seehausen/University of Berne.
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2. Associations between variables
− The relationship between two or more variables
− Differences between groups

strongest predictor of species richness on islands (R2 5 0.746, P , 0.001,
n 5 17; Fig. 3a and Extended Data Table 4). In support of our first hypoth-
esis, the rate of species loss as forest area declined was substantially and
significantly higher in the island ecosystem than in the countryside eco-
system (Extended Data Table 2).

To test our second hypothesis, we analysed Pielou’s evenness index
(Fig. 3c). Forest reserves and fragments in the countryside ecosystem did
not vary in evenness—probably because bat populations are supported
beyond forest edges in the deforested habitat. In the island ecosystem,

however, species abundances were increasingly uneven on more isolated
islands (Fig. 3c and Extended Data Table 5). Uneven abundance dis-
tributions of bats in the island ecosystem are probably explained by
island biogeography’s faunal density compensation theory27.

To test our third hypothesis, we examined bat biodiversity patterns
in a variety of coffee plantations in the countryside ecosystem (Fig. 3).
In coffee plantations we captured 1,508 individuals representing 26 of
the 43 bat species (mean species estimated per coffee plantation site 5 18
(s.d. 5 2); Fig. 3b and Extended Data Table 4), nine of which were observed
roosting and/or breeding on farmland but not in pastures28 (Extended
Data Table 6). Moreover, bat species in coffee plantations were evenly
distributed in their abundances (Fig. 3c). Species varied considerably
in their abundance responses to deforestation, but 14 of the 30 bat spe-
cies with at least seven captures in the countryside ecosystem were more
abundant outside the forest reserves. Further, no species showed com-
plete dependence on a single habitat type (Extended Data Fig. 1).

Finally, to evaluate whether a novel bat assemblage is forming in coffee
plantations because of predictable, species-specific changes in abun-
dances, we developed and compared an index that measured assemblage-
level changes in bat abundances across habitats in both ecosystems. The
Assemblage Abundance Shift Index is based on ordination analyses of
bat abundances and how they shift collectively, relative to bat assem-
blages in forest reserves in the countryside ecosystem and to mainland
sites in the island ecosystem. The Assemblage Abundance Shift Index
accounts for changes in species richness and detection bias (see Methods
and Extended Data Fig. 2). Patterns of the Assemblage Abundance Shift
Index revealed that the abundances of many bat species in the coun-
tryside ecosystem underwent predictable transitions in tandem with
declining forest cover, particularly at small spatial scales11 (150 m) and
especially in coffee plantations. In the island ecosystem, bat abundances
differed significantly between assemblages on the mainland interior
and edge sites in comparison with islands, probably because of density
compensation27 (Fig. 3d).

Our meta-analysis found strong evidence that bat biodiversity pat-
terns follow predictions of island biogeographic theory on true islands—
both natural and human-made—but countryside ecosystems are more
complex. A review of 206 peer-reviewed papers on bat biodiversity in
island and countryside ecosystems yielded several key findings from the
29 studies that met meta-analysis search criteria (Fig. 4a; see Methods).
First, we confirmed that the equilibrium theory of island biogeography
accurately forecasted the change in bat species richness with island size
on true islands (Fig. 4b), and bats on islands followed typical species–
area relationships (Fig. 4c). Second, we found that declines in bat spe-
cies richness expected from island biogeography were almost never
realized in countryside forest fragments (Fig. 4b). Third, we found a
variety of bat species richness responses in open habitats of country-
side ecosystems, including relatively high richness in some agricul-
tural systems15,24 (Fig. 4d). Finally, we found that 10 of the 12 studies
that compared bat assemblages between minimally altered forest, forest
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Figure 3 | Countryside and island bat biodiversity patterns. Countryside
and island ecosystems support bat biodiversity in fundamentally different ways.
A total of 62 bat species were recorded: 43 were captured in the countryside
ecosystem (left column) and 33 in the island ecosystem (right column); of these,
14 bat species were shared. Shown are the countryside and island ecosystem
rank–abundance distributions for each site (a) and patterns of bat species
richness (b), species evenness (c) and the Assemblage Abundance Shift Index
(d), which accounts for changes in species richness. Symbol shapes and colours
correspond to those shown in Fig. 2. Lines depict best-fit relationships after
model selection and optimization. Dotted lines correspond to coffee
plantations in b and islands in d, where broad habitat type was the best
predictor. Analyses in b and c were conducted at a site level (36 sites). Species
richness was estimated to account for rare species using the Chao1 method and
species evenness is standardized between 0 and 1 using the Pielou method.
Analysis in d was conducted at a net level (383 nets), because assemblage
differences were observed within sites relative to fine-scale changes in forest
cover at 150 m. See Methods for further details, and Extended Data Tables 1–4
for model comparisons and regression coefficients.
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The purpose of graphs

The best statistical graphic ever drawn (according to Edward Tufte). This map by Charles

Joseph Minard portrays the losses suffered by Napoleon’s army in the Russian campaign of 1812. Beginning at the

Polish-Russian border, the thick band shows the size of the army at each position. The path of Napoleon’s retreat

from Moscow in the bitterly cold winter is depicted by the dark lower band, which is tied to temperature and time

scales.
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Principles of effective display

Graphs should make the viewer goes “Oh!” and not “Huh?”

“Graphical excellence is that which gives to the viewer the greatest number of ideas in
the shortest time with the least ink in the smallest space” - Tufte (1983)
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Principles of effective display

Useful principles to increase the effectiveness of your graphs:

− Show the data

− Make patterns in the data easy to see

− Represent magnitudes honestly

− Draw graphical elements clearly, minimizing clutter
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Principles of effective display

1. “Above all else show the data” - Tufte (1983)

For example, many different data values can generate the same mean and
standard error. A strip chart reveals the pattern, whereas the bar graph hides it.

Second, additional problems arise when bar graphs are used to show paired or nonindependent
data (Fig 2 ). Figures should ideally convey the design of the study. Bar graphs of paired data
erroneously suggest that the groups being compared are independent and provide no informa-
tion about whether changes are consistent across individuals (Panel A in Fig 2 ). Third, summa-
rizing the data as mean and SE or SD often causes readers to wrongly infer that the data are
normally distributed with no outliers. These statistics can distort data for small sample size
studies, in which outliers are common and there is not enough data to assess the sample
distribution.

In contrast, univariate scatterplots, box plots, and histograms allow readers to examine the
data distribution. This approach enhances readers’ understanding of published data, while al-
lowing readers to detect gross violations of any statistical assumptions. The increased flexibility
of univariate scatterplots also allows authors to convey study design information. In small sam-
ple size studies, scatterplots can easily be modified to differentiate between datasets that include
independent groups (Fig 1 ) and those that include paired or matched data (Fig 2 ).

We conducted a systematic review of standard practices for data presentation in scientific
papers, contrasting the use of bar graphs versus figures that provide detailed information about
the distribution of the data (scatterplots, box plots, and histograms). We focused on physiology
because physiologists perform a wide range of studies, including human studies, animal

Fig 1. Many different datasets can lead to the same bar graph. The full data may suggest different conclusions from the summary statistics. The means
and SEs for the four example datasets shown in Panels B–E are all within 0.5 units of the means and SEs shown in the bar graph (Panel A). p-values were
calculated in R (version 3.0.3) using an unpaired t-test, an unpaired t-test with Welch’s correction for unequal variances, or a Wilcoxon rank sum test. In
Panel B, the distribution in both groups appears symmetric. Although the data suggest a small difference between groups, there is substantial overlap
between groups. In Panel C, the apparent difference between groups is driven by an outlier. Panel D suggests a possible bimodal distribution. Additional data
are needed to confirm that the distribution is bimodal and to determine whether this effect is explained by a covariate. In Panel E, the smaller range of values
in group two may simply be due to the fact that there are only three observations. Additional data for group two would be needed to determine whether the
groups are actually different.

doi:10.1371/journal.pbio.1002128.g001

PLOS Biology | DOI:10.1371/journal.pbio.1002128 April 22, 2015 2 / 10

Abbreviations: ANOVA, analysis of variance;
ARRIVE, Animal Research: Reporting of In Vivo
Experiments; SD, standard deviation; SE,
standard error

Weissgerber et al. (2015) Beyond bar and line graphs: time for a new data
presentation paradigm. PLoS Biol. DOI:10.1371/journal.pbio.1002128
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Principles of effective display

Why show the data?

Which graph is more effective? Why?
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Principles of effective display

Cultural and biological diversity in Africa J. L. Moore and others 1647
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Figure 2. A comparison of language and species richness in sub-Saharan Africa. Each variable has been partitioned into 10
equal-frequency ranks. Cells of equal rank for both variables are coloured in grey scale from black (both low rank) to white
(both high rank). The degree of colour saturation indicates that the ranks are different. A cell is green if the species-richness
rank is high relative to language richness and blue if language richness is high relative to species richness.

they develop. It has been proposed that language diversity
is generally lower in complex societies, in agricultural
societies and in areas with a long history of empire
(Nichols 1992; Nettle 1996).

These factors need not be mutually exclusive. For
example, combining the species richness–energy hypoth-
esis and those that stress the role of history and biome
area, recent analyses of South American land birds sup-
port the suggestion that the historical interaction between
climate and topography is instrumental in generating the
species pool from which local assemblages of species are
drawn (Rahbek & Graves 2001).

(b) Looking for environmental correlates
After examining overall correlations between vertebrate

and linguistic richness, we test the degree to which both
patterns are correlated with environmental factors. In
addition, we look for evidence that similar factors may be
important in determining both species and language rich-
ness. We chose 10 environmental variables that have pre-
viously been suggested as important in determining either
species or language richness and tested their explanatory
power in a multiple regression model. The variables were
mean length of the growing season, net primary pro-
ductivity (NPP), mean annual rainfall, within-year rainfall
variability, between-year rainfall variability, mean annual
temperature, mean annual temperature range, altitudinal
range and two measures of habitat variability.

In interpreting the results of these models it is important
to consider several limitations. Correlations by themselves
do not demonstrate causality. Moreover, even where spec-
ies and language richness are correlated with similar
environmental factors this could well arise through differ-
ent processes. Humans are a single species and language
areas tend to partition a region rather than overlap. In
this respect, language diversity resembles genetic and/or

Proc. R. Soc. Lond. B (2002)

morphological differentiation within species. Moreover,
intraspecific diversification typically takes place over
shorter time-scales than interspecific differentiation.
Hence, it is very likely that even though they may covary
in space, the processes determining patterns of species and
linguistic richness differ. Nevertheless, with these caveats
in mind, cautious interpretation of environmental models
can shed light on our understanding of the extent to which
such patterns coincide.

2. MATERIAL AND METHODS

(a) Data
We measured biological diversity using total species richness

of four vertebrate groups (mammals, birds, snakes and
amphibians). Distribution data for 3882 species have been com-
piled by the Zoological Museum of Copenhagen and mapped
onto a one-degree grid (Burgess et al. 1998; Brooks et al. 2001).
Language richness was calculated from the contemporary distri-
bution of 1686 languages (Grimes 1996). Language definitions
are based on reciprocal intelligibility measures, particularly as
related to literature (Grimes 1996). Widespread languages, such
as Arabic (including local variants), Hausa, Swahili and other
lingua francas (used predominantly as second languages) and
modern European languages (French, Portuguese, English,
Greek, Spanish, Italian) were excluded from the analysis. In
addition, distributions of immigrant languages are not available
outside of their country, or countries, of origin. The majority of
countries have associated range maps that show the distribution
of each language. However, for some countries, notably Ethi-
opia, Sudan and Namibia, the location of each language was
marked with a point. Hence, in these countries language rich-
ness per cell will probably be underestimated.

We analysed the data degraded to a 2° × 2° grid, as this best
represented the resolution of the language dataset. Richness was
calculated as the number of species or languages present in each

 on September 16, 2018http://rspb.royalsocietypublishing.org/Downloaded from 

but contrast with...

2. Make patterns in the data easy to see.
Graphical excellence consists of complex ideas communicated with clarity,
precision and efficiency” - Tufte (1983)

− Map displays the number of bird
species and the number of distinct
human languages present in each
square of a grid of continental Africa.
Reproduced from Moore et al. (2002).

− What is the pattern in these data?
How long did it take you to “see”?

− Is it easy to appreciate how strong the
relationship is between the variables?
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Principles of effective display

3. Draw graphical elements clearly, minimizing clutter
Maximize the data-ink ratio, within reason - Tufte (1983)

3.	Draw	graphical	elements	clearly,	minimizing	clutter	

“Maximize	the	data-ink	ratio,	within	reason”	–	Tufte	(1983)	

	

The	percentage	of	adults	over	18	with	a	“body	mass	index”	greater	than	

25	in	different	years	(The	Economist	2006).	Body	mass	index	is	a	measure	

of	weight	relative	to	height.	

	

What	is	the	pattern	in	these	data?	Does	the	art	help	to	

show	it?	

What	would	be	a	better	graphical	method	to	show	the	

pattern	in	the	data?	

	

	 	

The percentage of adults over 18 with a

“body mass index” greater than 25 in

different years (The Economist 2006). Body

mass index is a measure of weight relative to

height.

− What is the pattern in these data?
Does the art help to show it?

− What would be a better graphical
method to show the pattern in the
data?
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Principles of effective display

4. Represent magnitudes honestly
A graphic does not distort if the visual representation of the data is consistent
with the numerical representation - Tufte (1983)
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Principles of effective display

4. Represent magnitudes honestly
A graphic does not distort if the visual representation of the data is consistent
with the numerical representation - Tufte (1983)

© 1999 Macmillan Magazines Ltd

Birds have overcome the problem of
sleeping in risky situations by develop-

ing the ability to sleep with one eye open
and one hemisphere of the brain awake1.
Such unihemispheric slow-wave sleep is in
direct contrast to the typical situation in
which sleep and wakefulness are mutually
exclusive states of the whole brain. We have
found that birds can detect approaching
predators during unihemispheric slow-
wave sleep, and that they can increase their
use of unihemispheric sleep as the risk of
predation increases. We believe this is the
first evidence for an animal behaviourally
controlling sleep and wakefulness simulta-
neously in different regions of the brain.

The function of unihemispheric slow-
wave sleep (USWS) in birds has been
unclear1. In aquatic mammals — the only
other group of animals known to exhibit
USWS — this sleep pattern seems to allow
concurrent sleep and surfacing to breathe2.
If avian USWS functions as a form of
predator detection, then birds should be
able to control whether they sleep primarily
with one or both hemispheres in response
to changes in predation risk3. Under safe
conditions, birds can sleep more efficiently
by sleeping with both hemispheres simulta-
neously, whereas under dangerous condi-
tions a bird should increase USWS to
remain vigilant for predators. Moreover,
during USWS a bird should sleep with its
open eye towards the direction from which
a potential predator is likely to approach.

To test these expectations, we took
advantage of the ‘group edge effect’, a phe-
nomenon in which animals at the more
risky edge of a group spend more time
scanning visually for predators than those
nearer the group’s centre4. We predicted
that birds sleeping at the edge of a group
would spend more time in USWS, and
would direct their open eye away from the
group’s centre towards potential predators.

We established four groups of mallard
ducks (Anas platyrhynchos), each contain-
ing four individuals. Video recordings of
sleep behaviour were made with the birds
arranged in a row. Birds at the ends of the
row (the edge of the group) were in a more
exposed position than those in the central
positions. The closure of one eye indicated
USWS1, whereas closing both eyes indicated
either bihemispheric slow-wave sleep or
rapid-eye-movement (REM) sleep, which
occurs bihemispherically in birds5.

We found that mallards markedly
increased their use of USWS when sleeping
at the edge of the group. The proportion of
sleep composed of USWS increased from
12.4!1.1% (mean!s.e.) in the central
position to 31.8!3.6% in the edge position

(Wilcoxon matched-pairs signed-ranks test,
T"1, P#0.001), an increase of more than
150%. Furthermore, birds in USWS at the
edge position oriented the open eye away
from the group’s centre 86.2!3.1% of the
time (t-test, t"11.58, d.f."15, P#0.001),
whereas birds in the central position
showed no preference for gaze direction
(time looking away, 52.8!3.7%; t-test,
t"0.76, d.f."15, n.s.). Mallards therefore
exhibited behavioural control of USWS and
used it adaptively by looking in the direc-
tion of a potential threat.

Electroencephalographic (EEG) record-
ings obtained under the above conditions

corroborated at the neurophysiological level
our behavioural results. During each eye
state, EEG recordings from each hemi-
sphere were evaluated by digital period
amplitude analysis, which quantifies the
power (a measure of wave amplitude) of
different frequencies within the EEG6.
Avian slow-wave sleep is characterized by
high power in the low-frequency range (1–6
Hz), whereas wakefulness is characterized
by low power in this range5.

When one eye was closed, low-frequency
power in the hemisphere opposite the
closed eye (the sleeping hemisphere) was
significantly greater than that in the hemi-
sphere opposite the open eye (T$1,
P#0.05 for all comparisons; Fig. 1), regard-
less of the position occupied by a bird,
which confirms USWS. Low-frequency
power in the awake hemisphere (that oppo-
site the open eye) was nevertheless signifi-
cantly greater than the power with both
eyes open (T"0, P#0.05 for all compar-
isons), indicating a quiet waking state inter-
mediate between full alertness and
slow-wave sleep. Subsequent tests con-
firmed that the waking hemisphere was
capable of predator detection: mallards in
USWS initiated escape behaviour within
only 0.165!0.006 seconds (n"10 mal-
lards) of an expanding video image being
presented, simulating predatory attack.

The EEG recordings confirmed that the
150% increase in unilateral eye closure was a
direct result of an equivalent increase in the
proporton of slow-wave sleep composed of
USWS. Because bihemispheric slow-wave
sleep and REM sleep both occur with both
eyes closed, it was possible that a selective
decrease in REM sleep in the edge position
may have confounded our interpretation of
the behavioural results. However, EEG analy-
ses showed an almost 1:1 relation between
unilateral eye closure and the proportion of
slow-wave sleep composed of USWS. An
increase in unilateral eye closure therefore
reflected an equivalent increase in USWS.

A bird’s ability to control sleep and
wakefulness independently in each hemi-
sphere is in accord with evidence indicating
that each eye7 and associated hemisphere8

can function independently during wake-
fulness in birds. The neuroanatomical
structures and physiological processes that
allow independent hemispheric functioning
during wakefulness may therefore also
allow for the independent hemispherical
control of sleep. The ability to control
USWS behaviourally in response to changes
in predation risk emphasizes the dynamic
balance that animals must achieve between
the ecological consequences and the physio-
logical necessity of sleep9.

NATURE | VOL 397 | 4 FEBRUARY 1999 | www.nature.com 397

Half-awake to the risk of predation
scientific correspondence
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FFiigguurree  11 The relation between eye state and stan-
dardized EEG power (1–6 Hz) for the left and right
hemispheres of birds occupying central and edge
positions. EEGs were recorded from the dorsal sur-
face of the hyperstriatum accessorium of each
hemisphere, the part of the avian brain that most
clearly reflects sleep-related changes in brain state5.
The three eye states are: both left and right eyes
open (LO/RO); left eye closed and right eye open
(LC/RO); and left eye open and right eye closed
(LO/RC). For each mallard (n"6), EEG power was
standardized as a percentage of the average power
observed during bihemispheric slow-wave sleep for
each bird’s hemisphere, so the broken line at 100%
indicates EEG power equivalent to that during
bihemispheric slow-wave sleep. Greater power in
the hemisphere opposite the closed eye during uni-
lateral eye closure indicates USWS. Further method-
ological details are available from the authors.

Slow wave sleep in the brain hemispheres of mallard
ducks sleeping with one eye open. From Rattenborg et
al. (1999) Nature.

− Are the bars “consistent with the numerical
representation”?

− Is 0 a reasonable baseline for evaluating sleep score?
Are there other issues with the graph? In the caption,
they say: “EEG power was standardized as a percentage
of the average power observed during bihemispheric
slow-wave sleep for each bird’s hemisphere, so the
broken line at 100% indicates EEG power equivalent to
that during bihemispheric slow-wave sleep.”
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Types of graphs to achieve these principles

Categorical frequencies: Bar graph

Activities of people at the time they were
attacked and killed by tigers near Chitwan
National Park, Nepal, between 1979 and
2006.

How	to	display	category	frequencies	

Bar	graph	

Activities	of	people	at	the	time	they	
were	attacked	and	killed	by	tigers	near	
Chitwan	National	Park,	Nepal,	between	
1979	and	2006.	

Uses	height	of	bars	to	display	the	

frequency	distribution	of	a	categorical	

(grouping)	variable		

• Zero	baseline	
• Space	between	bars	emphasize	

height	

• Order	of	categories	–	most	to	least	

frequent	is	usually	best	

	 	

Uses height of bars to display the
frequency distribution of a categorical
(grouping) variable
− Zero baseline
− Space between bars emphasize height
− Order of categories (most to least

frequent is usually best)
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Types of graphs to achieve these principles

Categorical frequencies: Bar graph
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Types of graphs to achieve these principles

Categorical frequencies: Bar graph vs Pie Chart

How	to	display	category	frequencies	

Bar	graph	

Activities	of	people	at	the	time	they	
were	attacked	and	killed	by	tigers	near	
Chitwan	National	Park,	Nepal,	between	
1979	and	2006.	

Uses	height	of	bars	to	display	the	

frequency	distribution	of	a	categorical	

(grouping)	variable		

• Zero	baseline	
• Space	between	bars	emphasize	

height	

• Order	of	categories	–	most	to	least	

frequent	is	usually	best	

	 	

 

Which is more successful?
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Types of graphs to achieve these principles

Frequency distribution for a numeric variable: Histogram

The frequency distribution of bird species
abundance at Organ Pipe Cactus National
Monument. n = 43 species.

How	to	display	frequency	distribution	for	numeric	variable	

Histogram	

The	frequency	distribution	of	bird	species	abundance	at	Organ	Pipe	Cactus	National	
Monument.	n	=	43	species	

Uses	area	of	bars	to	display	

frequency	distribution	of	a	

numerical	variable	

• Zero	baseline		
• No	spaces	between	bars	
• Choice	of	number	of	bins	and	bin	

width	

	
	 	

Uses area of bars to display frequency
distribution of a numerical variable
− Zero baseline
− No spaces between bars
− Choice of number of bins and bin

width
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Types of graphs to achieve these principles

Frequency distribution for a numeric variable: Histogram
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Types of graphs to achieve these principles

Association between categorical variables: Grouped bar graph

Incidence of malaria in female great tits in
relation to experimental treatment. n = 65
birds.

How	to	display	association	between	categorical	variables	

Grouped	bar	graph	

Incidence	of	malaria	in	female	great	tits	in	relation	to	experimental	treatment.		
n	=	65	birds.	

Uses	height	of	bars	to	display	

association	between	two	(or	more)	

categorical	variables	

• Explanatory	variable	=	outer	groups;	
response	variable	=	inner	groups	

• Zero	baseline	(so	that	height	is	
proportional	to	frequency)	

• Spacing	between	bars	wider	between	
outer	groups	

	

Uses height of bars to display association
between two (or more) categorical
variables.
− Explanatory variable = outer groups;

response variable = inner groups
− Zero baseline (so that height is

proportional to frequency)
− Spacing between bars wider between

outer groups
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Types of graphs to achieve these principles

Association between categorical variables: Grouped bar graph
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Types of graphs to achieve these principles

Association between categorical variables: Mosaic plot

Incidence of malaria in female great tits in
relation to experimental treatment. n = 65
birds.

How	to	display	association	between	categorical	variables	

Mosaic	plot	

Incidence	of	malaria	in	female	great	tits	
in	relation	to	experimental	treatment.		
n	=	65	birds.	

Uses	area	of	rectangles	to	display	

association	between	two	(or	more)	

categorical	variables	

• Explanatory	variable	along	horizontal	
axis;	response	variable	stacked	

• Area	proportional	to	frequency	
• Like	a	graphical	representation	of	a	
contingency	table	

	

Uses area of rectangles to display
association between two (or more)
categorical variables
− Explanatory variable along horizontal

axis; response variable stacked
− Area proportional to frequency
− Like a graphical representation of a

contingency table
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Types of graphs to achieve these principles

Association between categorical variables: Mosaic plot
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Types of graphs to achieve these principles

Which is more successful?

How	to	display	association	between	categorical	variables	

Grouped	bar	graph	

Incidence	of	malaria	in	female	great	tits	in	relation	to	experimental	treatment.		
n	=	65	birds.	

Uses	height	of	bars	to	display	

association	between	two	(or	more)	

categorical	variables	

• Explanatory	variable	=	outer	groups;	
response	variable	=	inner	groups	

• Zero	baseline	(so	that	height	is	
proportional	to	frequency)	

• Spacing	between	bars	wider	between	
outer	groups	

	

How	to	display	association	between	categorical	variables	

Mosaic	plot	

Incidence	of	malaria	in	female	great	tits	
in	relation	to	experimental	treatment.		
n	=	65	birds.	

Uses	area	of	rectangles	to	display	

association	between	two	(or	more)	

categorical	variables	

• Explanatory	variable	along	horizontal	
axis;	response	variable	stacked	

• Area	proportional	to	frequency	
• Like	a	graphical	representation	of	a	
contingency	table	
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Types of graphs to achieve these principles

Association between numerical and categorical variable: Box plot

Survival times of terminally ill cancer
patients with the clinical prediction of their
survival times.

How	to	display	association	between	numerical	and	categorical	variable	

Box	plot	

Survival	times	of	terminally	ill	cancer	patients	with	the	clinical	prediction		
of	their	survival	times		

Displays	differences	between	groups	in	

key	features	of	frequency	distributions	

• Displays	median,	first	and	third	quartile,	

range,	and	extreme	observations	

• More	compact	than	plotting	a	separate	

histogram	for	each	group	

• Non-zero	baseline	often	ok	(goal	is	to	
show	differences	not	amounts)	

	

	 	

Displays differences between groups in key
features of frequency distributions
− Displays median, first and third

quartile, range, and extreme
observations

− More compact than plotting a
separate histogram for each group

− Non-zero baseline often ok (goal is to
show differences)
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Types of graphs to achieve these principles

Association between numerical and categorical variable: Box plot
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Types of graphs to achieve these principles

Association between numerical and categorical variable: Strip chart

Phase shift in the circadian rhythm of
melatonin production in 22 subjects given
alternative light treatments (open circles).
Group means ± 1 SE also shown.

How	to	display	association	between	numerical	and	categorical	variable	

Strip	chart		

Phase	shift	in	the	circadian	rhythm	of	melatonin	production	in	22	subjects	given	alternative	
light	treatments	(open	circles).	Group	means	±	1	SE	also	shown.	

Displays	differences	between	groups	

• Shows	the	data	points	
• Non-zero	baseline	often	ok	(goal	is	
association	not	magnitude	or	frequency)	

• Points	fill	the	space	available	
	

	

Displays differences between groups
− Shows the data points
− Points fill the space available
− Non-zero baseline often ok (goal is to

show differences)
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Types of graphs to achieve these principles

Association between numerical and categorical variable: Strip chart
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Types of graphs to achieve these principles

Association between numerical and categorical variable

Multiple histograms, box plot, strip chart... Which is more successful?
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Note: Stacking histograms vertically makes it easier to compare distributions than
presenting them in a row.
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Types of graphs to achieve these principles

Association between two numerical variables: Scatter plot

The relationship between the
ornamentation of male guppies and the
average attractiveness of their sons. n = 36
families.

How	to	display	association	between	two	numerical	variables	

Scatter	plot		

The	relationship	between	the	ornamentation	of	male	guppies	and	the		
average	attractiveness	of	their	sons.		
n	=	36	families.	

• Non-zero	baseline	often	ok	(goal	is	to	
show	association,	not	height	above	0)	

• Points	fill	the	space	available	
	
	 	

− Points should fill the space available
− Non-zero baseline often ok (goal is to

show association)
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Types of graphs to achieve these principles

Paired data: Connect the dots to show pairing, or plot differences

studies, and in vitro laboratory experiments. We systematically reviewed all full-length, original
research articles published in the top 25% of physiology journals between January 1 and March
31, 2014 (n = 703) to assess the types of figures that were used to present continuous outcome
data (S1 Fig and Table A in S1 Text). We also abstracted information on sample size and statis-
tical analysis procedures, as these factors may influence figure selection. Detailed methods and
results are presented in the data supplement. Based on our findings, we recommend major
changes to standard practices for presenting continuous data in small sample size studies. We
hope that these recommendations will promote scientific discourse by giving readers the infor-
mation needed to fully examine published data.

Are Your FiguresWorth a ThousandWords?
In addition to showing data for key findings, figures are important because they give authors
the opportunity to display a large amount of data very quickly. However, most figures provided
little more information than a table (Panel A in S2 Fig and S1 Text). Bar graphs were the most
commonly used figures for presenting continuous data. 85.6% of papers included at least one
bar graph. Most of these papers used bar graphs that showed mean ± SE (77.6%, Panel B in
S2 Fig), rather than mean ± SD (15.3%). Line graphs and point and error bar plots were also

Fig 2. Additional problemswith using bar graphs to show paired data. The bar graph (mean ± SE) suggests that the groups are independent and
provides no information about whether changes are consistent across individuals (Panel A). The scatterplots shown in the Panels B–D clearly demonstrate
that the data are paired. Each scatterplot reveals very different patterns of change, even though the means and SEs differ by less than 0.3 units. The lower
scatterplots showing the differences between measurements allow readers to quickly assess the direction, magnitude, and distribution of the changes. The
solid lines show the median difference. In Panel B, values for every subject are higher in the second condition. In Panel C, there are no consistent differences
between the two conditions. Panel D suggests that there may be distinct subgroups of “responders” and “nonresponders.”

doi:10.1371/journal.pbio.1002128.g002

PLOS Biology | DOI:10.1371/journal.pbio.1002128 April 22, 2015 3 / 10

Weissgerber et al. (2015) Beyond bar and line graphs: time for a new data

presentation paradigm. PLoS Biol. DOI:10.1371/journal.pbio.1002128

Interaction plots

Strip charts of differences
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Types of graphs to achieve these principles

Grouped data (like paired, but >2 measurements)

http://www.r-graph-gallery.com/93-parrallel-plot/

33 / 41

http://www.r-graph-gallery.com/93-parrallel-plot/


Types of graphs to *not* achieve these principles

Category frequencies: 3D graphs

In addition, a graph that is meaningful only with numbers added is necessarily a failure.

Cell
502

Figure 1. Classification of TFBS Regions

TFBS regions for Sp1, cMyc, and p53 were
classified based upon proximity to annota-
tions (RefSeq, Sanger hand-curated annota-
tions, GenBank full-length mRNAs, and En-
sembl predicted genes). The proximity was
calculated from the center of each TFBS re-
gion. TFBS regions were classified as follows:
within 5 kb of the 5! most exon of a gene,
within 5 kb of the 3! terminal exon, or within
a gene, novel or outside of any annotation,
and pseudogene/ambiguous (TFBS overlap-
ping or flanking pseudogene annotations,
limited to chromosome 22, or TFBS regions
falling into more than one of the above cate-
gories).

imental data, preliminary evidence for the presence of that are located on the 3! end of the well-characterized
gene appear to be located 5! of the overlapping novelnovel transcripts was derived from chromosome 21 and

22 RNA maps (Kapranov et al., 2002) and from the pub- transcript, which suggests that these transcripts may
be regulated by these factors and in precisely the samelicly available EST data. Novel transcripts were verified

using RT-PCR analyses in 9/11 regions and were found way as protein coding genes.
Additional supporting evidence that these TFs mayto have little coding capacity (less then 50 amino acids).

Northern hybridization analysis of these isolated tran- be regulating antisense transcripts was found by relating
them to full-length mRNAs and ESTs with confidentlyscripts with strand-specific oligonucleotides or ribo-

probes indicate that they are polyadenylated, in some assignable strandedness (determined from splicing and
polyadenylation sites and signals). 1782 clusters of tran-cases spliced, and are present as single and multi-exon

isoforms ranging in size from 800 bp to 9 Kb (Supple- scripts were formed of well-oriented sequences from
public databases aligning to chromosomes 21 or 22.mental Figure S3 on Cell website). Together with the

strand-specific RT-PCR data, this suggests that several Among these clusters, there was a significant associa-
tion (chi-square p value " 10# 15) between the propertyof them might also be antisense to known genes, such

as, for example, EP300 (Figures 2C and 2D), UBASH3A of proximity to a noncanonical TF and the property of
having evidence for transcription on the opposite strand.(Supplemental Figures S2A and S2B online), SEC14L2

(Supplemental Figures S2C and S2D), and others. In this context, a noncanonical TF is one not located at
the 5! end of a known gene and evidence for transcrip-The Ewing sarcoma gene (EWSR1) (Plougastel et al.,

1993), the tumor suppressor gene, EP300 (Gayther et tion on the opposite strand is based on public sequence
data. Twenty-one percent (363) of these transcript clus-al., 2000), and mitogen-activated protein kinase MAPK1

(Gonzalez et al., 1992) on chromosome 22 illustrate po- ters are made up of sense antisense pairs, 44% (161)
have an associated noncanonical TF. Of the 161 sensetential utilization of common TFs to regulate both well-

characterized and novel transcripts (Figure 2). Sequence antisense pairs that have a noncanonical TF, 52% con-
tain at least one site conserved between the humananalysis of the novel transcripts that overlap EWSR1

and EP300 indicate that they are spliced RNAs. Interest- and mouse genomes based on BlastZ human-mouse
alignments (Schwartz et al., 2003).ingly, a conserved region in the 3! UTR of the EWSR1

gene is consistent with the evidence of antisense regula-
tion of this gene (Lipman, 1997). The EP300 gene is a Differential Expression Patterns

of Novel Transcriptsstriking example (Figures 2C and 2D), having a TFBS
region 17 kb away from the 3! end and a novel transcript To address the issue of whether the observed overlap-

ping noncoding transcripts are biologically important,that splices from this site into the 3! end of the gene.
Additionally, overlapping novel transcripts from the we examined whether some of them exhibited a repro-

ducible and coordinated program of differential expres-genes encoding nuclear protein UBASH3A (Supplemen-
tal Figures S2A and S2B), phosphatidylinositol transfer- sion correlated with the companion coding transcripts.

The expression profiles of the poly(A)$ cytosolic RNAlike protein SEC14L2 (Supplemental Figures S2C and
S2D), TBC/rabGAP domain protein EPI64 (Supplemental fraction were monitored during the response of a pluri-

potent human germ cell tumor-derived cell line, NCCIT,Figures S2E and S2F), guanine-nucleotide exchange
factor TIAM1 (Supplemental Figures S2G and S2H), which undergoes retinoic acid (RA)-induced differentia-

tion into keratin- and neurofilament-positive somaticKIAA0376 protein (Supplemental Figures S2I and S2J),
and GTSE1 (Supplemental Figures S2K and S2L) were cells (Damjanov et al., 1993). Empirically derived tran-

scriptional maps of NCCIT using the chromosome 21verified by RT-PCR and/or Northern blot analyses (Sup-
plemental Figure S3). In many of these cases, the TFBS and 22 genome tiling arrays during various stages of

Cawley S, et al. (2004) Unbiased mapping of transcription factor binding sites along human chromosomes 21 and

22 points to widespread regulation of noncoding RNAs. Cell 116:499-509.
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Types of graphs to *not* achieve these principles

Category frequencies: Lots of 2D pies

− The aim is to show changes in NO3

and SO4 between winter and summer,
and consistency of change between
geographic regions.

− This is not easy to see... (“Huh?” not
“Oh!”)

− Design a graph to show the change
from summer to winter in NO3 and
SO4, rather than try to display
everything..

Bell et al.

992 VOLUME 115 | NUMBER 7 | July 2007 • Environmental Health Perspectives

If a PM2.5 component contributes to the
associations with risks for health outcomes
observed in time-series studies based on
PM2.5 total mass, the component would be
expected to exhibit strong day-to-day varia-
tion with PM2.5 total mass. Many such com-
ponents are likely to contribute substantially
to PM2.5 total mass. We first identified com-
ponents that comprise the majority of overall
PM2.5 mass. Only 7 of the 52 components
contributed ≥ 1% to the PM2.5 total mass for
the yearly average or any of the seasonal aver-
ages across all 187 counties. Those compo-
nents (NH4

+, EC, OCM, NO3
–, Si, Na+, and

SO4
2–) comprised 79–85% of the total PM2.5

mass for the yearly or seasonal averages.
Figure 3 shows the percentages of PM2.5 con-
tributed by these components for yearly, win-
ter, and summer averages, for nationwide,
eastern U.S., and western U.S. averages.
SO4

2– is a larger contributor in summer,
whereas NO3

– is a larger contributor in win-
ter for both regions. Although Figure 3 pre-
sents results for the two U.S. regions, spatial
heterogeneity can also exist within regions.
Further, this analysis is limited to the compo-
nents included in the database, and other
components or chemical forms (e.g., ferric
oxide) that were not measured could also have
contributed ≥ 1% to total PM2.5 mass. 

We also examined if any components
contributed 1% or more to PM2.5 within any
individual county for either a yearly or sea-
sonal average. Components meeting this cri-
teria were Al, calcium (Ca), Cl, Fe, and
potassium (K), which on average provide
0.18–0.62% of PM2.5 total mass across the
whole year, but in some cities contributed up
to 5.4% for a given season. The contribution
of these components to PM2.5 total mass on
average across all communities and the mini-
mum and maximum values for any single
community are provided in the Supplemental
Material (Table S3; http://www.ehponline.
org/docs/2007/9621/suppl.pdf) for yearly
and seasonal averages.

Figures 4–7 map yearly and seasonal aver-
ages for the SO4

2– and NO3
– components.

SO4
2– PM2.5 displays a strong east/west pat-

tern (Figure 4). In the eastern United States,
the SO4

2– component of PM2.5 typically
peaks during summer (Figure 5). The NO3

–

component of PM2.5 shows a somewhat
inverse pattern, with higher concentrations on
the west coast, primarily in California (Figure
6). NO3

– PM2.5 also exhibits a north/south
pattern, with higher levels in parts of the
Northeast and decreasing levels towards the
Southeast. This north/south gradient remains
throughout all seasons (Figure 7), and highest
concentrations in the eastern United States
occur in winter. The western United States
has the highest nitrate PM2.5 concentrations
during winter and autumn. 

Figure 3. Percent of PM2.5 composition by component for yearly, winter, and summer averages, by region.
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Figure 4. Sulfate PM2.5 (µg/m3) averages for 187 U.S. counties, 2000–2005.
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Figure 5. Seasonal sulfate PM2.5 (µg/m3) averages for 187 U.S. counties, 2000–2005.

Bell ML, et al. (2007) Spatial and temporal variation in PM2.5 chemical composition in the United States for

health effects studies. Environmental Health Perspectives 115:989-995.
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Types of graphs to *not* achieve these principles

Ratio data

Generate two equivalent sets of 1000 random numbers (call them x and y). Then plot
a histogram of the ratio x/y .
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Any problems with this?
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Types of graphs to *not* achieve these principles

Ratio data

An alternative approach is to plot the Log of the ratio.
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Tables

What is their purpose?

Tables in main text should also be used to illuminate patterns. Make your tables so
that they cause the viewer to go “Oh!” and not “Huh?”.

− Like graphs, tables are used to compare measurements between groups and
expose relationships between variables.

− For some kinds of data, they may be the best way to communicate results to a
wider audience.

Put tables for storing numbers into online Appendix or Supplement.
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Tables

Frequency tables can also be used to display category frequencies

Activities of people at the time they were attacked and killed by tigers near Chitwan
National Park, Nepal, between 1979 and 2006How	to	display	category	frequencies	

Bar	graph	

Activities	of	people	at	the	time	they	
were	attacked	and	killed	by	tigers	near	
Chitwan	National	Park,	Nepal,	between	
1979	and	2006.	

Uses	height	of	bars	to	display	the	

frequency	distribution	of	a	categorical	

(grouping)	variable		

• Zero	baseline	
• Space	between	bars	emphasize	

height	

• Order	of	categories	–	most	to	least	

frequent	is	usually	best	

	 	

Frequency	tables	can	also	be	used	to	display	category	frequencies	
	
Frequency	table	vs	bar	graph,	which	is	preferred?	
	
Activities	of	people	at	the	time	they	were	attacked	and	killed	by	tigers	near	Chitwan	National	Park,	Nepal,	between	
1979	and	2006	 	

Which do you prefer?
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Tables

Improving tables
Difficult to see a relationship
between F and survival.
Uneven line spacing, the gaps
break up patterns.
Too much empty space.
Too many decimals.

Improving	tables	-	example	

	

Difficult	to	see	a	

relationship	

between	F	and	
survival.	

Uneven	line	

spacing,	the	gaps	

break	up	patterns.	

Too	much	empty	

space.	

Too	many	decimals.	
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Tables

Improving tables

Improving	tables	–	example	
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