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Why Likelihood?

Likelihood lets you come up with your own statistical analyses.

Many of the built in methods we are learning here (e.g., lmer) use likelihood to find
parameter estimates. So, its important to know what’s going on under the hood.
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What is probability?

Frequentist definition:

The probability of an event is the proportion of times that the event would occur if a
random trial is repeated over and over again under the same conditions.

A probability distribution is a list of all mutually exclusive outcomes of a random trial
and their probabilities of occurrence.
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Example: binomial distribution

The binomial distribution is the probability distribution of the number of “successes”
in n independent trials, when the probability of success p is the same in each trial.

Pr[Y successes] =
(n
Y

)
pY (1− p)n−Y

(n
Y

)
, which denotes “n choose Y ”, counts

up the different ways of getting exactly Y
successes out of n trials.

For n = 3 and Y = 2, we have:

SSF

SFS

FSS

and so
(n
Y

)
=3.
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Conditional probability

The conditional probability of an event is the probability of that event occurring given
that a condition is met. “|” symbol used to indicate “given.”

The probability that the second child born to a couple is a girl, given that their first
child was a girl,

Pr[second child is girl | first child is girl]

Other conditional probabilities:

Pr[we see an elephant today | we are in the Serengeti]

Pr[we see an elephant today | we are in Manhattan]

Pr[12 successes in 20 trials | p = 0.50]

Pr[12 successes in 20 trials | p = 0.10]
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Likelihood

Likelihood is a conditional probability.

The likelihood of a population parameter equaling a specific value, given the data, is
the probability of obtaining the observed data given that the population parameter
equals the specific value.

L[parameter = ρ|data] = Pr [data|parameter = ρ]

Law of Likelihood:

The extent to which data supports one parameter value or hypothesis against another
is equal to the ratio of their likelihoods (difference in their log-likelihoods).

Method invented by R. A. Fisher when he was a 3rd -year undergraduate.
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Likelihood

Likelihood is used a lot in phylogeny estimation

Three proposed trees of ancestor–descendant relationships between humans and the
other great apes. The human branch and our shared ancestor with the other apes is
highlighted. Numbers at the bottom are the likelihoods of each proposed tree based
on gene sequence data (Rannala and Yang 1996). The likelihood of the left-most tree
is the highest.

Likelihood is used a lot in phylogeny estimation 

Three proposed trees of ancestor–descendant relationships between humans and the other 
great apes. The human branch and our shared ancestor with the other apes is highlighted. 
Numbers at the bottom are the likelihoods of each proposed tree based on gene sequence 
data (Rannala and Yang 1996). The likelihood of the left-most tree is the highest. 
 
L[ tree = i | gene sequences ] = Pr[ gene sequences | tree = i ] 
 

 
 
What matters is not the likelihood of each tree as such, but the likelihood of each 
tree relative to the others.

What matters is not the likelihood of each tree, but the likelihood of each tree relative
to the others.
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Example: Estimate a binomial proportion p

Data: The tiny wasp, Trichogramma
brassicae, rides on female cabbage white
butterflies, Pieris brassicae. When a
butterfly lays her eggs on a cabbage, the
wasp climbs down and parasitizes the
freshly laid eggs.

Fatouros et al. (2005, Nature), carried out
trials to determine whether the wasps can
distinguish mated female butterflies from
unmated females. In each trial a single
wasp was presented with two female
cabbage white butterflies, one a virgin
female, the other recently mated. Y = 23
of 32 wasps tested chose the mated female.

What is the proportion p of wasps in the
population choosing the mated female?

Y = 23 “successes”, n = 32 trials. Use
these data to estimate p.
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Example: Estimate a binomial proportion p

Likelihood function for the binomial proportion p

Data: Y = 23, n = 32

L[p|Y chose mated female] = Pr [Y chose mated female|p]

L[p|23 chose mated female] =
(32

23

)
p23(1− p)9

For example, the likelihood of p = 0.5, given the data, is

L[p = 0.5|23 chose mated female] =
(32

23

)
(0.5)23(1− 0.5)9 = 0.00653

In R: choose(32,23)*0.5^23*(1-0.5)^9

or dbinom(x=23, size=32, prob=0.5)
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Example: Estimate a binomial proportion p

For most likelihood functions, the computed likelihood will be tiny. Thus, it is much
easier to work with “log-likelihood”

lnL[0.5|23 chose mated female] = ln

[(32

23

)
0.523(1− 0.5)9

]
= −5.03

In R: dbinom(23, 32, prob=0.5, log=TRUE)

Plot for many values of p to get the log-likelihood curve:
curve(dbinom(23, 32, prob=x, log=TRUE), from=0.4, to=0.9)
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Example: Estimate a binomial proportion p

Likelihood works backward from probability
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We use likelihood to estimate unknown
parameters based on known data.

The parameters are treated as variables,
the data are a constant, unvarying.

The likelihood function is not a probability
distribution.

The population proportion, p, is the
variable of the function, but it is not a
random variable (its value is not
determined by random trial).
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Example: Estimate a binomial proportion p

Maximum likelihood estimate
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The likelihood ratio (difference between
the log-likelihoods) measures relative
support for alternative parameter values.

The maximum likelihood estimate (MLE)
of a parameter is the parameter value
having the highest likelihood (and
log-likelihood), given the data. This is the
parameter value most strongly supported
by the data.

The ML estimate could instead have been
obtained more easily as

Y

n
=

23

32
= 0.72

The conventional formula for estimating a
proportion yields the MLE for the binomial.
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Example: Estimate a binomial proportion p

Likelihood-based confidence intervals
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When estimating a single parameter, an
approximate 95% confidence interval is
obtained with the values corresponding to
1.92 log-likelihood units below the
maximum.

1.92=
χ2

0.05,1

2
.

The connection to χ2 will become
apparent later.

So the 95% CI for p in the wasp example is
0.55 ≤ p ≤ 0.86.

Note that the 95% likelihood-based confidence interval is not necessarily symmetric
about the MLE (unlike the more familiar 95% Wald interval: ±1.96 ∗ se). In fact, for
the binomial case, Wald intervals can sometimes extend outside the interval [0, 1].
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Example: Life of bees

Life spans of individuals in a population are often approximated by an exponential
distribution. To estimate the mortality rate of foraging honey bees, P. K. Visscher and
R. Dukas (1997, Insectes Sociaux), recorded the entire foraging life span of 33
individual worker bees in a local bee population in a natural setting.
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Example: Life of bees

Let’s assume lifespan is exponentially distributed and use this data to find the mle for
the shape of that distribution.

f (x , λ) =

{
λe−λx x ≥ 0

0 x < 0

This is a 1 parameter distribution. The mean is 1/λ.
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Example: Life of bees

head(bees, 10) Lets calculate the likelihood of λ = 0.1:

L[λ = 0.1|data] = Pr [data|λ = 0.1]

For this data-set, L[λ = 0.1|data] would equal:

Pr [bee1 = 7.1|λ = 0.1]× Pr [bee2 = 2.3|λ = 0.1]× · · ·

which is
= 0.1e−0.1∗7.1 × 0.1e−0.1∗2.3 × · · ·

We can convert this to a log-likelihood (so the numbers are not tiny)

ln
[
0.1e−0.1·7.1]+ ln

[
0.1e−0.1·2.3]+ · · · = −167.88

We could do the same thing with λ = 0.05, and we would find

L[λ = 0.05|data] = −144.8092

So... λ = 0.05 has a higher likelihood than λ = 0.1.

If we try a lot of candidate values, we can eventually find something
close to the mle.
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Example: Life of bees

head(bees, 10) Now, in R:

The function dexp calculates the exponential density. For example,
dexp(5, rate=0.1) = 0.1e−0.1∗5

and dexp(5, rate=0.1, log=TRUE) = ln
[
0.1e−0.1∗5

]
Thus dexp(bees$hours, rate=0.1, log=TRUE) calculates each
term in our sum for our data-set, for λ = 0.1.

This yields:

And, finally, sum will let us sum these up.
sum(dexp(bees$hours, rate=0.1, log=TRUE))

gives us −167.8853.

Now we just do this for a bunch of values of the rate argument.
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Example: Life of bees

To do this, let’s first wrap our previous code into a function. This function will
calculate the log-likelihood for a given rate:

f.loglik <- function(x) sum(dexp(bees$hours, rate=x, log=TRUE))

f.loglik(0.1) gives us −167.8853

Next, we can make a vector of candidate rates:
rates <- seq(from=0.001, to=0.1, length=100)

and then we can apply our function to this vector:
likelihoods <- sapply(rates, f.loglik)

head(likelihoods)

tail(likelihoods)

To get the position of the maximum value, we can use
which.max(likelihoods)

Thus, we can get our mle with
rates[which.max(likelihoods)]

which yields 0.036.

A more compact and precise way to do it is to use the optimize function.
mle <- optimize(f.loglik, interval=c(0, 0.1), maximum=TRUE)$maximum
which yields 0.03589016.
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Example: Life of bees

We can plot the likelihoods vector

plot(x=rates, y=likelihoods, type='l', las=1,

xlab=expression(lambda), ylab='Log-likelihood')
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Example: Life of bees
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and add a vertical line at the mle
abline(v=0.036, lty=2, col='red')
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Example: Life of bees

Let’s next overlay the exponential curve with our estimated mle for the rate argument
onto our original density plot.

hist(bees$hours, prob=TRUE, col='red', las=1, breaks=20,

xlab='Lifespan', ylab='Density', main='')

hours <- seq(from=0,to=100, length=200)

lines(x=hours, y=dexp(hours, rate=0.036), lwd=2)
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Example: Life of bees

Next, we will calculate a 95% likelihood-based confidence interval.

Recall that this is the range of values of λ for which the log-likelihood is within 1.92 of
the maximum log-likelihood (that is, the log-likelihood for the mle).

max(likelihoods) yields our maximum log-likelihood (-142.78).

ind <- which(max(likelihoods)-likelihoods < 1.92)

yields a vector containing the positions of the likelihoods that are within 1.92 the max.

We can then look at the rates that gave us these likelihoods:
rates[ind]

Thus, the 95% confidence interval is given by:
range(rates[ind])

An alternative that is more precise is to use the uniroot function.
f.loglik.shifted <- function(x) f.loglik(x)-(-142.78)+1.92

We can then get lower and upper CI limits, respectively, with:
uniroot(f.loglik.shifted, lower=0, upper=0.036)$root
uniroot(f.loglik.shifted, lower=0.036, upper=0.1)$root
which yields (0.025, 0.050).
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Example: Life of bees

We can add these to our log-likelihood plot
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Example: Life of bees

We can add these to our log-likelihood plot (zoomed in)
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Example: Life of bees

Last step: convert these values into life-span (rather than λ).

Recall that, for the exponential distribution, the mean is 1/λ. Therefore, the mle for
age is:
1/0.036

which equals 27.7.

The 95% confidence interval for age is:
c(1/0.05,1/0.025)

which equals (20, 40).

Final note: The 95% confidence interval is an approximation based on χ2. It assumes
that sample size is large.
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Example: Life of bees

So, why did we do all this?

The beauty of this analysis was that we didn’t need any pre-existing statistical models
or packages! We just came up with our estimate and confidence interval directly from
first principles.

If you have a question for which no existing tools exist, you may be able to answer it
by writing your own likelihood function.
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Log-likelihood ratio test

Likelihood method to compare the fit of two models to data.

Models must be nested, i.e., one of the models (reduced model) must have a subset of
the terms present in the other model (full model).

Tests whether the “full model” fits the data statistically significantly better than a
“reduced model”.

Very general method - applies to any type of data, not necessarily normally distributed.

P-value is approximate, but approximation improves with sample size.
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Log-likelihood ratio test

G = 2 ln

[
L[full model|data]

L[reduced model|data]

]

G is the log-likelihood ratio test statistic.

Under H0 (which is typically the reduced model), G is approximately χ2 distributed.

Degrees of freedom are equal to the difference between the full model and the reduced
model in the number of parameters estimated from the data.

Very general method - applies to any data, regardless of distribution from which they
came.

The approximation to the χ2 distribution improves with increasing sample size.
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Log-likelihood ratio test

Fatouros et al. (2005, Nature), carried out trials to determine whether the wasps can
distinguish mated female butterflies from unmated females. In each trial a single wasp
was presented with two female cabbage white butterflies, one a virgin female, the
other recently mated. Result: 23 of 32 wasps tested chose the mated female.

“Reduced” model:
H0: Wasps choose mated and unmated
females with equal probability (p = 0.5)

“Full” model: HA: Wasps prefer one type
of female over the other (p 6= 0.5)

To fit the full model, p is estimated from
the data. In this sense, the full model has
1 more term than the reduced model.
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Log-likelihood ratio test

G = 2 ln

[
L[full model|data]

L[reduced model|data]

]
Applied to the wasp example:

G = 2 ln

[
L[p = p̂ = 0.72|23 of 32 chose mated female]

L[p = p0 = 0.50|23 of 32 chose mated female]

]
A parameter estimated from the data uses the maximum likelihood estimate (e.g.,
p̂ = 0.72 in the full model here).
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Log-likelihood ratio test

From calculations using formulae shown earlier:

L[0.72|23 of 32 chose mated female] = 0.1553

L[0.50|23 of 32 chose mated female] = 0.00653

So we can calculate G as:

G = 2 ln

[
0.1553

0.00653

]
= 6.336

df=1, so critical value χ2 = 3.841.

6.336 > 3.841, and so we reject H0.

The χ2 value of 1.92 that we used for likelihood-based confidence intervals is half of
3.84.
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Log-likelihood ratio test

What is a likelihood-based confidence interval?

A likelihood interval is defined as the set of parameter values with high enough
likelihood: {

θ,
L(θ)

L(θ̂)
> c

}
for some cutoff point c, where L(θ)/L(θ̂) is the normalized likelihood.

The problem is that c is not meaningful in ’probability’ space.

It turns out that, for large samples,

2 ln
L(θ̂)

L(θ)
∼ χ2

1

With some algebra, this can all be combined to show that{
θ,
L(θ)

L(θ̂)
> c

}

is a 100(1− α)% confidence interval, when we set c to e−
χ2

1,(1−α)
2
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Log-likelihood ratio test

The chemical that the wasps use to
distinguish mated from unmated females is
benzyl cyanide, which the male butterfly
passes to the female during mating. The
compound is an “anti-aphrodisiac”,
rendering the mated female less attractive
to other male butterflies (Fatouros et al.
2005, Nature).
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