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Estimation and hypothesis testing

In conventional data analysis we carry out two types of statistical inference. Each is
founded on a different sampling distribution.

1. Estimation
Sampling distribution of an estimate. The values for a parameter estimate we
might obtain, when sampling from a population, and their probabilities. It is used
to obtain standard errors, confidence intervals. Most methods assume that the
sampling distribution has an approximately normal distribution.

2. Hypothesis testing
Null sampling distribution (or null distribution). The probability distribution of a
test statistic if the null hypothesis is true. We frequently use the t, F , χ2, and
normal distributions to approximate null distributions, from which P-values are
calculated.

3 / 34



Estimation and hypothesis testing

Q: What to do if the assumptions of the best method available are violated, and we
cannot turn to generalized linear models (because their assumptions are also violated)?

A: Computationally-intensive methods. An approach in which the power of the
computer is used to generate a sampling distribution.

1. Estimation: The bootstrap.

2. Hypothesis testing: The permutation test.
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Permutation test

A permutation test generates a null distribution for a statistic measuring the
association between two variables (or difference between groups) by repeatedly and
randomly rearranging the values of one of the variables.

Rank tests, such as the Mann-Whitney U-test for two samples, are permutation tests.
The data are first replaced by their ranks, and then the ranks are permuted to
generate a null distribution. The exact probability distribution of U is known.

But there’s no need to replace the data with the ranks. Permute the data themselves.
No known probability distribution is available, so we can use a computer to generate a
large number of permutations instead.
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Example

During mating in the sage cricket, Cyphoderris strepitans, the male offers his fleshy
hind wings to the female to eat. Females get some nutrition from feeding on the
wings, which raises the question, “Are females more likely to mate if they are
hungry?” Johnson et al. (1999) addressed this question by randomly dividing 24
females into two groups:
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One group of 11 females was starved for at
least two days. Another group of 13
females was fed during the same period.

Each female was put separately into a cage
with a single (new) male, and the waiting
time to mating was recorded. The data are
clearly not normally distributed.
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Example

Data:

Treatment Time Treatment Time
Starved 1.9 Fed 1.5
Starved 2.1 Fed 1.7
Starved 3.8 Fed 2.4
Starved 9.0 Fed 3.6
Starved 9.6 Fed 5.7
Starved 13.0 Fed 22.6
Starved 14.7 Fed 22.8
Starved 17.9 Fed 39.0
Starved 21.7 Fed 54.4
Starved 29.0 Fed 72.1
Starved 72.3 Fed 73.6

Fed 79.5
Fed 88.9

Test statistic:
Ȳ1 − Ȳ2 = 17.73− 35.98 = −18.26.

H0: Mean time to mating µ1 = µ2.
HA: Mean time to mating µ1 6= µ2.
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Example

Data:

Treatment Time Treatment Time
Starved 1.9 Fed 1.5
Starved 2.1 Fed 1.7
Starved 3.8 Fed 2.4
Starved 9.0 Fed 3.6
Starved 9.6 Fed 5.7
Starved 13.0 Fed 22.6
Starved 14.7 Fed 22.8
Starved 17.9 Fed 39.0
Starved 21.7 Fed 54.4
Starved 29.0 Fed 72.1
Starved 72.3 Fed 73.6

Fed 79.5
Fed 88.9

Test statistic:
Ȳ1 − Ȳ2 = 17.73− 35.98 = −18.26.

H0: Mean time to mating µ1 = µ2.
HA: Mean time to mating µ1 6= µ2.

A single permutation

Treatment Time Treatment Time
Starved 2.1 Fed 1.5
Starved 2.4 Fed 1.7
Starved 9.0 Fed 1.9
Starved 14.7 Fed 3.6
Starved 17.9 Fed 3.8
Starved 21.7 Fed 5.7
Starved 22.6 Fed 9.6
Starved 22.8 Fed 13.0
Starved 39.0 Fed 54.4
Starved 73.6 Fed 72.1
Starved 79.5 Fed 29.0

Fed 72.3
Fed 88.9

Test statistic:
Ȳ1 − Ȳ2 = 27.75− 27.5 = 0.25.
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Example

With 10, 000 permutations, we can create the null distribution of Ȳ1 − Ȳ2.
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Difference in treatment means for randomized data

703/10,000 had a value ≤ the observed value, –18.26.
P = 2× 0.0703 = 0.1406.
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Permutation test assumptions

− Random samples

− To compare means or medians between groups, permutation tests assume that
the distribution of the variable has the same shape in every population.

Permutation tests are robust to departures from the equal-shape assumption when
sample sizes are large (more so than the Mann-Whitney U-test).

Permutation tests have lower power than parametric tests when the sample size is
small, but they are more powerful than the Mann-Whitney U-test. They have similar
power to parametric tests when sample sizes are large.
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Why permutation tests are not enough on their own

Parametric methods provide estimates (with standard error or confidence interval) of a
useful parameter.

Nonparametric tests, including permutations tests and rank tests, provide only a
P-value. They do not provide estimates (with standard error or confidence interval) of
a useful parameter.

Nonparametric tests, including permutations tests and rank tests, perpetuate the view
that the P-value is all you want from the data, and that the smallness of the P-value
is an indication of the magnitude or importance of an effect.

As our readings and discussions have stressed, the P-value, in fact, tells us nothing
about magnitudes of effects or biological importance. No decision should ever be
made on the basis of a P-value alone.
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Why the bootstrap?

Primarily used for estimation.

Provides standard errors and confidence intervals of useful parameters.

The method is nonparametric, so doesn’t require normally-distributed data, or data
having any other particular distribution.

It can be applied to virtually any parameter, including means, proportions, and linear
model coefficients.

It is most handy when there is no ready formula for a standard error or confidence
interval (e.g., median, trimmed mean, eigenvalue).

It even works for estimates based on complicated sampling procedures or calculations
(for example, phylogeny estimation, as we saw in today’s reading).
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Understanding the bootstrap

To understand the bootstrap, let’s review how estimation works.

Estimation is the process of inferring a population parameter from sample data.

The value of a sample estimate is almost never the same as the parameter in the
population because of random sampling error (chance).

The sampling distribution of an estimate gives all the values we might have obtained
from our sample, and their probabilities of occurrence.

The standard error of an estimate is the standard deviation of its sampling
distribution. No estimate is useful without it.
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Example: Estimate a mean

What we want:

The mean of a variable in the population
(e.g., the lengths of all the genes in the
human genome).

Note: simulated data.

What we have instead:

The sample mean (e.g., based on a
random sample of n = 100 genes).
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Example: Estimate a mean

The sampling distribution:

Since we don’t have the true mean, we
need an approximation of the sampling
distribution, giving all possible values of
the estimate and their probabilities.

What we have:

Just one sample mean
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Example: Estimate a mean

Standard error

The standard deviation of the sampling
distribution (the standard error) measures
the variation of sample estimates around
the population parameter.

Roughly, the standard error tells us how far
we are from the truth, on average.
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Example: Estimate a mean

Standard error

If the sampling distribution is roughly
bell-shaped, then about 95% of estimates
fall within 2 SE of the population
parameter.

Twice the SE therefore provides an
approximate 95% confidence interval for
the parameter.
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Example: Estimate a mean

Standard error of the sample mean has a remarkable property

It can be estimated from a single sample!

σX̄ ∼ SX̄ =
S
√
n

SX̄ is the estimated standard error. It is usually called simply the “standard error of
the mean” (SE).

This is an unusual feature of X̄ . No assumptions about normality are required. The
assumption of normality is nevertheless required for the 95% confidence interval.

Sadly, most other kinds of estimates do not have this amazing property. What to do?

One answer: make your own sampling distribution for the estimate using the
“bootstrap”. Method invented by Efron (1979).

17 / 34



Example: Estimate a mean

The real sampling distribution

To get the real sampling distribution,
sample many times (each sample of size
n), from the same population.

Calculate SE as the standard deviation of
the resulting sampling distribution.

But we only have one sample, and so only
one estimate!
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Example: Estimate a mean

The bootstrap sampling distribution is
the next best thing

Pretend the data represent the population!
Sample many times from the single sample
instead (each sample of size n).

Sampling is “with replacement” so each
new bootstrap sample is missing some
values from the data and has duplicates of
others.

The standard deviation of results yields the
bootstrap standard error.
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The bootstrap algorithm

1. Use the computer to take a random sample of individuals from the original data.
The bootstrap sample should contain the same number of individuals as the
original data. Each time an observation is chosen, it is left available in the data
set to be sampled again (“sampling with replacement”).

2. Calculate the estimate of interest using the values in the bootstrap sample from
step 1. This is the first bootstrap replicate estimate.

3. Repeat steps 1 and 2 many times (e.g., 104). The frequency distribution of all
bootstrap replicate estimates approximates the sampling distribution of the
estimate.

4. Calculate the sample standard deviation of all the bootstrap replicate estimates
obtained in step 3. The resulting quantity is called the bootstrap standard error.
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Example
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Data: Measurements of undulation rate (Hz) of paradise tree snakes (Socha, J. J.
2002. Gliding flight in the paradise tree snake. Nature 418: 603-604)

n = 8 snakes∗

0.9, 1.2, 1.2, 1.3, 1.4, 1.4, 1.6, 2.0
X̄ = 1.375

∗The bootstrap is not advised for sample sizes this small, but we
will use it here to illustrate.
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Example
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1. Use the computer to take a random sample of individuals from the original data.

hertz <- c(0.9, 1.2, 1.2, 1.3, 1.4, 1.4, 1.6, 2.0)

xboot <- sample(hertz, replace=TRUE)

xboot

Histogram of first bootstrap sample:
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Example

2. Calculate the estimate using the values in the bootstrap sample from step 1.

mean(xboot)

1.55

Save the result from the first bootstrap replicate:
z <- vector()

z[1] <- mean(xboot)
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Example
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3. Repeat steps 1 and 2 a large number of times (I used 1000).

xboot <- sample(hertz, replace=TRUE)

z[2] <- mean(xboot)

xboot <- sample(hertz, replace=TRUE)

z[3] <- mean(xboot)
...

z[1000] <- mean(xboot)

Plot bootstrap sampling distribution:
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Example
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4. The bootstrap standard error is the standard deviation of all the bootstrap
replicate estimates obtained in step 3.

sd(z)

0.1083

How does it compare with the ordinary
formula for the standard error of the mean?

sd(hertz)/sqrt(length(hertz))

0.1146

The bootstrap SE is a little smaller (a
consequence of very small sample size) but
surprisingly close, considering how we got
it.

25 / 34



Example
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The bootstrap can also be used to calculate a confidence interval

Incredibly, the 2.5th and 97.5th percentiles of the bootstrap sampling distribution are
an approximate 95% confidence interval, no transformations or normality assumptions
needed.

quantile(z, probs=c(0.025,0.975))

Compare with results from using the
t-distribution:
quantiles <- qt(c(0.025,0.975),

length(hertz)-1)

-2.364624 2.364624

mean(hertz) + quantiles*se

1.104098 1.645902

Pretty close!

This “percentile” method of obtaining
bootstrap confidence intervals works well if
the sampling distribution is symmetric and
unbiased.

Improved, bias-corrected and accelerated
(BCa) confidence intervals improve
accuracy when sampling distributions are
skewed and/or biased (we will see an
example in the workshop).
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Difference between two (or more) groups

Procedure is similar, but now we resample both groups

1. Use the computer to take a random sample of the data (with replacement, same
sample sizes) from each group.

2. Calculate the difference between the two bootstrap samples from step 1.

3. Repeat steps 1 and 2 a very large number of times (≥ 1000)

4. Calculate the sample standard deviation of all the bootstrap replicate estimates
obtained in step 3.

The result is the bootstrap standard error of the difference.
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Example: odds ratio to compare proportions

5th instar Manduca sexta caterpillars trained to associate a mild electrical shock with a
specific odor (ethyl acetate; EA). Then assayed for learning in a Y-choice apparatus as
larvae and again as adult moths, after metamorphosis.

Blackiston et al. 2008. Retention of memory through metamorphosis: can a moth remember what it learned as a
caterpillar? PLoS ONE 3: e1736)

Caterpillar treatment
Adult response learned control
chose clean air 32 25
chose EA air 9 21
total 41 46
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Example: odds ratio to compare proportions

We’ll use the odds ratio to measure association between caterpillar treatment and
adult response (difference between the proportions).

Odds: if we have a series of independent trials in which the probability of success in
any one trial is p, then the odds of success is

O =
p

1− p

If O = 1, the we say that the “the odds are one to one”.

Odds ratio: Compares the odds of success under two treatments:

OR =
O1

O2

(recall: log odds, or “logit” is how we modeled a proportion with glm)
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Example: odds ratio to compare proportions

For the caterpillar data,

Caterpillar treatment
Adult response learned control
chose clean air 32 25
chose EA air 9 21
total 41 46

learned:
p1 = 32/41 = 0.78
O1 = 0.78/0.22 = 3.56

control:
p2 = 25/46 = 0.54
O2 = 0.54/0.46 = 1.19

OR = O1/O2 = 3.56/1.19 = 2.99

The odds of choosing the clean air in a trial are about three times greater in the
treatment group (learned) than in the control group.
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Example: odds ratio to compare proportions

We want a standard error for this estimate and a 95% confidence interval for the true
(population) OR.

Let 1 indicate “chose clean air”, and 0 indicate “chose EA air”.

Learn group: 11111111111111111111111111111111000000000
(thirty-two 1’s and nine 0’s)

Control group: 1111111111111111111111111000000000000000000000
(twenty-five 1’s and twenty-one 0’s)

1. Take a random sample (with replacement) from each group

2. Calculate OR

3. Repeat 104 times
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Example: odds ratio to compare proportions

Bootstrap sampling distribution for OR:
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32 / 34



Example: odds ratio to compare proportions

Bootstrap 95% CI using percentiles:
2.5% 97.5%

1.239796 9.250000

Compare with conventional approximate CI
for OR
2.5% 97.5%

1.17 7.65

BCa (bias corrected and accelerated)
2.5% 97.5%

1.14 7.93
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BCa corrects the percentiles for skewness in the sampling distribution, which otherwise
changes the estimate; and for bias in the estimate.
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Summary

The bootstrap is amazing and useful for estimation.

It works in almost any situation (be cautious when n is small).

It is approximate, though performs almost as well as parametric methods when
assumptions of the parametric methods are met.

It can also be used for hypothesis testing.

Permutation tests are useful for obtaining P-value but use the bootstrap to estimate
magnitudes.
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