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What is a linear model

A relationship between variables involving

− a response variable Y

− explanatory variable(s) X1, X2, ...

− normally distributed random errors with equal variance

in the form
Y = β0 + β1X1 + β2X2 + · · ·+ error

where β0, β1, β2, · · · are the parameters of the linear model
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What is a linear model

For example

− fit a mean to data: Y = β0

− simple linear regression: Y = β0 + β1X

− multiple regression: Y = β0 + β1X1 + β2X2 + β3X3 + · · ·

− quadratic regression: Y = β0 + β1X + β2X 2

− single-factor ANOVA: Y = β0 + β1X1 + β2X2 + · · ·

− · · ·
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What is a linear model

A linear model needn’t be a straight line. For example, the quadratic equation is a
linear model

Y = β0 + β1X + β2X
2

A	linear	model	needn’t	be	a	straight	line	

For	example,	the	quadratic	equation	is	a	linear	model	

Y	=	β0	+	β1X	+	β2X2	

	

	

Note: the term ’factor’ in reference to a lm usually refer to a predictor (not a ’factor’,
as we have used in R).
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What is a linear model

Linear models go by other names:

− Fit a mean

− Linear regression

− Multiple regression

− Fitting different means to two groups

− Single factor ANOVA

− Multi-factor ANOVA

− Analysis of covariance

All can be written in the same form

Y = β0 + β1X1 + β2X2 + · · ·+ error
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What is a linear model

“Linear models” unites these methods into a common framework that

− Provides a common set of tools (lm in R)

− Is flexible enough to handle different study designs

− Has tools to estimate parameters (e.g., sizes of effects)

− Is easy to use, even when there are multiple variables

− Better handling of unbalanced designs than traditional ANOVA calculations
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Example: Simple linear regression

Data: The average number of “dee” notes per alarm call by black-capped chickadees
presented with a live, perched predator.

Example	1:	Simple	linear	regression	

Data:	The	average	number	of	“dee”	notes	per		
alarm	call	by	black-capped	chickadees	presented		
with	a	live,	perched	predator.	
Predator	species	 Predator	body	

mass	(kg)	

Number	of	“dee”	

notes	per	call	
Northern	pygmy-owl	 0.07	 3.95	

Saw-whet	owl	 0.08	 4.08	

American	kestrel	 0.12	 2.75	

Merlin	 0.19	 3.03	

Short-eared	owl	 0.35	 2.27	

Cooper’s	hawk	 0.45	 3.16	

Prairie	falcon	 0.72	 2.19	

Peregrine	falcon	 0.72	 2.80	

Great	horned	owl	 1.40	 2.45	

Rough-legged	hawk	 0.99	 1.33	

Gyrfalcon	 1.40	 2.24	

Red-tailed	hawk	 1.08	 2.56	

Great	gray	owl	 1.08	 2.06	

Templeton,	C.	N.,	E.	Greene,	and	K.	Davis.	2005.	
Science	308:	1934-1937.	
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Example: Simple linear regression with no predictors

Linear model for simple linear regression with no predictors

Y = β0

There is only one parameter in this equation:

β0: intercept

The model in plain language:
dees = intercept

In R this is written as:
dees~1
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Example: Simple linear regression with no predictors

Our data-frame, dd:

head(dd)

To fit the model:

out <- lm(dees~1, data=dd)

summary(out)

Don’t pay attention to P-values from summary.

9 / 47



Example: Simple linear regression with no predictors

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.6823 0.2091 12.83 0.0000000229 ***
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And, as a quick check:
mean(dd$dees)

2.682308
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Example: Simple linear regression with one predictor

Linear model for simple linear regression

Y = β0 + β1X

Here, we have an intercept and a slope (a ’fixed effect’):

β0: intercept

β1: slope

The model in plain lenguage:

dees = intercept + mass

In R, the intercept is implicit and doesn’t need to be in the model formulation:

dees~mass

but we could also write this as
dees~1+mass
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Example: Simple linear regression with one predictor

Run the model:

out <- lm(dees~mass, data=dd)

summary(out)
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Example: Simple linear regression with one predictor

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.3731 0.2776 12.149 0.000000102 ***

mass -1.0382 0.3402 -3.051 0.011 *
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Example: Simple linear regression with one predictor

Residuals
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To view the residuals:
resid(out)

where out is the saved output from the lm command.
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Example: Simple linear regression with one predictor

What’s happening ’under the hood’?

We can write each data point as a linear
combination of the model parameter estimates and
the residual:

dees dummy mass residual

3.95
4.08
2.75
3.03
2.27
3.16
2.19
2.80
2.45
1.33
2.24
2.56
2.06



= β0∗



1
1
1
1
1
1
1
1
1
1
1
1
1



+β1∗



0.07
0.08
0.12
0.19
0.35
0.45
0.72
0.72
1.40
0.99
1.40
1.08
1.08



+



0.65
0.79

−0.50
−0.15
−0.74

0.25
−0.44

0.17
0.53

−1.02
0.32
0.31

−0.19


Note: β0 = 3.3731, β1 = −1.0382
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Example: Simple linear regression with one predictor

How are β0 and β1 chosen? R uses ’least squares’. In other words, R finds the values
of β0 and β1 that minimize the sum of squared residuals,

∑
i (residuali )

2.
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Model comparison: full vs reduced models

Use anova or drop1 to test hypothesis.

anova(out) drop1(out, test='F')

These tests fit and compare two models. Specifically, they compare a reduced model
(representing the null hypothesis) to a full model (representing the alternative
hypothesis). The reduced model contains a subset of terms present in the full model
(it is “nested”). An F -test tests whether the full model fits the data significantly
better than the reduced model.

Note that with anova, the order you enter the terms into the model (if you have more
than one predictor) matters (more on this later).
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Model comparison: full vs reduced models

Visually, these tests are comparing the below two models:

Reduced model: dees~1
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Full model: dees~mass
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Example: Multiple regression

Data: Effects of latitude and elevation on ant species richness. n = 22 forest plots.
Gotelli, N. J. & Ellison, A. M. 2002. Biogeography at a regional scale: determinants of ant species density in bogs and forests of New

England. Ecology, 83, 1604–1609.

ln(nspecies) = β0 + β1 · latitude + β2 · elevation + β3 · (latitude × elevation)

Parameters in this model:

β0: intercept

β1: slope for latitude

β2: slope for elevation

β3: slope for interaction

head(dd)

Note: sample size too small to fit so many parameters, but for this example let’s keep
going anyway.
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Example: Multiple regression

ln(nspecies) = β0 + β1 · latitude + β2 · elevation + β3 · (latitude × elevation)

With multiple predictors, plotting isn’t quite as simple (could use 3D plots, or multiple
2D plots).
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Example: Multiple regression

To fit the model (with interaction):
out <- lm(log(nsp)~latitude*elevation, data=dd)

summary(out)
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Example: Multiple regression

log(nsp) dummy lat elev lat × elev residual

1.8
2.8
2.9
2.8
2.2
2.7
1.9
2.5
2.6
2.2
2.3
2.3
1.4
1.6
1.9
1.9
1.4
1.8
1.8
2.1
1.8
1.8



= β0∗



1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1



+β1∗



41.97
42.00
42.03
42.05
42.05
42.17
42.19
42.23
42.27
42.31
42.56
42.57
42.58
42.69
43.33
44.06
44.29
44.33
44.50
44.55
44.76
44.95



+β2∗



389
8

152
1

210
78
47

491
121

95
274
335
543
323
158
313
468
362
236

30
353
133



+β3∗



16326.33
336.00

6388.56
42.05

8830.50
3289.26
1982.93

20734.93
5114.67
4019.45

11661.44
14260.95
23120.94
13788.87

6846.14
13790.78
20727.72
16047.46
10502.00

1336.50
15800.28

5978.35



+



−0.29
0.15
0.47
0.16

−0.14
0.19

−0.65
0.60
0.18

−0.25
0.16
0.24

−0.36
−0.45
−0.25

0.10
−0.17

0.11
−0.01

0.06
0.18

−0.03


β0 = 12.25, β1 = −0.23, β2 = −0.0067, β3 = 0.00012

Note: Unlike the other columns, the values in the ’residual’ vector are calculated from the fitted model.
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Example: Multiple regression

Plotting best fit lines
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But... how did I plot these? What assumption(s) did I have to make?
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Example: Multiple regression

Plotting best fit lines
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You need to specify the values for all other predictors in the model in order to plot a
curve.

What would an “interaction” between these variables look like?
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Example: Multiple regression

Let’s use drop1 to test hypotheses:

drop1(out, test='F')

− drop1 will not test main effects if an interaction is included. In general,
interaction effects do not make sense in the absence of their main effects.

− Here, we find no evidence for a significant interaction effect. Therefore, we
remove that term using the update command, and run drop1 again.

24 / 47



Example: Multiple regression

out2 <- update(out,~.-latitude:elevation)
drop1(out2, test='F')

We have evidence that both main effects are ’significant’.

This last step could equivalently be accomplished by re-running a simpler model,
without the interaction, and then using drop1 on that.

out <- lm(log(nsp)~latitude+elevation, data=dd)

drop1(out, test='F')
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Type I vs III sum of squares

Consider a model that includes two factors A and B; there are, therefore, two main
effects, and an interaction, A× B. Let’s represent the full model by SS(A,B,AB).

Lets define the incremental sum of squares
SS(AB|A,B) = SS(A,B,AB)–SS(A,B)
SS(A|B,AB) = SS(A,B,AB)–SS(B,AB)
and so on...

Type I (also called “sequential” sum of squares)

SS(A) for factor A
SS(B|A) for factor B
SS(AB|B,A) for interaction AB

anova produces these - order matters!

Type III

SS(A|B,AB) for factor A
SS(B|A,AB) for factor B

drop1 produces these - order doesn’t matter.

· · · but, it means that testing for significant main effects doesn’t make sense if there is
an interaction · · ·
https://mcfromnz.wordpress.com/2011/03/02/anova-type-iiiiii-ss-explained/
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Example: Multiple regression

For our example:

out <- lm(log(nsp)~latitude+elevation, data=dd)

drop1(out, test=’F’)

out <- lm(log(nsp)~latitude+elevation, data=dd)

anova(out)

out <- lm(log(nsp)~elevation+latitude, data=dd)

anova(out)
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Example: Multiple regression

For our example (with interaction):

out <- lm(log(nsp)~latitude*elevation, data=dd)

drop1(out, test=’F’)

out <- lm(log(nsp)~latitude*elevation, data=dd)

anova(out)

out <- lm(log(nsp)~elevation*latitude, data=dd)

anova(out)

Note: the P-values from anova for latitude and elevation are not the same as they were in the models without the
interaction. This is because the F -value is calculated as “Mean Sq for parameter of interest” / “Mean Sq for
Residuals”, and the latter changes as more parameters are added to the model.
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Example: Multiple regression

Model simplification: The interaction term in the model was not significant. Can we
drop it and refit?

− The temptation is strong to drop non-significant terms from models, to find a
“minimum adequate model” or to provide more power to test remaining effects.

− Dropping a term when P > 0.05 involves “accepting” a null hypothesis as true.
Why is this a good idea? Remaining P-values become “exploratory.”

− Later, we will cover the topic of model selection - how to choose the “best”
model using less arbitrary criteria for what is “best”.

− drop1 vs anova represent different approaches. Downside to anova is that you
have to decide on the order of importance a priori. Downside to drop1 - your
final analysis doesn’t follow your design.
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Example: Single-factor ANOVA

The percentage of time that male mice given an injection to cause mild pain spent
“writhing” in different familiar-companion treatments.
Data simulated based on: Langford, D. J.,et al. 2006. Science 312: 1967-1970
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Note: don’t worry about ANOVA/ANCOVA notation, if this is unfamiliar.

30 / 47



Example: Single-factor ANOVA

ANOVA is fundamentally the same as linear regression

− There’s a response variable, a constant, an explanatory variable.

− out <- lm(writhing~treatment, data=dd)

− The only difference from previous examples is that the explanatory variable is
categorical.
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Example: Single-factor ANOVA

head(dd)

out <- lm(writhing~treatment, data=dd)

summary(out)

What do these estimates mean?
Let’s look at the drop1.
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Example: Single-factor ANOVA

drop1(out, test='F')

drop1 compares a model without ’treatment’ to one with it
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Example: Single-factor ANOVA

In order to understand the coefficients, let’s look at the “model matrix”:

writhing dummy treatalone∗ treatinjected.n treatinjected.y
33.2 1 1 0 0
17.4 1 1 0 0
44.2 1 1 0 0
41.2 1 1 0 0
34.9 1 1 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
31.1 1 0 1 0
5.9 1 0 1 0

54.5 1 0 1 0
51.7 1 0 1 0
33.6 1 0 1 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
89.0 1 0 0 1
34.6 1 0 0 1
48.8 1 0 0 1
77.1 1 0 0 1
63.2 1 0 0 1

Use model.matrix(out) to view this matrix.

∗R leaves out the first level for each categorical variable (in this case, ’alone’) in order to avoid
redundancy.
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Example: Single-factor ANOVA

writhing dummy treatinjected.n treatinjected.y residuals

33.2
17.4
44.2
41.2
34.9

.

.

.
31.1
5.9

54.5
51.7
33.6

.

.

.
89.0
34.6
48.8
77.1
63.2



= β0∗



1
1
1
1
1

.

.

.
1
1
1
1
1

.

.

.
1
1
1
1
1



+β1∗



0
0
0
0
0

.

.

.
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Example: Single-factor ANOVA

writhing dummy treatinjected.n treatinjected.y residuals
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For example, for a data-point in the ’injected.n’
treatment, we have
5.9 = β0 ∗ 1 + β1 ∗ 1 + β2 ∗ 0 + residual[i]
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Example: Single-factor ANOVA

So, what do the summary() coefficients mean?

The linear model being fitted is:

subjects in ’alone’ group → writhing = β0 + residual

subjects in ’injection.n’ group → writhing = β0 + β1 + residual

subjects in ’injection.y’ group → writhing = β0 + β2 + residual

Stare at this long enough and you’ll realize that:

− β0 is the mean of the ’alone’ (control) group

− β1 is the difference between ’injection.n’ and control groups

− β2 is the difference between ’injection.y’ and control groups

40.62 is an estimate of β0

-5.06 is an estimate of β1

25.28 is an estimate of β2
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Example: Single-factor ANOVA
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Example: Single-factor ANOVA

How does drop1 test a categorical predictor with more than two values? The reduced
model drops all columns corresponding to that predictor. In this example, the three
levels of treatment are coded by two dummy indicator variables, both of which are
dropped in the reduced model.

drop1(out, test='F')

Here Df=2, because there are two estimated parameters being removed when this
single predictor is being dropped from the model.
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Example: Single-factor ANOVA

emmeans() (which stands for “estimated marginal means”) will calculate fitted means
under the specific model

library(emmeans)

out <- lm(writhing~treatment, data=dd)

emmeans(out, spec='treatment')

SE and confidence intervals are not the same as those you would calculate based on
the data for each group separately, because they are based on the error (residual)
mean square for the model (this is why df = 39 for each estimate here).

Note: emmeans() yields the predicted or marginal means according to the model.
These predicted means are not necessarily the same as the individual group means
when there are multiple predictors in the model (here, they are, as there is only one
predictor).
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Example: Single-factor ANOVA

Summary

− Linear models can fit categorical variables.

− Use summary() to obtain parameter estimates. To interpret the estimates, it is
useful to know about how R handles categorical variables behind the scenes
(dummy indicator variables).

− Ordering your categories well (e.g., control group first) will maximize the
usefulness of the parameter estimates from the fitted model (e.g., estimates of
differences between each treatment group and the control group).

− Use drop1 for hypothesis testing (P-values, sums of squares).

− Use emmeans() to estimate predicted group means.
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Planned vs unplanned comparisons

Unplanned (“post hoc”) comparisons:

− Multiple comparisons among means after ANOVA done.

− Used to find which pairs of means are statistically significantly different.

− A kind of data dredging (i.e., no plan).

− Incorporates special protection against high false positive rate.

− Can’t use P-values in summary() table.

Planned (“a priori”) comparisons:

− Comparisons between group means that were decided when the experiment was
designed (not after the data were in).

− For example, compare a key treatment against the control.

− Must be few in number to avoid inflating false positive rate.

− P-values in summary() can be used for planned comparisons (but careful with
summary - for glms they are not reliable).
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Example: Numeric and categorical predictors (ANCOVA)

Simulated data: Is there a relationship between body mass and brain size, and does it
differ between the new and old world?
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Example: Numeric and categorical predictors (ANCOVA)

out <- lm(log.brain.size~log.mass*world, data=dd)

summary(out)

drop1(out, test='F')

So, we have evidence for a signficant interaction.
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Example: Numeric and categorical predictors (ANCOVA)

log.brain.size~log.mass+world log.brain.size~log.mass*world
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Figures

R has lots of built in tools for plotting the output of linear models (although, I rarely
use them).

Making figures by hand (at least, at first), by adding the best fit lines, is a great
exercise!

plot(dd$mass, dd$dees)
aa <- coef(out)['(Intercept)']

bb <- coef(out)['mass']

abline(a=aa, b=bb)
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Figures

Evaluating model fit is critical when running any linear model. Linear models assume:

− Normally-distributed errors

− Independent errors

− Equal variance of residuals in all groups

R has built-in diagnostics for lm objects (workshop this week).
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Related topics

What if there are random effects?
lme

What if response data are binary or discrete?
glm

What if residuals are not independent because of temporal autocorrelation or
phylogeny?
gls
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