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Mixed-effect models are frequently used to control for the nonindependence of data points, for example, when repeated
measures from the same individuals are available. The aim of these models is often to estimate fixed effects and to test their
significance. This is usually done by including random intercepts, that is, intercepts that are allowed to vary between individuals.
The widespread belief is that this controls for all types of pseudoreplication within individuals. Here we show that this is not the
case, if the aim is to estimate effects that vary within individuals and individuals differ in their response to these effects. In these
cases, random intercept models give overconfident estimates leading to conclusions that are not supported by the data. By
allowing individuals to differ in the slopes of their responses, it is possible to account for the nonindependence of data points
that pseudoreplicate slope information. Such random slope models give appropriate standard errors and are easily implemented
in standard statistical software. Because random slope models are not always used where they are essential, we suspect that many
published findings have too narrow confidence intervals and a substantially inflated type I error rate. Besides reducing type I
errors, random slope models have the potential to reduce residual variance by accounting for between-individual variation in
slopes, which makes it easier to detect treatment effects that are applied between individuals, hence reducing type II errors as
well. Key words: experimental design, maternal effects, mixed-effect models, random regression, repeated measures, type I
error. [Behav Ecol 20:416–420 (2009)]

The development of mixed-model methodology has pro-
ceeded rapidly over the past years (Snijders and Bosker

1999; Pinheiro and Bates 2000; Venables and Ripley 2002;
Faraway 2006; Galwey 2006; Gelman and Hill 2007), and
mixed models are now commonly used in analyses of obser-
vational and experimental data. Among other applications,
mixed models can be used to control for the nonindepen-
dence of data points stemming from the same individual,
when the aim is to estimate fixed effects (main effects and/
or interactions) and to test their significance. This is often
done by including individual-specific intercepts, and the wide-
spread belief is that this controls for all types of pseudorepli-
cation. Here we show that in some widespread test situations,
this is not the case. In such situations, random intercept mod-
els produce standard errors (SEs) and consequently signifi-
cance levels that are biased. This is obviously problematic,
although point estimates of effect sizes are still unbiased.
We show that these problems can be solved by instead using
random slope models. This allows drawing conclusions that
are actually supported by the data. Furthermore, we call for
caution in the assessment of published results that have used
inappropriate models.

THE PROBLEM

The problem is most easily illustrated for designs, in which
some factor varies between subjects, but other factors (or cova-
riates) vary within subjects (e.g., split-plot and repeated-
measures designs; Quinn and Keough 2002). For example,
in a study of differential allocation, females are paired exper-
imentally to either attractive or unattractive males (Bolund

et al. forthcoming). They are allowed to produce a clutch,
and egg sizes are measured for all eggs. When the interest is
to estimate the effect of the treatment (attractive vs. unattractive
male) on mean egg size, it is sufficient to include individual-
specific random intercept effects, that is, allowing females to
differ in their mean egg sizes and hence intercepts. This
will effectively control for the nonindependence of eggs
coming from the same female when the factor of interest,
the treatment, is applied to some of the females. However,
many studies also focused on how the treatment affects the
patterns of female investment over the laying sequence within
a clutch. In this case, a model that controls for individual-
specific intercepts only, but not for individual-specific slopes
of investment (of egg size over the laying sequence), will greatly
underestimate the P value of 1) the slope main effect and
2) the treatment by laying order interaction, leading to many
false-positive findings.
In the above example, the aim is to estimate within-subject

slopes (factorial treatments can be considered as slopes as well,
Gelman and Hill 2007) and to generalize these slopes to
a larger population of individuals from which the subjects
were sampled. It is common, however, that individuals do
not only differ in their absolute trait value (like mean egg
size) but also in their slopes of response to some factor or
covariate (like change of egg volume over the laying se-
quence). By estimating fixed effects, we are usually interested
in the average slope in a population of individuals. If there is
high between-individual variation in slopes, then taking more
measurements from the same individual will make the esti-
mate of this particular slope more precise. However, these
additional measurements do not contribute much to make
the estimate for the population slope more accurate. Only
by measuring more individuals and, hence, more slopes,
one can be more confident about the average slope in the
population. Problematically, random intercept models
wrongly treat repeated measurements within individuals as
independent data points with respect to the population slope.
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Hence, estimating slopes from within-individual replicates
will give too narrow confidence intervals for the population.
In the framework of null hypothesis testing, this will lead
to too many rejections of the null hypotheses when testing
the population-wide mean slope against some specific value
(slope main effect) or the slopes of 2 populations against each
other (slope-by-treatment interactions).
The magnitude of the problem depends on 3 factors:
(1) The most critical is the between-individual variation

in slopes (Figure 1a). If there is no variation in slopes
between individuals, measurements from the same indi-
vidual can be considered independent from each other
and analyzed as if collected from different individuals.
In principle, between-individual variation in slopes is
independent of between-individual variation in inter-
cepts, but the most common situation is to find both,
between-individual variation in slopes and between-
individual variation in intercepts, in real data sets.

(2) Within-individual scatter around the individual re-
gression line dilutes the effect of varying slopes
(Figure 1b). If there is high within-individual varia-
tion, then between-individual differences in slopes
might be less important because they explain less of
the total variance.

(3) The issue of pseudoreplication increases with the
number of measurements taken from the same indi-
vidual irrespective of how many levels the covariate
has (Figure 1c). Already the second measurement
from the same individual represents a pseudoreplicate
with respect to the population slope. Only estimates
derived from single measurements on different in-
dividuals are completely independent.

To illustrate the phenomenon of inflated rates of type I er-
ror, we generated data sets that mimic data collected from
a split-plot design. We randomly assigned 30 virtual individuals
to 2 treatments (15 individuals in each treatment). Within indi-
viduals, we sampled 5 trait values and the order of these values
as a covariate (analogous to egg sizes within a laying sequence
of 5 eggs from 1 clutch). We allowed the 30 individuals to vary
in their trait value increase over the sequence by drawing
slopes from a normal distribution (with a mean of zero and
a standard deviation [SD] of rb). Furthermore, we allowed
within-individual error by assigning single measurements a
deviation from the regression slope drawn from a normal dis-
tribution (with a mean of zero and an SD of rr). There was no

population difference in means between treatments, popula-
tion slopes were zero in both treatments, and there was no
between-individual variation in mean trait values. These are
not essential assumptions of the simulation because introduc-
ing differences between treatments (in slopes and/or inter-
cepts) as well as allowing individuals to vary in their mean trait
values gave the same results.
We fitted a random intercept model [lmer (trait;Treat-

ment*LaySeq1(1|IndID)] to the 150 data points using lmer
from the lme4 package in R 2.6.2 (Bates 2007; R Development
Core Team 2008). For each randomly created data set, we
evaluated whether the confidence intervals for the fixed-effect
estimates included the true value. In our simulation, the true
values were zero so that the proportion of simulations for
which the confidence interval did not include zero is the type
I error rate. We let the between-individual variation in slopes
(rb) and within-individual scatter around the regression line
(rr) vary between 0 and 0.5 and ran 1000 simulations for each
parameter combination.
The type I error rate for finding a significant treatment

main effect was close to the expected 5% when the between-
individual variation in slopes (rb) was low, but for high
rb values, the type I error rate was considerably lower, that
is, too conservative (Figure 2, left, panel-wide means: a ¼
0.036 [top] and a ¼ 0.017 [bottom]). This reflects a loss of
power for testing the between-individual treatment effect
when the between-individual variation in slopes was not ac-
counted for. On the contrary, the false-positive rate of finding
significant main effects of slopes as well as significant slope-by-
treatment interactions increased with the between-individual
variation in slopes (rb), but this effect got less pronounced
as the within-individual scatter around the regression line (rr)
increased (Figure 2, center and right, panel-wide means: a ¼
0.23 [top center], a ¼ 0.23 [top right], a ¼ 0.095 [bottom
center], and a ¼ 0.098 [bottom right]).
To demonstrate how severe this issue can be in a real data set,

we used egg size and egg yolk color measurements from 30 ze-
bra finch pairs (Bolund et al. forthcoming). Each female laid 4
clutches, and all 2–6 eggs from each clutch were measured.
Zebra finch eggs increased in size over the laying sequence
and egg yolks changed from orange toward yellow. We simu-
lated a random assignment of the 30 pairs to 2 fictional treat-
ments separately for the 4 clutches. Because assignment was
random, there was, by definition, no true treatment effect and
no slope-by-treatment interaction. However, the proportion of

Figure 1
Schematic illustrations of more (A) and less (B) problematic cases for the estimation of fixed-effect covariates in random-intercept models.
(a) Regression lines for several individuals with high (A) and low (B) between-individual variation in slopes (rb). (b) Two individual regression
slopes with low (A) and high (B) scatter around the regression line (rr). (c) Regression lines with (A) many and (B) few measurements per
individual (independent of the number of levels of the covariate).
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significant slope-by-treatment interactions after 10 000 runs
ranged from 0.085 to 0.35 (median of 4 clutches: 0.10) for
egg size and from 0.11 to 0.41 (median of 4 clutches: 0.15) for
egg color. This is clearly more than the desirable rate of false
positives (a ¼ 0.05).

SOLUTION

The most flexible solution is to use mixed-effect models that
include random slopes (and usually also random intercepts)
(Laird and Ware 1982; Snijders and Bosker 1999; Raudenbush
and Bryk 2002; Singer and Willett 2003;). Random effects are
individual-specific effects for intercepts or slopes that are
modeled as coming from a common distribution (usually
a normal distribution). Hence, unlike linear models that do
not include an individual-level model, slopes and/or inter-
cepts are allowed to take different values for each individual.
By constraining them to come from a common distribution,
individual-level estimates are influenced by measurements
from other such individuals (shrinkage to the population
mean, Gelman and Hill 2007). If between-individual variation
is large, fixed effects are estimated with degrees of freedom
close to the number of individuals. If the between-individual
variation is low, fixed effects are estimated with degrees of
freedom close to the number of data points. This makes sense
because in a repeated-measurement design, the evidence for
the population slope depends on whether slopes vary mainly
within or among individuals. Mixed-effect models will work
well for balanced as well as unbalanced data sets because es-
timates for individual effects (intercepts and slopes) will be

weighted by sample size. However, estimates of variance
components may become unstable in strongly unbalanced
designs (Raudenbush and Bryk 2002).
We analyzed the same randomly generated data set as de-

scribed in the previous section with mixed-effect models that
include random intercepts as well as random slopes
[lmer(trait;Treatment*LaySeq1(1 1 LaySeq|IndID)]. These
models effectively control for pseudoreplication for all predic-
tors by giving the desirable proportion of 5% of the simulations
not including the true value (i.e., zero) in the 95% confidence
intervals (Figure 3, panel-wide means: a ¼ 0.048 [top left], a¼
0.049 [top center], a ¼ 0.049 [top right], a ¼ 0.049 [bottom
left], a¼ 0.048 [bottom center], and a¼ 0.050 [bottom right]).
The random assignment of zebra finch clutches to imaginary
treatments yielded a rate of type I error for the treatment by
laying order interaction of 0.045–0.054 (median: 0.052) for
egg size and 0.053–0.061 for yolk hue (median: 0.053). This
shows that random slope models do indeed produce results
very close to the desired type I error rate.
Random slope models are easily implemented in standard

statistical software (see above for an example of R syntax). They
effectively keep the type I error rate at the desired level by giv-
ing SEs that are actually supported by the data. The type II er-
ror problem in this situation is not greater than normal
because only more individuals can confirm that the population
slopes differ from some specific value (or between 2 popula-
tions that have experienced different treatments). By estimat-
ing the between-individual variation in slopes, random slope
models make more effective use of the data than, for example,
a t-test comparing the estimated slopes between 2 treatment

Figure 2
Type I error rate (proportion of estimated 95% confidence intervals for fixed effects not including the true value of zero) in a split-plot design
with treatment applied to individuals and slopes measured within individuals as estimated from a random intercept model. The 3 figures in
one row show the type I error rates for tests for the treatment main effect (left), the slope main effect (centre), and the slope-by-treatment
interaction (right). The 2 rows of figures show simulation with 2 different numbers of measurements within individuals. Type I error rates are
indicated by shades of orange (the darker, the higher) and isolines. Error rates depend on the amount of within-individual scatter around
the individual regression line (rr, x axis), and the between-individual variation in regression slopes (rb, y axis).
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groups. Hence, random slope models are more efficient in
detecting effects than the latter. Moreover, they often reduce
type II errors for between-individual predictors as compared
with random intercept models.
Empirically, some traits will show more between-individual

variation in slopes than others (Figure 1a,b). The estimate
for the between-individual variance slopes, however, depends
on the scaling of both, the covariate and the response.
z-Transformation of predictor and response (centering to
a mean of zero and dividing by the SD) makes this variance
better comparable to the residual variance and reduces the
correlation between slopes and intercepts (Snijders and
Bosker 1999; Raudenbush and Bryk 2002). After z-transforma-
tion, slopes are estimated as standardized slopes that can vary
between 21 and 1 and are equivalent to correlation coeffi-
cients (alternatively, Gelman [2008] suggested a standardiza-
tion by dividing by 2 SDs). Publications should report the
variance (or equivalently the SD) of random slopes after z-
transformation. In our empirical zebra finch example, the
random slope SDs are 0.18–0.34 (median 0.23) for egg size
and 0.18–0.45 (median 0.24) for yolk hue. The straight-
forward interpretation is that, in the example of egg volume,
slopes of individual females scatter with 0.23 SDs around the
populations slope (in this case b ¼ 0.19), that is, 95% of all
randomly chosen females can be expected to have a slope
between 0.64 and 20.26 (estimate 6 1.96 3 SD). These large
between-individual differences in slopes explain why the type I
error rates are greatly inflated (see above).
There are a few potential problems when using random

slope models. First, if there are only few individuals, the
between-individual variance components are difficult to esti-
mate and tend to be underestimated. This leads to unstable
and often slightly overconfident SEs. Second, random slope
models might not converge, particularly if more than one ran-

dom intercept and one random slope are included. The num-
ber of parameters to be estimated increases substantially
because not only the random effect for the intercepts and
slopes but also the correlations among them have to be esti-
mated. In case of convergence problems, we suggest following
Figure 1 to judge if including random slopes is likely to have
a large influence and to run preliminary submodels to decide
whether or not to include particular random slopes.

LITERATURE SURVEY AND TERMINOLOGY

To examine how widespread this problem is, we surveyed em-
pirical papers published between 2004 and 2008 in Behavioral
Ecology, Behavioral Ecology and Sociobiology, Animal Behaviour or
Proceedings of the Royal Society of London B that contained the key
words ‘‘maternal effects’’ and ‘‘birds.’’ We specifically searched
in the avian maternal effect literature because theses studies
typically deal with grouped data structures (often multiple
eggs/chicks are measured within clutches/broods) and test
for within-group predictors (for example laying order). In-
deed, 26 of the 37 studies found (70%) analyzed data sets that
require accounting for grouping structure. Eighteen of these
studies used linear mixed-effect models (69%), 5 studies used
repeated-measures ANOVA (14%, 3 of them also used mixed
models), 2 used nested ANOVA (8%), 1 used group means to
test for group-level predictors (4%), 2 ignored grouping struc-
ture (8%), and 1 is unclear about the methods used (4%).
The repeated-measures ANOVA is an appropriate approach,

but has a limited applicability, because it only works for bal-
anced data sets. In contrast, nested ANOVA with subjects
nested within treatments faces the same problems as a random
intercept mixed model. Almost all the 18 studies using mixed-
effect models are unclear about the precise nature of their
models, but apparently almost all of them have, probably

Figure 3
Type I error rates (proportion of estimated 95% confidence intervals for fixed effects not including the true value) in a split-plot design with
treatment applied to individuals and slopes measured within individuals as estimated from a random slope model. For details, see Figure 2.
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inappropriately, used random intercept models. Only 2 studies
using mixed models explicitly accounted for the issue dis-
cussed in this paper: one by using a random intercept model
with autoregressive error structure (Grindstaff et al. 2006) and
one by using a random slope model (Sockman et al. 2008).
There are several terms used in the statistical literature on

mixed models. For example, the terms ‘‘hierarchical model’’
or ‘‘multilevel model’’ are often used as synonyms for the term
‘‘mixed-effect model’’ (Snijders and Bosker 1999; Raudenbush
and Bryk 2002; Singer and Willett 2003; Gelman and Hill
2007). This emphasizes that data are modeled on multiple
levels: in the examples given in this paper, these are individual
level and the data level. However, there might be grouping
structures other than (or additional to) grouping by individ-
uals. If there is any ambiguousness, about what constitutes the
grouping structure for random effects, this needs explicit
specification. In this paper, we refer to random slopes and
individual-specific or subject-specific slopes interchangeably.
Random slope models are sometimes called random
coefficient models (Singer and Willett 2003) or random re-
gression (Schaeffer 2004).

CONCLUSIONS

We have demonstrated that for data sets with grouping struc-
ture and within-individual predictors, random slope models
are superior to random intercept models both in reducing type
II errors for the between-individual predictor (Figure 2, left) as
well as reducing type I errors for the within-individual predic-
tors (Figure 2, right). If random intercept models are used
inappropriately in such situations, there is a considerable risk
of inflated type I errors, depending on how pronounced such
random variation in slopes is in any given study system (0.085,
a, 0.41 in our example). Probably due to a lack of awareness,
published studies do not address this problem adequately in
their Methods sections, and therefore, we cannot assess
whether analyses have been conducted incorrectly or not. We
propose that 1) mixed models should be identified as random
intercept or random slope models. Random slope models will
usually include random intercepts, too, so that we prefer the
shorthand ‘‘random slope model’’ over the more tedious,
though more precise, ‘‘random intercept, random slope
model.’’ This means that an omission of random intercepts in
random slope models should be clearly stated. Furthermore,
we recommend that 2) fixed factors and covariates, random
factors, and interactions between fixed factors and random
factors (i.e., random slopes) should be clearly named. Finally,
we suggest 3) to report variances or, equivalently, SDs of be-
tween-individual variation in slopes on the scale of standard-
ized slopes (i.e., after z-transformation of covariates and
response). This will help to identify traits where the omission
of random slopes is particularly problematic.
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