Workshop 1: Introduction to R

The goal of this first workshop is to get you started working in R, and to introduce the most
commonly-used data types, operations, and functions.

Try out the command line

The command line in the R console is where you interact with R. The command prompt is
a > symbol.

Calculator

At its most basic, the command line is a calculator. The basic operations are

N ¥ 1+

for addition, subtraction, multiplication, division. Familiar calculator functions also work
on the command line as built in functions within R. For example, to take the natural log of
2, enter

log (2)

Note that R interprets the end of a line of input as the end of a command. This is in contrast
to some other langues, such as C, which require a symbol such a semicolon to indicate the
end of a command.

1. Try the calculator out to get a feel for this basic application and the style of the output.
Try log and a few other functions (find some online).

2. In R you can store or assign numbers and character strings to named variables called
vectors, which are a type of “object” in R. For example, to assign the number 3 to a
variable x, use

x <- 3

Note that the = symbol also works for assignment, however, in other contexts, the two
symbols are different and so it is more standard convention to use <-. Try assigning a
single number to a named variable.

3. In R you can also assign character strings (enter using single or double quotes) to
named variables. Try entering

z <- 'Hello' # single or double quotes needed

4. At any time, enter 1s() to see the names of all the objects in the working R environ-
ment. You can save the environment for later use by entering save.image() or by
saving when you exit R. Assign a single number to the variable x and another number
to the variable y. Then watch what happens when you type an operation, such as

X * y
Finally, you can also store the result in a third variable.
z <- X %y

To print the contents of z, just enter the name on the command line, or enter print(z).

5. The calculator will also give a TRUE or FALSE response to a logical operation. Try one
or more variations of the following examples on the command line to see the outcome.

2 + 2 == # == 4s the logical for 'is equal to'

3 <=2 # 'less than or equal to'

A > 'a! # 'greater than'

'Hi' != 'hi' # 'mot equal to' (i.e., R ts case sensitive)

Vectors

Vectors in R are used to represent variables. R can assign sets of numbers or character strings
to named variables using the c() command, for concatenate. R treats a single number or
character string as a vector containing just one element.

x <- c¢(1,2,333,65,45,-88)

1. Assign a set of 10 numbers to a variable x. Make sure it includes some positive and
some negative numbers. To see the contents afterward, enter x on the command line.
Is it really a vector? Enter is.vector(x) to confirm.

2. Use integers in square brackets to access specific elements of vector x.
x[6] # fifth element

Try this out. See also what happens when you enter vectors of indices,

x[1:3] # 1:3 is a shortcut for c(1,2,3)
x[c(2,4,9)]
x[c(-1,-3)]

Print the 3rd and 6th elements of x with a single command.

. Some functions of vectors yield integer results and so can be used as indices too. For
example, enter the function

length (x)

Since the result is an integer, it is ok to use as follows,
x[length(x)]

. Logical operations can also be used to generate indicators. First, enter the following
command and compare with the contents of x,

x > 0

Now enter
x[x > 0]

Try this yourself: print all elements of x that are non-negative.
The which command will identify the elements corresponding to TRUE. For example,
try the following and compare with your vector x.

which(x > 0)

. Indicators can be used to change individual elements of the vector x. For example, to
change the fifth element of x to 0,

x[5] <- 0

Try this yourself. Change the last value of your x vector to a different number. Change
the 2nd, 6th, and 10th values of x all to 3 new numbers with a single command.

. Missing values in R are indicated by NA. Try changing the 2nd value of x to a missing
value. Print x to see the result. You can use the is.na(x) command to identify which
values are NA. See what the following gives you

x[!'is.na (x)]

. R can be used as a calculator for arrays of numbers too. To see this, create a second
numerical vector y of the same length as x. Now try out a few ordinary mathematical
operations on the whole vectors of numbers,

z <- X *x ¥y

z <-y - 2 % Xx
Examine the results to see how R behaves. It executes the operation on the first
elements of x and y, then on the corresponding second elements, and so on. Each
result is stored in the corresponding element of z. Logical operations are the same,

z <- x >=y # greater than or equal to
z <- x[abs(x) < abs(y)] # absolute wvalues

What does R do if the two vectors are not the same length? The answer is that the
elements in the shorter vector are “recycled”, starting from the beginning. This is

basically what R does when you multiply a vector by a single number. The single
number is recycled, and so is applied to each of the elements of x in turn.

z <- 2 % X

Functions

One of the beautiful features of R is how easy it is to write your own functions. This is a
great way to stream-line your code and minimize repetition (which is also a good way to
prevent copy-paste errors).

1. Syntax for function construction is as follows

myfunctionl <- function(x) {
out <- 2xx72 + 3
return (out)

}

Here the return command tells R what value to return from the function call. The
following will call this function with x=5, and assign the output to a value z

z <- myfunctionl (5)
z # to look at the output

Try this function with some different values of x.

2. Now try typing the variable name 'out' into the R console. This should cause an
error:
Error: object ’out’ not found
The variable out is only defined locally within myfunctionl, so if you try to access it
from “outside” the function, it won’t exist.

3. Construct your own function with two arguments (call them x and y). Name this
function myfunction2. Try calling this function with some different combinations of
x and y.

4. You can use various apply statements (there are many - lapply, mapply, sapply,
tapply, rapply) to apply functions to vectors, lists, matrices, etc. For example, we
could apply myfunctionl to the vector we created earlier using sapply:

x <- ¢(1,2,333,65,45,-88)
sapply (x, myfunctionl)

Analyze vector of data: flying snakes

Paradise tree snakes (Chrysopelea paradisi) leap into the air from trees, and by generating
lift they glide downward and away rather than plummet. An airborn snake flattens its body
everywhere except for the heart region. It forms a horizontal “S” shape and undulates from
side to side. By orienting the head and anterior part of the body, a snake can change direction,
reach a preferred landing site, and even chase aerial prey. To better understand lift and
stability of glides, Socha (2002, Nature 418: 603-604) videotaped eight snakes leaping from
a 10m tower. One measurement taken was the rate of side-to-side undulation. Undulation
rates of the eight snakes, measured in Hertz (cycles per second), were as follows:

4

0.9 1.4 1.2 1.2 1.3 2.0 1.4 1.6

We'll store these data in a vector (variable) and try out some useful vector functions inR.

1. Put the glide undulation data above into a named vector. Afterward, check the number
of observations stored in the vector.

2. Apply the hist command to the vector and observe the result (a histogram). Examine
the histogram and you will see that it counts two observations between 1.0 and 1.2.
Are there any measurements in the data between these two numbers? What is going
on? The default in R is to use right-closed, left-open intervals. To change to left-closed
right-open, modify an option in the hist command as follows,

hist (myvector, right = FALSE)

We’ll be doing more on graphs next week.

3. Hertz units measure undulations in cycles per second. The standard international unit
of angular velocity, however, is radians per second. 1 Hertz is 27 radians per second.
Transform the snake data so that it is in units of radians per second (note: pi is a
programmed constant in R).

4. Using the transformed data hereafter, write a function to calculate the sample mean
undulation rate without using a call to mean() (hint: sum and length may be useful).

5. Ok, try the function mean() and compare your answer.

6. Calculate the sample standard deviation in undulation rate by writing your own func-
tion and without using calls to var () or sd(). Then calculate using sd() to compare
your answer**.

7. Sort the observations using the sort() command.

8. Calculate the median undulation rate. When there are an even number of observations
(as in the present case), the population median is most simply estimated as the average
of the two middle measurements in the sample.

9. Calculate the standard error of the mean undulation rate. Remember, the standard
error of the mean is calculated as the standard deviation of the data divided by the
square root of sample size.

*8.63938, **2.035985

Data frames

Data frames are objects where each column within a data frame is a vector. We can look at
the structure of the data frame using the function str ().

1. Make a data frame called mydata from the two vectors, x and y. A great tool to use
while using R is to search in google what we do not know what to do. Try searching
how to make a data frame. Print mydata on the screen to view the result. If all looks
good, remove the vectors x and y from the R environment using the rm command.
They are now stored only in the data frame. Type names(mydata) to see the names
of the stored variables. If you are using RStudio you should see that x and y no longer
appear in the environment tab (upper right hand side).

2. Vector functions applied to data frames may give unexpected results - data frames
are not vectors. For example, length(mydata) won't give you the same answer as
length(x) or length(y). But you can still access each of the original vectors using
mydata$x and mydata$y (or mydatal, 'x'] and mydatal,'y']). Notice the “” before
the x and y. When we are dealing with two dimensional objects (like a data frame with
rows and columns) we subset it by stating mydata[rows, columns|. Try printing one
of them. All the usual vector functions and operations can be used on the variables in
the data frame. We’ll do more with data frames below.

Anolzs lizards in a data frame

Here we will read data on several variables from a comma-delimited (.csv) text file into a
data frame, which is the usual way to bring data into R. The data are all the known species of
Anolis lizards on Caribbean islands, the named clades to which they belong, and the islands
on which they occur. A subset of the species is also classified into “ecomorphs” clusters
according to their morphology and perching habitat. Each ecomorph is a phylogenetically
heterogeneous group of species having high ecological and morphological similarity. The list
was compiled by Jonathan Losos from various sources and are provided in the Afterword of
his book (Losos 2009. Lizards in an evolutionary tree. University of California Press).

1. Download the file anolis.csv (click file name to initiate download) and save in a conve-
nient place. We suggest that you allocate a separate directory for this class.

2. Open a new script file to write and submit your commands (or cut and paste to the
command window) for the remainder of this section. To open a new script file in
RStudio you can use file > new file >[your R script]. R scripts are a very useful way to
interact with R. By writing your code in scripts you can easily re-run commands and
this will make your work more reproducible.

3. In order to read data into R, we need to know the address where the data is stored and
set that place as our working directory. Alternatively, you set your working directory
to the location where the data is stored using the setwd () command. For example:

setwd ('~ /Desktop/BISC869"')

https://www.sfu.ca/~lmgonigl/materials-qm/data/anolis.csv

In RStudio, look in the lower right panel (you should see the tabs “Files”, “Plots”,
“Packages” etc.). With the “Files” tab open, look to the very right, directly underneath
refresh, for the “...” symbol and click it. This will open a new window showing all
the places where you can store a file in the computer. Navigate to the folder where
your data is held. This could be in “Documents” or “Downloads” or “Desktop”. Click
open and everything within this folder should appear in the white space of the “Files”
panel. The final step is to click the blue gear to the right of the refresh symbol and
choose “Set as Working Directory”. In RStudio, you can press tab after the quotation
marks to auto-complete. This will help you to reduce spelling mistakes.

. Read the data from the file into a data frame (e.g., call it mydata) using the read.csv
command. For this first attempt, include none of the recommended options for the
read.csv command, so we can explore R’s behavior. Remember to put quotation
marks around the name of the file.

. Use the str command to obtain a compact summary of the contents of the data
frame. Every variable shown should be a character (because they are all character
data). Another way to check the type of a specific variable in the data frame is to use
the class command, e.g.,

class(mydata$Island)

Another useful command is class, which will tell you what data type your object is.
Try it out on both mydata$Island and mydata.

. Use the head command to inspect the variable names and the first few lines of the data
frame (or tail to inspect the last few lines). Every variable in this data set contains
character strings.

. Until version 4.0, read.csv would, by default, convert all columns with character
data to factors. This default was changed in version 4.0. A factor is like a character
variable except that its unique values represent “levels” that have names but also have
a numerical interpretation. Sometimes, this can be desireable. We'll explore factors
now. You can manually change an individual column of a loaded data-set to a factor by
using the as.factor command or you can re-load the entire data-set (again using the
read.csv command), but specifying the optional argument stringsAsFactors=TRUE.
Re-load the data-set this way and then try the below again

class(mydata$Island)

It should now show that this column (and every column, in this case), is a factor.

. Let’s focus on the variable “Ecomorph”, since it has a manageable number of categories.
Since “Ecomorph” is a factor, it will have “levels” representing the different groups.
Use the levels command to list them. Notice anything unexpected? Omne of the
categories is an empty character string. A couple of the groups appear to be listed
twice. But look more closely - are they really duplicates?

9.

10.

11.

12.

Use the table function on the “Ecomorph” vector to see the frequency (number of
entries) belonging to each named group. See, for example, that one species belongs
to the “Trunk-Crown “ (trailing space) group rather than to the “Trunk-Crown” (no
spaces). Use the which() command to identify the row with the typo.

Using assignment (<-), fix the single typo. Use the table function afterward to check
the effect of your change.

Weirdly, the now-eliminated category of “Trunk-Crown “ (trailing space) is still present
in the frequency table. This is because, even though no species belong to this category,
the category remains a factor level! Confirm this using the levels function. This con-
fusing behavior is one reason why one might want to avoid reading character variables
in as factors. The presence of factor levels with no members can wreak havoc when
fitting models to data. One way to delete unused levels of a factor variables is with
the droplevels command.

mydata$Ecomorph <- droplevels (mydata$Ecomorph)

Check that this solved the problem.

Factors can, however, be useful. One way they are useful is that the table command
will always return a vector of the same length, even if some categories do not contain
any individuals.

Re-read the data from the file into R. This time, use the read. csv function with options
to 1) read characters as factors; 2) strip leading and trailing spaces from character string
entries, minimizing typos; and 3) treat empty fields as missing rather than as words
with no letters.

How will you even know how to change these settings?

With more general questions about how a particular function or package works in R,
we would recommend consulting the relevant R help files. Let’s say we wanted to view
the help page for the read.csv() function. We can do so using two different lines of
code:

help(read.csv) OR 7read.csv

At the top, you will see the function itself and the package it is in (in this case, it
is base). Next is a description of what the function does. You'll find that the most
helpful sections on this page are “Usage”, “Arguments” and “Examples.” “Usage” give
you an idea of how you would use the function when coding—what the syntax would
be and how the function itself is structured. “Arguments” tells you the different parts
that can be added to the function, along with their default values. Often the “Usage”
and “Arguments” sections don’t provide you with step by step instructions. Instead,
they provide users with a general understanding as to what the function could do. The
“Examples” section is often the most useful, as it shows how a function could be used
in practice.

13.

14.

15.

16.

17.

18.

Use table once more to tally up the numbers of species in each Ecomorph category. Is
there an improvement from the previous attempts? Which is the commonest Ecomorph
and which is the rarest?

What happened to the missing values? Use table but using the useNA = 'ifany'
option to include them in the table. In this data set, NA refers to lizard species that
do not belong to a standard ecomorph category, so it is worthwhile to include them.
Perhaps they should be given their own named group ("none”), which is less ambiguous
than NA.

How many Anolis species inhabit Jamaica exclusively?*

What is the total number of Anolis species on Cuba?** This is not the same as the
number occurring exclusively on Cuba — a few species live there and also on other
islands. Figure out an elegant way in R to count the number of species that occur on
Cuba. Bonus points for the briefest command! [Hint: try the grep function.]

What is the tally of species belonging to each ecomorph on the four largest Caribbean
islands: Jamaica, Hispaniola, Puerto Rico and Cuba?*** Try to figure out a solution
before looking at one below. (The solution below works but is not very economical.
Try to come up with a more elegant solution yourself.)

What is the most frequent ecomorph for species that do not occur on the four largest
islands?****

6

*** Note: the below works because no single species appears on multiple big islands

big.4 <- c('Cuba', 'Hispaniola', 'Jamaica', 'Puerto Rico')
t(sapply(big.4, function(s)
table (anolis[grep(s, anolis[,'Island']), 'Ecomorph'])))

Crown-Giant Grass-Bush Trunk Trunk-Crown Trunk-Ground Twig

Cuba 6 15 1 7 14 B
Hispaniola 3 7 6 4 9 4
Jamaica 1 0 0 2 1 1
Puerto Rico 2 3 0 2 3 1

Trunk-Crown

10

	Try out the command line
	Calculator
	Vectors
	Functions

	Analyze vector of data: flying snakes
	Data frames

	Anolis lizards in a data frame

