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Plan your sample size

How should you allocate replicates to different levels of your experiment? Is it better
to have more plots, or more plants within plots? Is it better to have more small
families or fewer, larger families?

What is a p-value?
What is a “Type | error”?

What is a “Type Il error”?
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Plan your sample size

Statistical Power: the likelihood that a study will detect an effect when there is an
effect there to be detected.

Science is expensive: a low-power study is a waste of resources, and so is a study that
is larger than necessary.

Ethics boards and animal care committees require researchers to justify the sample
sizes for proposed experiments on animals, humans.
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Plan your sample size

Problems with low power studies

High chance of a false negative.
Highly uncertain estimates of effect size (wide confidence intervals).

If a statistically significant result is obtained in a low power study, the estimate of
effect is likely to be exaggerated.

If a statistically significant result is obtained in a low power study, there is a high
chance that the estimated effect is in the wrong direction.
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Plan your sample size

Goals when planning your sample size

— Plan for precision: Choose a sample size that yields a confidence interval of
specified width. A narrow confidence interval means we have an estimate with
high precision.

— Plan for power: Involves choosing a sample size that would have a high
probability of rejecting Ho (> 80%) if the absolute magnitude of the difference
between the means, |u1 — 2|, is at least as great as a specified value D.

— Compensate for data loss: Some experimental individuals may die, leave the
study, or be lost between the start and the end of the study. The starting sample
sizes should be made even larger to compensate.
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Plan your sample size

Challenges of planning sample size

Key quantities to plan sample sizes, such as the within-group standard deviation,
o, are not known.

Typically a researcher makes an educated guess for these unknown parameters
based on pilot studies or previous investigations.

If no information is available then consider carrying out a small pilot study first,
before attempting a large experiment.

Note: post-hoc power calculations are useless (i.e., calculating how likely it is
that the null hypothesis is true, based on your non-significant outcome is
non-sensical; see Colegrave & Ruxton, Behavioral Ecology. 14: 446-450).
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Experiments vs observational studies

In an experimental study the researcher assigns treatments to units or subjects so that
differences in response can be compared. There must be at least 2 treatments (or
treatment and control).

— Examples: Clinical trials, reciprocal transplant experiments, factorial experiments
on competition and predation.

In an observational study, nature does the assigning of treatments to subjects. The
researcher has no influence over which subjects receive which treatment (no matter
how complex the apparatus needed to measure response)

— Examples: Common garden “experiments’, QTL mapping “experiments”.
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Why do experiments

An observational study cannot distinguish between two reasons for an association
between an explanatory variable and a response variable.

Survival of climbers to Mount Everest is higher for individuals taking supplemental
oxygen than not.

1. Supplemental oxygen (explanatory variable) increases survival (response variable).

2. Supplemental oxygen has little or no effect. Survival and oxygen are associated
because other variables affect both (e.g., greater overall preparedness). Variables
(like preparedness) that distort the causal relationship between the measured
variables of interest (oxygen use and survival) are called confounding variables.

We do experiments to eliminate confounding variables.
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Why do experiments

With an experiment, random assignment of treatments to subjects allows researchers
to tease apart the effects of the explanatory variable from those of confounding
variables.

With random assignment, no confounding variables will be associated with treatment
except by chance.

If a researcher could assign supplemental oxygen/no-oxygen randomly to Everest
climbers, this will break the association between oxygen and degree of preparedness.
Random assignment will roughly equalize the preparedness levels of the two oxygen
treatment groups.

In this case, any resulting difference between oxygen treatment groups in survival
(beyond chance) must be caused by treatment.
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Clinical trials: experiments on people

An experimental study in which two or more treatments are assigned to human
subjects.

The design of clinical trials has been refined because the cost of making a mistake
with human subjects is so high.

Experiments on nonhuman subjects are simply called “laboratory experiments” or
“field experiments”, depending on where they take place.

10/32



Example of an experiment (clinical trial)

ARTICLES

Effectiveness of COL-1492, a nonoxynol-9 vaginal gel, on HIV-1
transmission in female sex workers: a randomised controlled trial

Lut Van Damme, Gita Ramjee, Michel Alary, Bea Vuylsteke, Verapol Chandeying, Helen Rees, Pachara Sirivongrangson,
Léonard Mukenge-Tshibaka, Virginie Ettiegne-Traoré, Charn Uaheowitchai, Salim S Abdool Karim, Benoit Masse,
Jos Perriéns, Marie Laga, on behalf of the COL-1492 study group*
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Example of an experiment (clinical trial)

Transmission of the HIV-1 virus via sex workers contributes to the rapid spread of
AIDS in Africa.

The spermicide nonoxynol-9 had shown in vitro activity against HIV-1, which
motivated a clinical trial by van Damme et al. (2002). They tested whether a vaginal
gel containing the chemical would reduce the risk of acquiring the disease by female
sex workers.

Data were gathered on a volunteer sample of 765 HIV-free sex-workers in six clinics in
Asia and Africa.

Two gel treatments were assigned randomly to women at each clinic. One gel
contained nonoxynol-9 and the other contained a placebo (an inactive compound that
subjects could not distinguish from the treatment of interest).

Neither the subjects nor the researchers making observations at the clinics knew who
had received the treatment and who had received the placebo (A system of numbered
codes kept track of who got which treatment.)
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Example of an experiment (clinical trial)

Results of the clinical trial:

Nonoxynol-9 Placebo

Clinic  n Numberinfected n Number infected
Abidjan 78 0 84 5
Bangkok 26 0 25 0
Cotonou 100 12 103 10
Durban 94 42 93 30
HatYai2 22 0 25 0
HatYai3 56 5 59 0
Total 376 59 389 45

“This study did not show a protective effect of COL-1492 on HIV-1 transmission in high risk
women. Multiple use of nonoxynol-9 could cause toxic effects enhancing HIV-1 infection.
This drug can no longer be deemed a potential HIV-1-prevention method.”
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Design components

To reduce bias, the experiment included:
— Simultaneous control group: the women receiving the placebo.
— Randomization: treatments were randomly assigned to women at each clinic.

— Blinding: neither the subjects nor the clinicians knew which women were assigned
which treatment.

To reduce the effects of sampling error, the experiment included:
— Replication: the study was carried out on multiple independent subjects.
— Balance: the number of women was nearly equal in the two groups at every clinic.

— Blocking: subjects were grouped according to the clinic they attended, yielding
multiple repetitions of the same experiment in different settings (“blocks”).
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Design components: Reducing bias

Simultaneous control group

A study lacking a control group for comparison cannot determine whether the
treatment of interest is the cause of any of the observed changes.

The health of human subjects often improves after treatment merely because of
their expectation that the treatment will have an effect, a phenomenon known as
the “placebo effect”.

Control subjects should be perturbed in the same way as the other subjects,
except for the treatment itself (as far as ethical considerations permit). The
“sham operation”, in which surgery is carried out without the experimental

treatment itself, is an example.

In field experiments, applying a treatment of interest may physically disturb the
plots receiving it and the surrounding areas, perhaps by trampling the ground by
the researchers. Ideally, the same disturbance should be applied to the control
plots.
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Design components: Reducing bias

Randomization
— The researcher should randomize assignment to units or subjects.

— Randomization means that treatments are assigned to units at random, such as
by flipping a coin or using random numbers. Other ways of assigning treatments
to subjects are inferior. “Haphazard” assignment has repeatedly been shown to
be non-random and prone to bias.

— Randomization breaks the association between possible confounding variables and
the explanatory variable, allowing the causal relationship between the explanatory
and response variables to be assessed.

— Randomization doesn't eliminate the variation contributed by confounding
variables, only their correlation with treatment.

— A completely randomized design is an experimental design in which treatments
are assigned to all units by randomization.
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Design components: Reducing bias

Blinding

— Blinding is the process of concealing information from participants (sometimes
including researchers) about which subjects receive which treatment.

— In a single-blind experiment, the subjects are unaware of the treatment that they
have been assigned. Not much of a concern in non-human studies.

— In a double-blind experiment, those administering the treatments and measuring
the response are also unaware of which subjects are receiving which treatments.

— Blinding prevents subjects and researchers from changing their behavior,
consciously or unconsciously, as a result of knowing which treatment they were
receiving or administering.

— Medical studies without double-blinding exaggerated treatment effects by 16% on
average, compared to studies without double-blinding (Jiini et al. 2001).

— Experiments on non—human subjects are also prone to bias from lack of blinding.

— Bebarta et al. (2003) reviewed 290 two-treatment experiments carried out on
animals or on cell lines. The odds of detecting a positive effect of treatment were
more than threefold higher in studies without blinding than in studies with
blinding. (Experiments without blinding also tend to have other problems such as
a lack of randomization.)

— Blinding can be incorporated into experiments on nonhuman subjects using coded
tags that identify the subject to a “blind” observer without revealing the
treatment (and who measures units from different treatments in random order).
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Design components: Reducing the effects of sampling error

The goal of experiments is to estimate and test treatment effects against the
background of variation between individuals (“noise”) caused by other variables.

One way to reduce noise is to make the experimental conditions constant. Fix the
temperature, humidity, and other environmental conditions, for example, and use only
subjects that are the same age, sex, genotype, and so on. In field experiments,
constant experimental conditions might not be feasible.

Constant conditions might not be desirable, either. By limiting the conditions of an
experiment, we also limit the generality of the results - that is, the conclusions might
apply only under the conditions tested and not more broadly.

Another way to make treatment effects stand out is to include extreme treatments.
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Design components: Reducing the effects of sampling error

Replication

— Replication is the assignment of each treatment to multiple, independent
experimental units.

— Studies that use more units (i.e., larger sample sizes) will have smaller standard
errors and a higher probability of getting the correct answer from a hypothesis
test.

— Larger samples mean more information, and more information means better
estimates and more powerful tests.

— Replication is not about the number of plants or animals used, but the number of
independent units in the experiment. An “experimental unit” is the independent
unit to which treatments are assigned.

— The figure shows three experimental designs used to compare plant growth under
two temperature treatments (indicated by the shading of the pots). The first two
designs are unreplicated.
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Design components: Reducing the effects of sampling error

Replication

An experimental unit might be a single plant/animal, if individuals are randomly
sampled and assigned treatments independently.

An experimental unit might be a batch of individual organisms treated as a
group, such as a field plot containing multiple individuals, a cage of animals, a
household, a Petri dish, or a family.

Multiple individual organisms belonging to the same unit (e.g., plants in the same
plot, bacteria in the same dish, members of the same family, and so on) should
be considered together as a single replicate. This is because they are likely to be
more similar to each other, on average, than to individuals in separate units
(apart from the effects of treatment).

Erroneously treating the single organism as the independent replicate when the
chamber or field plot is the experimental unit is pseudoreplication.
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Design components: Reducing the effects of sampling error

Interspersion

— Treatments must always be interspersed with each other in space and time.

Two pots %% tﬁ
Chamber 1 Chamber 2

-
vt G U U WG Y Y

— Randomization is one way this is usually implemented.
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Design components: Reducing the effects of sampling error

Balance
— A design is balanced if all treatments have the same sample size.

— Balance helps reduce the influence of sampling error on estimation. To appreciate
this, look at the equation for the standard error of the difference between two
treatment means.

2 2
g .
1 2
Omy—my = | — + =2
m n

Let's assume equal variances (02 = 02). Then, this equation reduces to

o1 1
Omp—my = ([0 n*1+n*2

For a fixed total number of experimental units, n; + ny, the standard error is
smallest when the quantity n—ll + % is smallest, which occurs when n; and ny are
equal.

— Balance is not as important as replication (i.e., n1 + n2).
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Design components: Reducing the effects of sampling error

Blocking

Blocking is the grouping of experimental units that have similar properties.
Within each block, treatments are randomly assigned to experimental units.

Blocking essentially repeats the same, completely randomized experiment
multiple times, once for each block.

Differences between treatments are only evaluated within blocks, and in this way
the component of variation arising from differences between blocks is discarded.

bvs] [Guby

Block (here, chamber) must be included as a (random) factor in the statistical
analysis. Analysis follows design. We'll talk about this more when we apply mixed
effects models.
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Design components: Reducing the effects of sampling error

Blocking: Paired design

— For example, consider the design choices for a two-treatment experiment to
investigate the effect of clear cutting on salamander density.

— In the completely randomized (“two sample”) design, we take a random sample
of forest plots from the population and then randomly assign either the clear-cut
treatment or the no clear-cut treatment to each plot.

— In the paired design we take a random sample of
randomly chosen half of each plot, leaving the ot
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Design components: Reducing the effects of sampling error

Blocking: Paired design

— In the paired design, measurements on adjacent plot-halves are not independent.
This is because they are likely to be similar in soil, water, sunlight, and other
conditions that affect the number of salamanders.

— As a result, we must analyze paired data differently than when every plot is
independent of all the others, as in the case of the two-sample design.

— The paired design is usually more powerful than completely randomized design,
because it controls for a lot of the extraneous variation between plots or sampling
units that might obscure the effects we are estimating.
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Design components: Reducing the effects of sampling error

Blocking: Randomized complete block design

Paired designs are a special case of RCB design (which allows more than two
treatments). Each treatment is applied once to every block.

By accounting for some sources of sampling variation, such as the variation
among trees, blocking can make differences between treatments stand out.

Blocking is worthwhile if units within blocks are relatively homogeneous, apart
from treatment effects, and units belonging to different blocks vary because of
environmental or other differences.

In the example of a clinical trial, “Clinic” was a blocking variable.
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Design components: Reducing the effects of sampling error

Experiments with more than one factor

— A factor is a single treatment variable whose effects are of interest to the
researcher.

— The factorial design is the most common experimental design for more than one
treatment variable, or factor. In a factorial design every combination of
treatments from two (or more) treatment variables is investigated.

— The main purpose of a factorial design is to evaluate possible interactions between
variables. An interaction between two explanatory variables means that the effect
of one variable on the response depends on the state of a second variable.

— Even if there are no interactions, a factorial design can be an efficient way to
collect information on the effects of more than one treatment variable.
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Experiments with time as a factor

Must account for repeated measures of the same subjects (plots)

Natural Selection on a Major Armor
Gene in Threespine Stickleback

Rowan D. H. Barrett,* Sean M. Rogers, Dolph Schluter
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Analysis follows design

The structure of your analysis should reflect the structure of study design.

Remember, pseudoreplication is a problem of analysis, not design. It can happen when
the analysis doesn’t follow the experimental design.

For example, if subjects are grouped (fish in aquaria; colonies in a Petri dish; repeated
measurements of the same individuals), then your analysis needs to include a
(random) group level variable in the statistical model.

Grouping variables are incorporated using “mixed effects models”, which we will learn
about.
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Analysis follows design

Recognizing how you will analyze the data when you design your study is a
prerequisite for planning the sample sizes you will need.

To plan an experimental design and the sample sizes required to achieve your
experimental goals, use R to make up (simulate) data. Then use R to analyze the
data.

Repeat this many times and you will acquire estimates of power and precision for
alternative plans.
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What if you can't do experiments: think like an experimentalist

Experimental studies are not always feasible, in which case we must fall back upon
observational studies.

— The best observational studies incorporate as many of the features of good
experimental design as possible to minimize bias (e.g., simultaneous controls,
blinding) and the impact of sampling error (e.g., replication, balance, blocking,
and even extreme treatments) except for one: randomization. Randomization is
out of the question, because in an observational study the researcher does not
assign treatments to subjects.

— Two strategies are used to limit the effects of confounding variables on a
difference between treatments in a controlled observational study: matching; and
statistically adjusting for known confounding variables.
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Two extra suggestions when planning data collection

— Always record raw untransformed data (transformations can always be done later,
but some transformations cannot be undone).

— Always try to think of additional “easy to collect” data.
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