BISC-869, Linear Models

February 8, 2021

A relationship between variables involving

- a response variable Y
- explanatory variable(s) X_{1}, X_{2}, \ldots
- normally distributed random errors with equal variance
in the form

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\cdots+\text { error }
$$

where $\beta_{0}, \beta_{1}, \beta_{2}, \cdots$ are the parameters of the linear model

For example

- fit a mean to data: $Y=\beta_{0}$
- simple linear regression: $Y=\beta_{0}+\beta_{1} X$
- multiple regression: $Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+\cdots$
- quadratic regression: $Y=\beta_{0}+\beta_{1} X+\beta_{2} X^{2}$
- single-factor ANOVA: $Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\cdots$

A linear model needn't be a straight line. For example, the quadratic equation is a linear model

$$
Y=\beta_{0}+\beta_{1} X+\beta_{2} X^{2}
$$

Note: the term 'factor' in reference to a lm usually refer to a predictor (not a 'factor', as we have used in R).

Linear models go by other names:

- Fit a mean
- Linear regression
- Multiple regression
- Fitting different means to two groups
- Single factor ANOVA
- Multi-factor ANOVA
- Analysis of covariance

All can be written in the same form

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\cdots+\text { error }
$$

"Linear models" unites these methods into a common framework that

- Provides a common set of tools (lm in R)
- Is flexible enough to handle different study designs
- Has tools to estimate parameters (e.g., sizes of effects)
- Is easy to use, even when there are multiple variables
- Better handling of unbalanced designs than traditional ANOVA calculations

Data: The average number of "dee" notes per alarm call by black-capped chickadees presented with a live, perched predator.

Predator species	Predator body mass (kg)	Number of "dee" notes per call
Northern pygmy-owl	0.07	3.95
Saw-whet owl	0.08	4.08
American kestrel	0.12	2.75
Merlin	0.19	3.03
Short-eared owl	0.35	2.27
Cooper's hawk	0.45	3.16
Prairie falcon	0.72	2.19
Peregrine falcon	0.72	2.80
Great horned owl	1.40	2.45
Rough-legged hawk	0.99	1.33
Gyrfalcon	1.40	2.24
Red-tailed hawk	1.08	2.56
Great gray owl	1.08	2.06

Templeton, C. N., E. Greene, and K. Davis. 2005.
Science 308: 1934-1937.

Data: The average number of "dee" notes per alarm call by black-capped chickadees presented with a live, perched predator.

Predator species	Predator body mass (kg)	Number of "dee" notes per call
Northern pygmy-owl	0.07	3.95
Saw-whet owl	0.08	4.08
American kestrel	0.12	2.75
Merlin	0.19	3.03
Short-eared owl	0.35	2.27
Cooper's hawk	0.45	3.16
Prairie falcon	0.72	2.19
Peregrine falcon	0.72	2.80
Great horned owl	1.40	2.45
Rough-legged hawk	0.99	1.33
Gyrfalcon	1.40	2.24
Red-tailed hawk	1.08	2.56
Great gray owl	1.08	2.06

Templeton, C. N., E. Greene, and K. Davis. 2005. Science 308: 1934-1937.

Linear model for simple linear regression with no predictors

$$
Y=\beta_{0}
$$

There is only one parameter in this equation:
β_{0} : intercept
The model in plain language:

$$
\text { dees }=\text { intercept }
$$

In R this is written as:

```
dees~1
```

Our data-frame, dd:
head (dd)

	pred mass dees	
	Northern pygmy-owl	0.07
3.95		
1	Saw-whet owl	0.08
2.08		
3	American kestrel	0.12
2.75		
4	Merlin	0.19
5	Short-eared owl	0.03
6	Coopers Hawk	0.45

To fit the model:

```
out <- lm(dees~1, data=dd)
summary(out)
```

Call:
$\operatorname{lm}($ formula $=$ dees ~ 1, data $=d d)$
Residuals:

Min	$1 Q$	Median	$3 Q$	Max
-1.3523	-0.4423	-0.1223	0.3477	1.3977

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) $2.6823 \quad 0.2091 \quad 12.830 .0000000229^{* * *}$
Signif. codes: $0{ }^{\prime * * * '} 0.001^{\prime * *} 0.01^{\prime *} 0.05^{\prime} .0 .1$ ' 1
Residual standard error: 0.7539 on 12 degrees of freedom

Don't pay attention to P-values from summary.

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	2.6823	0.2091	12.83	0.0000000229

And, as a quick check:
mean(dd\$dees)
2.682308

Linear model for simple linear regression

$$
Y=\beta_{0}+\beta_{1} X
$$

Here, we have an intercept and a slope (a 'fixed effect'):
$\beta_{0}:$ intercept
$\beta_{1}:$ slope

The model in plain lenguage:

$$
\text { dees }=\text { intercept }+ \text { mass }
$$

In R, the intercept is implicit and doesn't need to be in the model formulation:
dees~mass
but we could also write this as
dees~1+mass

Example: Simple linear regression with one predictor

Run the model:

```
out <- lm(dees~mass, data=dd)
summary(out)
    Call:
    lm(formula = dees ~ mass, data = dd)
    Residuals:
        Min 1Q Median 3Q Max
    -1.0153-0.4356 0.1744 0.3204 0.7899
    Coefficients:
        Estimate Std. Error t value }\operatorname{Pr}(>|t|
    (Intercept) 3.3731 0.2776 12.149 0.000000102 ***
mass -1.0382 0.3402 -3.051 0.011 *
    Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
    Residual standard error: 0.5795 on 11 degrees of freedom
    Multiple R-squared: 0.4584, Adjusted R-squared: 0.4092
    F-statistic: 9.311 on 1 and 11 DF, p-value: 0.01102
```

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	3.3731	0.2776	12.149	$0.000000102 * * *$
mass	-1.0382	0.3402	-3.051	$0.011 *$

Residuals

To view the residuals:
resid(out)
where out is the saved output from the lm command.

What's happening 'under the hood' ?

We can write each data point as a linear combination of the model parameter estimates and the residual:

dees		dummy		mass		residual
[3.95]		$\left.{ }^{1}\right]$		[0.07]		0.65
4.08		1		0.08		0.79
2.75		1		0.12		-0.50
3.03		1		0.19		-0.15
2.27		1		0.35		-0.74
3.16		1		0.45		0.25
2.19	$=\beta_{0}$ *	1	$+\beta_{1}{ }^{*}$	0.72	+	-0.44
2.80		1		0.72		0.17
2.45		1		1.40		0.53
1.33		1		0.99		-1.02
2.24		1		1.40		0.32
2.56		1		1.08		0.31
2.06		1.		L1.08		-0.19]

Note: $\beta_{0}=3.3731, \beta_{1}=-1.0382$

How are β_{0} and β_{1} chosen? R uses 'least squares'. In other words, R finds the values of β_{0} and β_{1} that minimize the sum of squared residuals, $\sum_{i}\left(\text { residual }_{i}\right)^{2}$.

How are β_{0} and β_{1} chosen? R uses 'least squares'. In other words, R finds the values of β_{0} and β_{1} that minimize the sum of squared residuals, $\sum_{i}\left(\text { residual }_{i}\right)^{2}$.

How are β_{0} and β_{1} chosen? R uses 'least squares'. In other words, R finds the values of β_{0} and β_{1} that minimize the sum of squared residuals, $\sum_{i}\left(\text { residual }_{i}\right)^{2}$.

Use anova or drop1 to test hypothesis.

```
anova(out)
Analysis of Variance Table
Response: dees
        Df Sum Sq Mean Sq F value Pr(>F)
mass 1 3.1268 3.12683 9.3106 0.01102 *
Residuals 11 3.6942 0.33584
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ', 1
```

```
drop1(out, test='F')
```

Single term deletions

```
Model:
dees ~ mass
lorlorlorlol
```

These tests fit and compare two models. Specifically, they compare a reduced model (representing the null hypothesis) to a full model (representing the alternative hypothesis). The reduced model contains a subset of terms present in the full model (it is "nested"). An F-test tests whether the full model fits the data significantly better than the reduced model.

Note that with anova, the order you enter the terms into the model (if you have more than one predictor) matters (more on this later).

Visually, these tests are comparing the below two models:

Data: Effects of latitude and elevation on ant species richness. $n=22$ forest plots. Gotelli, N. J. \& Ellison, A. M. 2002. Biogeography at a regional scale: determinants of ant species density in bogs and forests of New England. Ecology, 83, 1604-1609.

$$
\ln (\text { nspecies })=\beta_{0}+\beta_{1} \cdot \text { latitude }+\beta_{2} \cdot \text { elevation }+\beta_{3} \cdot(\text { latitude } \times \text { elevation })
$$

Parameters in this model:

```
head(dd)
```

β_{0} : intercept		nsp	titude elevation	
			41.97 42.00	389 8
β_{1} : slope for latitude		18	42.03	152
β_{2} : slope for elevation		16 9	+42.05	210
β_{2}. slope for elevation		15	42.17	78
β_{3} : slope for interaction				

Note: sample size too small to fit so many parameters, but for this example let's keep going anyway.

$$
\ln (\text { nspecies })=\beta_{0}+\beta_{1} \cdot \text { latitude }+\beta_{2} \cdot \text { elevation }+\beta_{3} \cdot(\text { latitude } \times \text { elevation })
$$

With multiple predictors, plotting isn't quite as simple (could use 3D plots, or multiple 2D plots).

To fit the model (with interaction):
out <- $\operatorname{lm}(\log (n s p) \sim l a t i t u d e * e l e v a t i o n, ~ d a t a=d d) ~$
summary (out)
Call:
$\operatorname{lm}($ formula $=\log (\mathrm{nsp}) \sim$ latitude $*$ elevation, data $=\mathrm{dd})$
Residuals:

Min	$1 Q$	Median	$3 Q$	Max
-0.59789	-0.19520	0.07043	0.15743	0.59422

Coefficients:

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	12.2494191	4.9830250	2.458	0.0243
latitude	-0.2284237	0.1166225	-1.959	0.0658
elevation	-0.0066702	0.0185131	-0.360	0.7228
latitude: elevation	0.0001236	0.0004320	0.286	0.7781
Signif. codes: 0	*, 0.001	'**' 0.01	0.05	0.1

Residual standard error: 0.3116 on 18 degrees of freedom Multiple R-squared: 0.5805, Adjusted R-squared: 0.5106 F-statistic: 8.304 on 3 and 18 DF, p-value: 0.001117

\log (nsp)		dummy		lat		elev		lat \times elev		residual
[1.8]		$\left.{ }^{1}\right]$		[41.97]		$\lceil 3897$		[16326.33]		$[-0.29]$
2.8		1		42.00		8		336.00		0.15
2.9		1		42.03		152		6388.56		0.47
2.8		1		42.05		1		42.05		0.16
2.2		1		42.05		210		8830.50		-0.14
2.7		1		42.17		78		3289.26		0.19
1.9		1		42.19		47		1982.93		-0.65
2.5		1		42.23		491		20734.93		0.60
2.6		1		42.27		121		5114.67		0.18
2.2		1		42.31		95		4019.45		-0.25
2.3		1		42.56		274		11661.44		0.16
2.3	$=\beta_{0}{ }^{*}$	1	$+\beta_{1}{ }^{*}$	42.57	$+\beta_{2}{ }^{*}$	335	$+\beta_{3}{ }^{*}$	14260.95	+	0.24
1.4		1		42.58		543		23120.94		-0.36
1.6		1		42.69		323		13788.87		-0.45
1.9		1		43.33		158		6846.14		-0.25
1.9		1		44.06		313		13790.78		0.10
1.4		1		44.29		468		20727.72		-0.17
1.8		1		44.33		362		16047.46		0.11
1.8		1		44.50		236		10502.00		-0.01
2.1		1		44.55		30		1336.50		0.06
1.8		1		44.76		353		15800.28		0.18
[1.8]		[1]		[44.95		[133]		[5978.35]		-0.03

$\beta_{0}=12.25, \beta_{1}=-0.23, \beta_{2}=-0.0067, \beta_{3}=0.00012$
Note: Unlike the other columns, the values in the 'residual' vector are calculated from the fitted model.

Plotting best fit lines

But... how did I plot these? What assumption(s) did I have to make?

Plotting best fit lines

You need to specify the values for all other predictors in the model in order to plot a curve.

What would an "interaction" between these variables look like?

Let's use drop1 to test hypotheses:
drop1 (out, test='F')
Single term deletions
Model:
$\log (n s p)$ ~ latitude * elevation Df Sum of Sq RSS AIC F value $\operatorname{Pr}(>F)$
<none> 1.7482 -47.714
latitude:elevation $10.00794941 .7562-49.614 \quad 0.0818 \quad 0.7781$

- drop1 will not test main effects if an interaction is included. In general, interaction effects do not make sense in the absence of their main effects.
- Here, we find no evidence for a significant interaction effect. Therefore, we remove that term using the update command, and run drop1 again.

```
out2 <- update(out,~.-latitude:elevation)
drop1(out2, test='F')
    Single term deletions
Model:
log(nsp) ~ latitude + elevation
    Df Sum of Sq RSS AIC F value Pr(>F)
<none> 1.7562 -49.614
latitude 1 0.95781 2.7140 -42.038 10.363 0.004517 **
elevation 1 1.02220 2.7784-41.522 11.059 0.003555 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
```

We have evidence that both main effects are 'significant'.
This last step could equivalently be accomplished by re-running a simpler model, without the interaction, and then using drop1 on that.

```
out <- lm(log(nsp)~latitude+elevation, data=dd)
drop1(out, test='F')
```

Consider a model that includes two factors A and B; there are, therefore, two main effects, and an interaction, $A \times B$. Let's represent the full model by $\operatorname{SS}(A, B, A B)$.

Lets define the incremental sum of squares
$S S(A B \mid A, B)=S S(A, B, A B)-S S(A, B)$
$S S(A \mid B, A B)=S S(A, B, A B)-S S(B, A B)$
and so on...
Type I (also called "sequential" sum of squares)
SS(A) for factor A
$S S(B \mid A)$ for factor B
$S S(A B \mid B, A)$ for interaction $A B$
anova produces these - order matters!

Type III

SS (A|B, AB) for factor A
$S S(B \mid A, A B)$ for factor B
drop1 produces these - order doesn't matter.
... but, it means that testing for significant main effects doesn't make sense if there is an interaction...
https://mcfromnz.wordpress.com/2011/03/02/anova-type-iiiiii-ss-explained/

For our example:

```
out <- lm(log(nsp)~latitude+elevation, data=dd)
drop1(out, test='F')
```

```
Single term deletions
Model:
log(nsp) ~ latitude + elevation
Df Sum of Sq RSS AIC F value Pr(>F)
<none> 1.7562 -49.614
latitude 1 0.95781 2.7140-42.038 10.363 0.004517 **
elevation 1 1.02220 2.7784-41.522 11.059 0.003555 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
```

```
out <- lm(log(nsp)~latitude+elevation, data=dd)
anova(out)
Analysis of Variance Table
Response: log(nsp)
    Df Sum Sq Mean Sq F value Pr(>F)
latitude 11.3894 1.38937 15.031 0.001015
elevation 1 1.0222 1.02220 11.059 0.003555 **
Residuals 19 1.7562 0.09243
Signif. codes: 0 ‘***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
out <- lm(log(nsp) ~elevation+latitude, data=dd)
anova(out)
Analysis of Variance Table
Response: log(nsp)
    Df Sum Sq Mean Sq F value Pr(>F)
    elevation 1 1.45375 1.45375 15.728 0.0008283 ***
latitude 1 0.95781 0.95781 10.363 0.0045166 **
Residuals 19 1.75617 0.09243
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


For our example (with interaction):

```
    out <- lm(log(nsp) ~latitude*elevation, data=dd)
    drop1(out, test='F')
```

Single term deletions
Model:
$\log (n s p)$ ~ latitude * elevation
Df Sum of Sq RSS AIC F value $\operatorname{Pr}(>F)$
<none> $\quad 1.7482$-47.714
latitude:elevation 10.00794941 .7562 -49.614 $0.0818 \quad 0.7781$

```
out <- lm(log(nsp) ~latitude*elevation, data=dd) out <- lm(log(nsp)~elevation*latitude, data=dd)
anova(out)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Analysis of Varianc & Ce Table & & & & & \multicolumn{7}{|l|}{Analysis of Variance Table} \\
\hline Response: \(\log\) (nsp) & & & & & & Response: \(\log\) (nsp) & & & & & & \\
\hline & Df Sum Sq & Mean Sq & \(F\) value & \(\operatorname{Pr}(>F)\) & & & Df & Sum Sa & Mean Sa & F value & \(\operatorname{Pr}(>F)\) & \\
\hline latitude & 11.38937 & 1.38937 & 14.3052 & 0.001364 & ** & elevation & & 1.45375 & 1.45375 & 14.9681 & 0.001125 & \\
\hline elevation & 11.02220 & 1.02220 & 10.5247 & 0.004503 & ** & latitude & & 0.95781 & 0.95781 & 9.8618 & 0.005657 & \\
\hline latitude:elevation & 10.00795 & 0.00795 & 0.0818 & 0.778074 & & elevation:latitude & & 0.00795 & 0.00795 & 0.0818 & 0.778074 & \\
\hline Residuals & 181.74822 & 0.09712 & & & & Residuals & & 1.74822 & 0.09712 & & & \\
\hline Signif. codes: 0 & '***' 0.001 & '**' 0.0 & 01 '*' 0 & .05 '.' 0. & \(1 ،\) & Signif. codes: 0 & & 0. & '**' 0.0 & 1 '*' 0 & . 05 '. & . 1 \\
\hline
\end{tabular}
```

Note: the P-values from anova for latitude and elevation are not the same as they were in the models without the interaction. This is because the F-value is calculated as "Mean Sq for parameter of interest" / "Mean Sq for Residuals", and the latter changes as more parameters are added to the model.

Model simplification: The interaction term in the model was not significant. Can we drop it and refit?

- The temptation is strong to drop non-significant terms from models, to find a "minimum adequate model" or to provide more power to test remaining effects.
- Dropping a term when $P>0.05$ involves "accepting" a null hypothesis as true. Why is this a good idea? Remaining P-values become "exploratory."
- Later, we will cover the topic of model selection - how to choose the "best" model using less arbitrary criteria for what is "best".
- drop1 vs anova represent different approaches. Downside to anova is that you have to decide on the order of importance a priori. Downside to drop1 - your final analysis doesn't follow your design.

The percentage of time that male mice given an injection to cause mild pain spent "writhing" in different familiar-companion treatments.
Data simulated based on: Langford, D. J., et al. 2006. Science 312: 1967-1970

Note: don't worry about ANOVA/ANCOVA notation, if this is unfamiliar.

ANOVA is fundamentally the same as linear regression

- There's a response variable, a constant, an explanatory variable.
- out <- lm(writhing \sim treatment, data=dd)
- The only difference from previous examples is that the explanatory variable is categorical.

Example: Single-factor ANOVA

head (dd)

writhing treatment
33.59252 injected.n
77.09400 injected.y
41.17232 alone
54.50535 injected.n
55.44013 injected.y
31.97051 alone
out <- lm(writhing~treatment, data=dd)
summary (out)
Call:
$\operatorname{lm}($ formula $=$ writhing \sim treatment, data $=d d)$
Residuals:

Min	1Q	Median	30	Max
.290	-10.476	-2.319	12.877	47.620

Coefficients:

What do these estimates mean?
Let's look at the drop1.
drop1(out, test='F')
Single term deletions
Model:
writhing ~ treatment
Df Sum of Sq RSS AIC F value $\operatorname{Pr}(>F)$
<none> 12495245.21
treatment $2 \quad 6663.419158 \quad 259.16 \quad 10.399 \quad 0.00024$ ***

drop1 compares a model without 'treatment' to one with it

In order to understand the coefficients, let's look at the "model matrix":

writhing	dummy	treatalone*	treatinjected.n	treatinjected.y
33.2	1	1	0	0
17.4	1	1	0	0
44.2	1	1	0	0
41.2	1	1	0	0
34.9	1	1	0	0
\vdots	\vdots	\vdots	\vdots	\vdots
31.1	1	0	1	0
5.9	1	0	1	0
54.5	1	0	1	0
51.7	1	0	1	0
33.6	1	0	\vdots	0
\vdots	\vdots	0	0	\vdots
89.0	1	0	0	1
34.6	1	0	0	1
48.8	1	0	0	1
77.1	1			0

Use model.matrix(out) to view this matrix.
*R leaves out the first level for each categorical variable (in this case, 'alone') in order to avoid redundancy.

Coefficients:
Estimate Std. Error

(Intercept)	40.620	4.341
treatmentinjected.n	-5.266	6.595
treatmentinjected.y	25.288	6.749

treatmentinjected.y $25.288 \quad 6.749$

So, what do the summary () coefficients mean?
The linear model being fitted is:

$$
\begin{aligned}
& \text { subjects in 'alone' group } \rightarrow \quad \text { writhing }=\beta_{0}+\text { residual } \\
& \text { subjects in 'injection.n' group } \rightarrow \text { writhing }=\beta_{0}+\beta_{1}+\text { residual } \\
& \text { subjects in 'injection.y' group } \rightarrow \text { writhing }=\beta_{0}+\beta_{2}+\text { residual }
\end{aligned}
$$

Stare at this long enough and you'll realize that:

- β_{0} is the mean of the 'alone' (control) group
- β_{1} is the difference between 'injection.n' and control groups
- β_{2} is the difference between 'injection.y' and control groups

Coefficients:

	Estimate Std. Error	
(Intercept)	40.620	4.341
treatmentinjected.n	-5.066	6.595
treatmentinjected.y	25.288	6.749

40.62 is an estimate of β_{0}
-5.06 is an estimate of β_{1}
25.28 is an estimate of β_{2}

Coefficients:

	Estimate Std. Error	
(Intercept)	40.620	4.341
treatmentinjected.n	-5.066	6.595
treatmentinjected.y	25.288	6.749

40.62 is an estimate of β_{0}
-5.06 is an estimate of β_{1}
25.28 is an estimate of β_{2}

How does drop1 test a categorical predictor with more than two values? The reduced model drops all columns corresponding to that predictor. In this example, the three levels of treatment are coded by two dummy indicator variables, both of which are dropped in the reduced model.

```
drop1(out, test='F')
```

Single term deletions
Model :
writhing ~ treatment
Df Sum of Sa RSS AIC F value $\operatorname{Pr}(>F)$
<none> 12495245.21
treatment $2 \quad 6663.419158259 .1610 .3990 .00024$
Signif. codes: 0 ‘***' 0.001 '**’ 0.01 '*’ 0.05 '.' 0.1 ' ' 1
Here $D f=2$, because there are two estimated parameters being removed when this single predictor is being dropped from the model.
emmeans() (which stands for "estimated marginal means") will calculate fitted means under the specific model

```
library(emmeans)
out <- lm(writhing~treatment, data=dd)
emmeans(out, spec='treatment')
    treatment emmean SE df lower.CL upper.CL
    alone 40.61995 4.341188 39 31.83907 49.40083
    injected.n 35.55367 4.964339 39 25.51235 45.59500
    injected.y 65.90806 5.167048 39 55.45672 76.35940
```

Confidence level used: 0.95

SE and confidence intervals are not the same as those you would calculate based on the data for each group separately, because they are based on the error (residual) mean square for the model (this is why $\mathrm{df}=39$ for each estimate here).

Note: emmeans() yields the predicted or marginal means according to the model. These predicted means are not necessarily the same as the individual group means when there are multiple predictors in the model (here, they are, as there is only one predictor).

Summary

- Linear models can fit categorical variables.
- Use summary () to obtain parameter estimates. To interpret the estimates, it is useful to know about how R handles categorical variables behind the scenes (dummy indicator variables).
- Ordering your categories well (e.g., control group first) will maximize the usefulness of the parameter estimates from the fitted model (e.g., estimates of differences between each treatment group and the control group).
- Use drop1 for hypothesis testing (P-values, sums of squares).
- Use emmeans() to estimate predicted group means.

Unplanned ("post hoc") comparisons:

- Multiple comparisons among means after ANOVA done.
- Used to find which pairs of means are statistically significantly different.
- A kind of data dredging (i.e., no plan).
- Incorporates special protection against high false positive rate.
- Can't use P-values in summary() table.

Planned ("a priori") comparisons:

- Comparisons between group means that were decided when the experiment was designed (not after the data were in).
- For example, compare a key treatment against the control.
- Must be few in number to avoid inflating false positive rate.
- P-values in summary () can be used for planned comparisons (but careful with summary - for glms they are not reliable).

Example: Numeric and categorical predictors (ANCOVA)

Simulated data: Is there a relationship between body mass and brain size, and does it differ between the new and old world?

Example: Numeric and categorical predictors (ANCOVA)

```
out <- lm(log.brain.size~log.mass*world, data=dd)
summary(out)
Call:
lm(formula = log.brain.size ~ log.mass * world, data = dd)
\begin{tabular}{lrrrr} 
Residuals: & & & & \\
Min & 10 & Median & 30 & Max \\
-2.54360 & -0.58075 & -0.03047 & 0.64371 & 2.00576
\end{tabular}
Coefficients:
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Estimate & Std. Error & value & \(\operatorname{Pr}(>|t|)\) & \\
\hline (Intercept) & 5.0015 & 1.5436 & 3.240 & 0.00257 & \\
\hline log.mass & -0.1610 & 0.2920 & -0.551 & 0.58494 & \\
\hline worldold & -4.9104 & 1.8983 & -2.587 & 0.01388 & \\
\hline log.mass:worldold & 1.1443 & 0.3554 & 3.220 & 0.00272 & \\
\hline Signif. codes: 0 & ***' 0.0 & 001 '**' 0.01 & \(1{ }^{\text {'*' }} 0\) & 05 '.' 0 & . 1 \\
\hline
\end{tabular}
Residual standard error: 1.068 on 36 degrees of freedom Multiple R-squared: 0.4965, Adjusted R-squared: 0.4546 F-statistic: 11.83 on 3 and 36 DF, p-value: 0.00001526
```

```
drop1(out, test='F')
```

drop1(out, test='F')
Single term deletions

```


So, we have evidence for a signficant interaction.

\begin{tabular}{lrr}
\multicolumn{3}{l}{ Coefficients: } \\
\multicolumn{2}{l}{} & \\
& Estimate & Std. Error \\
(Intercept) & 0.9831 & 1.0169 \\
log.mass & 0.6117 & 0.1863 \\
worldold & 1.0970 & 0.3915
\end{tabular}

Coefficients:
\begin{tabular}{lrr} 
& \multicolumn{1}{c}{ Estimate Std. Error } \\
(Intercept) & 5.0015 & 1.5436 \\
log.mass & -0.1610 & 0.2920 \\
worldold & -4.9104 & 1.8983 \\
log.mass:worldold & 1.1443 & 0.3554
\end{tabular}

R has lots of built in tools for plotting the output of linear models (although, I rarely use them).

Making figures by hand (at least, at first), by adding the best fit lines, is a great exercise!
```

plot(dd$mass, dd$dees)
aa <- coef(out)['(Intercept)']
bb <- coef(out)['mass']
abline(a=aa, b=bb)

```


Evaluating model fit is critical when running any linear model. Linear models assume:
- Normally-distributed errors
- Independent errors
- Equal variance of residuals in all groups
\(R\) has built-in diagnostics for 1 m objects (workshop this week).

\section*{What if there are random effects?}
lme
What if response data are binary or discrete?
glm
What if residuals are not independent because of temporal autocorrelation or phylogeny?
gls```

