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Example: Fit a polynomial regression model - which?

Data: Trade-off between the sizes of wings and horns in 19 females of the beetle
Onthophagus sagittarius. Both variables are size corrected.

Emlen, D. J. 2001. Costs and the diversification of exaggerated
animal structures. Science 291: 1534–1536.
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Example: Fit a polynomial regression model
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Start with a linear regression:
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Example: Fit a polynomial regression model
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Now lets try a quadratic regression (polynomial, degree 2):
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· · · polynomial, degree 5:
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Example: Fit a polynomial regression model
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The problem of model selection

R2 and log-likelihood increase with number of parameters in model.
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Isn’t this good? Isn’t this what we want - the best fit possible to data?
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The problem of model selection
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What is wrong with this picture?

Does it violate some principle?

Parsimony principle: Fit no more parameters
than are necessary. If two or more models fit
the data almost equally well, prefer the simpler
model.

“models should be pared down until they are
minimal adequate” – Crawley 2007, p325

But how is “minimal adequate” decided? What
criterion is used?
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The problem of model selection

Stepwise elimination of terms is a common practice.

This approach involves fitting a multiple regression with many variables, followed by a
cycle of deleting model terms that are not statistically significant and then refitting.
Continue until only statistically significant terms remain.

The procedure ends up with a single, final model, the “minimum adequate model.”

Does stepwise elimination of terms actually yield the “best” model? What criterion
are we actually using to decide which model is “best”?

Each time we drop a variable from the model, we are “accepting” a null hypothesis.
What happens if we accept a false null hypothesis? Does a sequence of Type II errors
inevitably bring us to the wrong answer?

How repeatable is the outcome? With a different sample, would stepwise elimination
bring us to the same model again?

Might models with different subsets of variables fit the data nearly as well?
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Choose among models using an explicit criterion

A reasonable criterion: choose the model that predicts best.

“Cross-validation score” is one way to measure prediction error:

CVscore =
∑

e2
(i)

where:

− e2
(i)

= (yi − y(i))2.

− yi are the observations for the response variable.

− y(i) is the predicted value for yi when the model is fitted to the data leaving out
yi .

Larger CVscore corresponds to worse prediction (more prediction error).
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Choose among models using an explicit criterion

In our beetle example, the CVscore increases (prediction error worsens) with increasing
numbers of parameters in the model. Here, the quadratic linear regression was “best”.
But cubic does nearly equally well.
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Choose among models using an explicit criterion

Prediction worsens as models become complex because of bias-variance tradeoff.

There are two reasons why a model fitted to data might depart from the truth.

1. Bias: The fitted model may contain too few parameters, underestimating the
complexity of reality.

2. Variance: There is not enough data to yield good estimates of many parameters,
leading to high sampling error (low precision).

220 7. Model Assessment and Selection
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FIGURE 7.1. Behavior of test sample and training sample error as the model
complexity is varied. The light blue curves show the training error err, while the
light red curves show the conditional test error ErrT for 100 training sets of size
50 each, as the model complexity is increased. The solid curves show the expected
test error Err and the expected training error E[err].

Test error, also referred to as generalization error, is the prediction error
over an independent test sample

ErrT = E[L(Y, f̂(X))|T ] (7.2)

where both X and Y are drawn randomly from their joint distribution
(population). Here the training set T is fixed, and test error refers to the
error for this specific training set. A related quantity is the expected pre-
diction error (or expected test error)

Err = E[L(Y, f̂(X))] = E[ErrT ]. (7.3)

Note that this expectation averages over everything that is random, includ-
ing the randomness in the training set that produced f̂ .

Figure 7.1 shows the prediction error (light red curves) ErrT for 100
simulated training sets each of size 50. The lasso (Section 3.4.2) was used
to produce the sequence of fits. The solid red curve is the average, and
hence an estimate of Err.

Estimation of ErrT will be our goal, although we will see that Err is
more amenable to statistical analysis, and most methods effectively esti-
mate the expected error. It does not seem possible to estimate conditional

Training error: how well a model fits the
data used to fit the model.

Test error: how well a model fits a new
sample of data.

The simplest models have low variance but
high bias resulting from missing terms.

The most complex models have low bias
but high variance resulting from estimating
too many parameters (“overfitting”) with
limited data.
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Choose among models using an explicit criterion

What else is worrying about our polynomial regression analysis?
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We’re data dredging. We didn’t have any
hypotheses to help guide our search. This
too can lead to non-reproducible results.

E.g., the 10th degree polynomial is
surprisingly good at prediction. But is
there any good, a priori, reason to include
it among the set of candidate models to
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Goals of model selection

Some reasonable objectives:

− A model that predicts well.

− A model that approximates the true relationship between the variables.

− Information on which models fit the data nearly as well as the “best” model.

− To compare non-nested∗ models, rather than just compare a “full” model to
“reduced” models having a subset of its terms.

∗Reduced vs. full models are referred to as “nested models”, because the one contains a subset of
the terms occurring in the other. Models in which the terms contained in one are not a subset of
the terms in the other are called “non-nested” models. Don’t confuse with nested experimental
designs or nested sampling designs.
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Goals of model selection

To accomplish these goals, we need a model selection approach that includes:

− A criterion to compare models:

− Mallow’s Cp

− AIC (Akaike’s Information Criterion)

− BIC (Bayesian Information Criterion)

− A strategy for searching the candidate models
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Mallow’s Cp

Mallow’s Cp , proposed in 1973, is frequently used in multiple regression.

Cp =
SSerror

σ̂2
− n + 2p

where:

− SSerror is the error sum of squares for the model with p predictors

− σ̂2 is the estimated error mean square of the true model (e.g., all predictors)

− n is the sample size

− p is the number of predictors (explanatory variables) in the model (including the
intercept)

Cp estimates the mean square prediction error.

It is equivalent to AIC in the case of multiple regression with independent normal
errors.

The p behaves like a penalty for including too many predictors (explanatory variables).
This feature is shared with all other model selection criteria.
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Mallow’s Cp

It is implemented in R in the leaps package. leaps uses an efficient algorithm to
choose among a potentially huge number of models.

Strategy: Test all possible models and select the one with smallest Cp .

Models for which Cp < p are all considered about as good.

Typically we are modeling observational data. We are not dealing with data from an
experiment where we can make intelligent choices based on the experimental design.

By investigating all possible subsets of variables, we are admitting that the only
intelligent decision we’ve made is the choice of variables to try. No other scientific
insight was used to decide an a priori set of models.
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Example: Ant species richness

Data: Effects of latitude, elevation, and habitat on ant species richness.

Gotelli, N.J. & Ellison, A.M. (2002b). Biogeography at a regional scale: determinants
of ant species density in bogs and forests of New England. Ecology, 83, 1604–1609.

head(ants)

tail(ants)

Note: Bog and forest sites were technically paired by latitude and elevation, but
residuals were uncorrelated, so we’ll follow the authors in treating data as independent
for the purposes of this exercise.
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Example: Ant species richness

Regression model with all possible terms:

out <- lm(log(nspecies)~habitat * latitude * elevation)

This evaluates all subsets of habitat, latitude, elevation and their 2- and 3-way
interactions.

leaps requires that all variables be numeric (I disguised habitat as a numeric variable
by scoring: 0=bog, 1=forest).

Not all the evaluated models are necessarily sensible (dubious to fit a model with a
3-way interaction and no main effects).
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Example: Ant species richness
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By default, leaps saves the top 10 models
for each value of p.

The line in the figure indicates Cp = p
(vertical axis is in log units).

The best model has 4 predictors (3
variables plus intercept).

But other models fit the data nearly as
well, i.e., all those for which Cp < p.
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Example: Ant species richness

Best model (smallest Cp): Note: I have shortened variable names

out <- lm(log(nspecies)~hab + lat + ele)
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Example: Ant species richness

A total of 34 models had Cp < p
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Example: Ant species richness

If regression is purely for prediction, all of the models with Cp < p predict about
equally well. In which case there’s no reason to get carried away with excitement over
your single “best” model.

Interpretation is more complex if regression is used for explanation. If numerous
models are nearly equally good at fitting the data, it is difficult to claim to have found
the predictors that “best explain” the response.

Keep in mind that, like correlation, “regression is not causation.” It is not possible to
find the true causes of variation in the explanatory variable without experimentation.
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AIC (Akaike’s Information Criterion)

AIC = −2 lnL(model|data) + 2k

Criterion: minimize AIC.

k is the number of parameters estimated in the model (including intercept and σ2).

First part of AIC is the log-likelihood of the model given the data.

Second part is 2k, which acts like a penalty - the price paid for including k variables in
the model (this is an interpretation, not why the 2k is part of the formula).

Just as with the log-likelihood, what matters is not AIC itself, but the difference
between models in their AIC.

AIC is an estimate of the expected distance (“information lost”) between the fitted
model and the “true” model.

AIC yields a balance between bias and variance, the two sources of information loss.
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AIC (Akaike’s Information Criterion)

Search strategy: One method is a stepwise procedure for selection of variables
implemented by stepAIC in the MASS library in R.

Can use this for categorical and numerical variables.

stepAIC obeys “marginality restrictions”. Not all terms are on equal footing. For
example

− squared term x2 is not fitted unless x is also present in the model

− the interaction a:b is not fitted unless both a and b are also present

− a:b:c not fitted unless all two-way interactions of a, b, c, are present

The search algorithm is therefore intelligent and economical.

However, we are still data dredging.
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Example: Ant species richness
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Same data as that analyzed earlier.

AIC difference (∆) is the difference
between a model’s AIC score and that of
the “best” model.

“Best” model is again the model with the
three additive terms: Habitat, Latitude,
and Elevation.
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How AIC differs from classical statistical approaches
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− No hypothesis testing.

− No null model.

− No P-value.

− No model is formally ’rejected’.
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How AIC differs from classical statistical approaches

Several models may be about equally good.

∆ AIC Support
0–2 Substantial support
4–7 Considerably less support
> 10 Essentially no support

Your “best” model isn’t necessarily the
true model.

Remember: AIC balances the bias-variance
trade-off. It does a good job to minimize
information loss, on average.
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Using drop1 to find the ’best’ model

out1 <- lm(log(nspecies)~H*L*E, data=ants)

drop1(out1, test='F')

No support for three-way interaction (∆AIC < 2).

out2 <- update(out1, ~. -H:L:E)

drop1(out2, test='F')

∆AIC < 2 for each two-way interaction.

out3 <- update(out2, ~. -H:L -H:E -L:E)

drop1(out3, test='F')

Keep all main effects (dropping any main effect increases AIC by > 2).
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Multimodel Inference

Multimodel Inference allows inferences to be made about a parameter based on a set
of models that are ranked and weighted according to level of support from the data. It
avoids the need to base inference solely conditional upon the single “best” model.

“Model averaging” is an example: a model-average estimate takes a weighted estimate
of the parameter estimates from each model deemed to have sufficient support.

Implemented in MuMIn package in R.

A good source for further information is Burnham, K. P., and D. R. Anderson. 2002.
Model selection and multimodel inference: a practical information-theoretic approach.
2nd. New York, Springer
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Formulate a set of candidate models

The information-theoretic approach shows its true advantage when comparing
alternative conceptual or mathematical models to data.

This is where data dredging ends and science begins.

No model is considered the “null” model. Rather, all models are evaluated on the
same footing.
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Example: Adaptive evolution in the fossil record

BRIEF COMMUNICATION

complicates attempts to relate paleontological data to population-
level processes.

Partly as a result of this skepticism, statistical tests were de-
veloped to detect natural selection operating in time series of phe-
notypic traits through stratigraphic sequences. The null model in
these tests is neutral genetic drift (Lande 1976; Turelli et al. 1988;
Lynch 1990) or its general form, an unbiased random walk (Raup
1977; Raup and Crick 1981; Bookstein 1987; Gingerich 1993;
Roopnarine 2003). These methods test against the neutral expec-
tation by assessing whether trait increases significantly exceeded
decreases, or vice versa (Raup 1977; Raup and Crick 1981), if trait
increases or decreases were more autocorrelated than expected
(runs test, Raup and Crick 1981), if long-term divergence was too
great given short-term changes (scaled maximum test, Bookstein
1987), or if the pace of change has been too fast for genetic drift
(Lande 1976; Lynch 1990). Application of these tests to detect

Figure 1. Plots of mean trait values over time, starting with the first appearance of the highly armored stickleback lineage. Time is
measured in organismal generations (= 2 years/generation), with generation zero set at the first sample marking the invasion of the
lake by this particular lineage (smaller italicized numbers below the time axis in the top panel show the time scale from Bell et al. [2006],
which is in years). Vertical error bars denote one standard error; samples with fewer than five individuals have been omitted. For each
trait, the expected evolutionary trajectory of the best-fit adaptive model is shown as a dotted line, with the 95% probability envelope
around this solution in gray. There is a delay before the pelvic score character begins to evolve to a lower armored form (see text).

adaptive evolution in fossil sequences has not been encouraging.
The null model of an unbiased random walk frequently cannot be
rejected (Raup 1977; Raup and Crick 1981; Malmgren et al. 1983;
Bookstein 1987, 1988; Sheets and Mitchell 2001), and evolution-
ary divergence, rather than being so rapid as to imply directional
selection, is usually slower than the neutral expectation (Lynch
1990; Cheetham and Jackson 1995; Clegg et al. 2002; Estes and
Arnold 2007; Hunt 2007).

A recent study by Bell et al. (2006) documenting morpho-
logical evolution in a stickleback lineage represents an unusually
promising test case for detecting natural selection in the fossil
record. This lineage showed a steady but tapering reduction in
several traits related to the size and robustness of skeletal ele-
ments (Fig. 1), and several independent lines of indirect evidence
suggest that natural selection influenced these evolutionary trajec-
tories (Bell et al. 2006). In addition, because the lake sediments

EVOLUTION MARCH 2008 701

G. Hunt, M. A. Bell & M. P Travis 2008, Evolution 62: 700–710.

Data: Armor measurements of 5000 fossil
Gasterosteus doryssus (threespine
stickleback) from an open pit diatomite
mine in Nevada. Time=0 corresponds to
the first appearance of a highly-armored
form in the fossil record.

A previous analysis was not able to reject a
null hypothesis of random drift in the trait
means.

1 generation = 2 years.
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Example: Adaptive evolution in the fossil record

Hunt et al used the AIC criterion to compare the fits of two evolutionary models fitted
to the data.

1. Neutral random walk (Brownian motion): Two parameters need to be estimated
from the data: 1) initial trait mean; 2) variance of the random step size each
generation.

2. Adaptive peak shift (Orstein–Uhlenbeck process): Four parameters to be
estimated: 1) initial trait mean; 2) variance of the random step size each
generation; 3) phenotypic position of the optimum; 4) strength of the “pull”
toward the optimum.
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Example: Adaptive evolution in the fossil record

Results: AIC difference (∆) of neutral model is large (no support)

The adaptive model beats neutral drift for all three traits.

Akaike weight is the weight of evidence in favor of a model being the best model
among the set being considered, and assuming that one of the models in the set really
is the best. A 95% confidence set of models is obtained by ranking the models and
summing the weights until that sum is 0.95.

Stepping back from the model selection approach, the authors showed that the
adaptive model rejects neutrality in a likelihood ratio test (here the models are not on
equal footing – one of them, the simpler, is set as the null hypothesis).

This suggests that even under the conventional hypothesis testing framework,
specifying 2 specific candidate models is already superior to an approach in which the
alternative hypothesis is merely “everything but the null hypothesis.”
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Conclusions

Stepwise elimination of terms and null hypothesis significance testing is not the ideal
approach for model selection. Information-theoretic approaches have explicit criteria
and better properties.

Using this approach involves giving up on P-values.

These information theoretic approaches work best when thoughtful science is used to
specify the candidate models under consideration before testing (minimizing data
dredging).

Working with a set of models that fit the data about equally well, rather than with the
one single best model, recognizes that there is model uncertainty.

If you want more certainty about which variables cause variation in the response
variable, then you will need to do an experiment.
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