
BISC-869, Generalized linear models

March 8, 2020

1 / 38



Review: what is a linear model?

A model of the form:
Y = β0 + β1X1 + β2X2 + · · ·

− Y is the response variable.

− The X ’s are the explanatory variables.

− The β terms are the parameters of the linear equation.

− The errors are normally distributed with equal variance at all values of the X
variables.

− Uses least squares to fit the model to data and to estimate parameters.
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Review: fitting a linear model in R

Use the lm function in R.

Simplest linear model: fit a constant (the mean)

lm(y~1)

Linear regression

lm(y~x)
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Review: what is a linear model

Linear regression: Y = β0 + β1X + error

The predicted Y -values, denoted here as
µ, are modeled as

µ = β0 + β1X

The part to the right of “=” is the linear
predictor.
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Limitations of a linear model

Suppose we have some (simulated) data linking body size and fecundity:

We can fit a linear model (with lm). What is wrong with this?
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What is a generalized linear model

A model whose predicted values are of the form

g(µ) = β0 + β1X1 + β2X2 + · · ·

The model still includes a linear predictor (to right of “=”), but the predicted
Y -values are transformed.

g() is called the “link function,” of which there are several types.

Non-normal distributions of errors are OK (these are specified by the “family” of the
glm).

Unequal error variances OK (also specified by the “family”).

Uses maximum likelihood to estimate parameters.

Uses log-likelihood ratio tests to test parameters.

Fit models using glm() inR.
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Visualizing a link function

Let’s return to our simulated example.
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This heuristic is not quite exactly what happens, but helps me think about what link
functions are doing.
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The two most common link functions

1. Natural log (i.e., base e)

ln(µ) = β0 + β1X1 + β2X2 + · · ·

Usually used to model count data (e.g., number of mates).

g(x) = ln(x) is the link function.

g−1(x) = exp(x) is the inverse of link function.

The above equation could, alternatively, be written using the inverse link function as

µ = exp(β0 + β1X1 + β2X2 + · · · )
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The two most common link functions

2. Logistic or logit

ln

(
µ

1− µ

)
= β0 + β1X1 + β2X2 + · · ·

Used to model binary data (e.g., survived vs died).

The link function

g(x) = ln

(
x

1− x

)
is also known as the log-odds.

The inverse function (called “expit”) is

g−1(x) = expit(x) =
ex

1 + ex

The above equation could, alternatively, be written using the inverse link function as

µ = expit(β0 + β1X1 + β2X2 + · · · )
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Example: Fit a constant to 0/1 data

This example was used previously in Likelihood lecture. My
goal with this example is to connect what glm() does with
what we did by brute force last week.

The wasp, Trichogramma brassicae, rides on female cabbage
white butterflies, Pieris brassicae. When a butterfly lays her
eggs on a cabbage, the wasp climbs down and parasitizes
the freshly laid eggs.

Fatouros et al. (2005) carried out trials to determine
whether the wasps can distinguish mated female butterflies
from unmated females. In each trial a single wasp was
presented with two female cabbage white butterflies, one a
virgin female, the other recently mated.

Y = 23 of 32 wasps tested chose the mated female. What
is the proportion p of wasps in the population choosing the
mated female?
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Example: Fit a constant to 0/1 data

The number of wasps choosing the mated female fits a
binomial distribution

Under random sampling, the number of “successes” in n
trials has a binomial distribution, with p being the
probability of “success” in any one trial.

To model these data, let “success” be “wasp chose mated
butterfly”

Y = 23 successes

n = 32 trials

Goal: estimate p

Data are : 11101110101011110101111101110011

11 / 38



Example: Fit a constant to 0/1 data

Use glm() to fit a constant, and so obtain the ML estimate of p

The data are binary. Each wasp has a measurement of 1 or 0 (“success” and
“failure”):

1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 0 0 1 1

We can create a dataset here as follows (order doesn’t matter):

ww <- data.frame(choice=c(rep(0,9), rep(1,23)))

To begin, we will fit a model with only a constant. We will use the logit link function,
so our model will be:

logit(µ) = ln

(
µ

1− µ

)
= β

Here, µ refers to the population proportion, p, but we will us µ for consistency of
notation.

Fitting will yield the estimate, β̂.

The estimate of proportion is then obtained using the inverse function:

µ̂ = expit(β̂) =
eβ̂

1 + eβ̂
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Example: Fit a constant to 0/1 data

Formula structure is the same as when fitting a constant using lm.

out <- glm(choice~1, family=binomial(link='logit'), data=ww)

The family argument specifies the error distribution and link function.

summary(out)
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Why is the red line not at the value of estimate of the intercept (0.9383)?
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Example: Fit a constant to 0/1 data

summary(out)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.9383 0.3932 2.386 0.017 *

0.9383 is the estimate of β (the constant
that has been transformed to linear scale
by the logit function). Convert back to
ordinary scale (plug into inverse equation)
to get estimate of proportion:

µ̂ = expit(β̂) =
eβ̂

1 + eβ̂
=

e0.9383

1 + e0.9383
= 0.719

This is the ML estimate of the population
proportion. Does it look familiar? ● ●
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Example: Fit a constant to 0/1 data

summary(out)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.9383 0.3932 2.386 0.017 *

Use summary() for estimation, not hypothesis testing

The z-value (Wald statistic) and P-value test the null hypothesis that β = 0. This is
the same as a test of the null hypothesis that the true (population) proportion
µ = 0.5, because

e0

1 + e0
= 0.5

Agresti (2002, Categorical data analysis, 2nd ed., Wiley) says that for small to
moderate sample size, the Wald test is less reliable than the log-likelihood ratio test.
So don’t use it.
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Example: Fit a constant to 0/1 data

95% confidence limits:

CI <- confint(out)

exp(CI)/(1 + exp(CI)) # inverse logit

2.5 % 97.5 %
0.5501812 0.8535933

0.550 ≤ p ≤ 0.853 is the same result we obtained last week in the likelihood-based
confidence interval method.
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Example: Fit a constant to 0/1 data

We calculated the log-likelihood ratio test for these data by hand in the likelihood
lecture. Here we’ll use glm to accomplish the same task.

“Full” model (β estimated from data):

out.full <- glm(choice~1, family=binomial(link='logit'))

“Reduced” model (β set to 0 by removing intercept from model):

out.reduced <- glm(choice~0, family=binomial(link='logit'))

Note: because expit(0) = 0.5, β = 0 tests a null hypothesis of “no preference”.
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Example: Fit a constant to 0/1 data

Use anova() to test a hypothesis about a proportion:

anova(out.reduced, out.full, test='Chi')

The deviance is the log-likelihood ratio statistic (G -statistic). It has an approximate
χ2 distribution under the null hypothesis.

Residual deviance is analogous to a residual sum of squares, and measures goodness of
fit of the model to the data.

G = 6.337 is basically the same result we obtained with the Likelihood Ratio test last
week.

Can also use drop1 with glms (will do this for next example).
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Example: Logistic regression
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One of the most common uses of generalized linear models.

Goal is to model the relationship between a proportion and an explanatory variable.

Data: 72 rhesus monkeys (Macacus
rhesus) exposed for 1 minute to
aerosolized preparations of anthrax
(Bacillus anthracis).

Want to estimate the relationship between
dose and probability of death.
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Example: Logistic regression
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Measurements of individuals are 1 (dead) or 0 (alive).

Ordinary linear regression is not appropriate because:

− For each X , the Y observations are
binary, not normal.

− For each X , the variance of Y is not
constant.

− A linear relationship is not bounded
between 0 and 1.

− 0/1 data can’t simply be transformed.
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The generalized linear model

g(µ) = β0 + β1X

µ is the probability of death, which depends on concentration X .

g() is the link function.

Linear predictor (right side of equation) is like an ordinary linear regression with
intercept β0 and slope β1.

Logistic regression uses the logit link function.

In R:

out <- glm(mortality~concentration, family=binomial(link='logit'),

data=anthrax)

glm uses maximum likelihood: the method finds those values of β0 and β1 for which
the data have maximum probability of occurring.

No formula for the solution. glm uses an iterative procedure to find the maximum
likelihood estimates.
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The generalized linear model

summary(out)

Number of Fisher Scoring iterations refers to the number of iterations used before the
algorithm used by glm converged on the maximum likelihood solution.
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The generalized linear model

Use predict(out) to obtain predicted
values on the logit scale

µ = −1.74 + 0.036x

visreg(out) uses predict to plot predicted
values, with confidence limits in linear
space.

Note that the function is a line. The
points on this scale are not the
logit-transformed data. R creates
“working” values using a transformation of
the residuals from the original scale.
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The generalized linear model

Use fitted(out) to obtain predicted
values on the original scale.

Can also plot a smooth curve using the
inverse link function (in this case, expit):

µ̂ = expit(−1.74 + 0.036x)

=
e−1.74+0.036x

1 + e−1.74+0.036x
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In R:

curve(exp(-1.74+0.036*x) / (1+exp(-1.74+0.036*x)), from=30, to=170,

add=TRUE)
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The generalized linear model

The parameter estimates from the model
fit can be used to estimate LD50, the
estimated concentration at which 50% of
individuals are expected to die.

LD50 = −
intercept

slope
= −
−1.7445

0.03643
= 47.88

This can also be calculated using dose.p

from the MASS package:

library(MASS)

dose.p(out, p=0.5)
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Advantages of generalized linear models

More flexible than simply transforming variables (a given transformation of the raw
data may not accomplish both linearity and homogeneity of variance.)

Yields more familiar measures of the response variable than data transformations (e.g.,
how to interpret arcsine square root).

Avoids the problems associated with transforming 0’s and 1’s (e.g., the logit
transformation of 0 or 1 can’t be computed).

Retains the same analysis framework as linear models.
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When glm is appropriate and when it is not

In the second case, analyze summary statistic (fraction surviving) with lm().

Mixed effects glm method is available in lme4 package, but it would assume that the
individuals in the same tank do not influence one another (dubious in the above
hypothetical example).
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Assumptions of generalized linear models

Statistical independence of data points.

Correct specification of the link function for the data.

The variances of the residuals correspond to that expected from the family.

Later, I will show a method for dealing with excessive variance.
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Example: Analyzing count data with log-linear regression

Estimate mean number of offspring fledged by female song sparrows on Mandarte
Island, BC. Problem is similar to ANOVA, but ANOVA assumptions are not met.

Data are discrete counts.
Variance increases with mean.
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Two solutions:

1. Transform data: X ′ = ln(X + 1)

2. Generalized linear model. Poisson distribution might be appropriate for error
distribution. So use log link function.
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Example: Analyzing count data with log-linear regression

Log-linear regression (a.k.a. Poisson regression) uses the log link function.

ln(µ) = β0 + β1X1 + β1X2 + · · ·

Year is a categorical variable. So is analogous to single factor ANOVA

Categorical variables are modeled in R using “dummy” variables, same as with lm.
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Example: Analyzing count data with log-linear regression

out <- glm(noffspring~year, family=poisson(link='log'), data=ss)

summary(out)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.24116 0.26726 0.902 0.366872

year1976 1.03977 0.31497 3.301 0.000963 ***

year1977 0.96665 0.28796 3.357 0.000788 ***

year1978 0.97700 0.28013 3.488 0.000487 ***

year1979 -0.03572 0.29277 -0.122 0.902898

(Dispersion parameter for poisson family taken to be 1)

Numbers in red are the parameter estimates on the transformed (log) scale.

Intercept refers to mean of the first group (1975) and the rest of the coefficients are
differences between each given group (year) and the first group.

“Dispersion parameter” of 1 represents assumption that variance = 1 × mean.
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Example: Analyzing count data with log-linear regression

Predicted values on the transformed (log) scale: predict()

visreg(out) uses predict to plot the
predicted values, with confidence limits on
the transformed scale.

Notice that the “data points” on this scale
are not just the transformed data - we
can’t calculate ln(0).

R creates “working” values using a
complicated transformation of the residuals
between model and data calculated on the
original scale.
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Example: Analyzing count data with log-linear regression

Predicted values on the original scale: fitted()

Inverse link function:

g−1(x) = exp(x)

I have plotted them here with the original
data.

Note that the fitted values aren’t the
means of the original data.

Fitted values are the transformed values of
the means that were estimated on the log
scale.
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Example: Analyzing count data with log-linear regression

Use drop1() to test hypotheses

Analysis of deviance table gives log-likelihood ratio test of the null hypothesis that
there is no differences among years in mean number of offspring.

drop1(out, test='Chisq')

As with lm, drop1 will only test highest order interactions for each term.
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Example: Analyzing count data with log-linear regression

Evaluating assumptions of the glm fit

Do the variances of the residuals correspond to that expected from the link function?

The log link function assumes that the Y values are Poisson distributed at each X .

A central property of the Poisson distribution is that the variance and mean are equal
(i.e., the glm dispersion parameter = 1).

Let’s check the sparrow data:

tapply(ss$noffspring, ss$year, mean)

1975 1976 1977 1978 1979

1.272727 3.600000 3.346154 3.380952 1.228070

tapply(ss$noffspring, ss$year, var)

1975 1976 1977 1978 1979

1.618182 6.044444 3.835385 4.680604 1.322055

Variances slightly, but not alarmingly, larger than means.

Similarly, when analyzing binary data, the logit link function also assumes a strict
mean-variance relationship, specified by binomial distribution, when dispersion
parameter = 1.
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Modeling excessive variance

Finding excessive variance (“overdispersion”) is common when analyzing count data.
Excessive variance occurs because variables not included in the model also affect the
response variable.

In the workshop we will analyze an example where the problem is more severe than in
the case of the song sparrow data here.

Excessive variance can be accommodated in glm by using a different link function, one
that incorporates a dispersion parameter (which must also be estimated). If the
estimated dispersion parameter is � 1, then there is likely excessive variance.

The glm procedure to accomplish over (or under) dispersion uses the observed
relationship between mean and variance rather than an explicit probability distribution
for the data. In the case of count data,

variance = dispersion parameter×mean

Method generates “quasi-likelihood” estimates that behave like maximum likelihood
estimates.
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Modeling excessive variance

out <- glm(noffspring~year, family=quasipoisson, data=ss)

summary(out)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.24116 0.29649 0.813 0.41736

year1976 1.03977 0.34942 2.976 0.00344 **

year1977 0.96665 0.31946 3.026 0.00295 **

year1978 0.97700 0.31076 3.144 0.00203 **

year1979 -0.03572 0.32479 -0.110 0.91259

(Dispersion parameter for quasipoisson family taken to be 1.230689)

The point estimates are identical with those obtained using family=poisson instead,
but the standard errors (and resulting confidence intervals) are wider.

The dispersion parameter is reasonably close to 1 for these data, but it can be much
larger than 1 for count data (in which case, you must use family = quasipoisson).
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Other uses of generalized linear models

We have used glm to model binary frequency data, and count data.

The method is commonly used to model r × c (and higher order) contingency tables,
in which cell counts depend on two (or more) categorical variables each of which may
have more than two categories or groups.

glm can handle data having other probability distributions than the ones used in my
examples, including exponential and gamma distributions.
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