
Workshop 7: Generalized linear models

In this workshop, we will fit generalized linear models to data, implemented in the R com-
mand glm. A generalized linear model is useful when the response variable has a specified
distribution other than the normal distribution, and when a data transformation is inade-
quate or impossible. Example situations include binary response data (0/1, alive/dead alive)
or data that are counts (number of offspring, leaves, etc). The approach is also useful in the
analysis of contingency tables.

Natural selection in song sparrows

The song sparrow population on the island of Mandarte has been studied for many years by
Jamie Smith, Peter Arcese, and collaborators. The birds were measured and banded and
their fates on the island have been recorded over many years. Here we will look for evidence
of natural selection using the relationship between phenotype and survival.

The data file, located here, gives survival of young-of-the-year females over their first winter
(0=died, 1=survived). The file includes measurements of beak and body dimensions: body
mass (g), wing length, tarsus length, beak length, beak depth, beak width (all in mm), year
of birth, and survival. These data were analyzed previously in Schluter & Smith (1986,
Evolution 40: 221–231).

Read and examine the data

1. Read the data from the file and inspect the first few lines to make sure it was read
correctly.

2. We’ll be comparing survival probabilities among different years. To this end, make
sure that year is a categorical variable in your data frame. Hint: you can use the
function str to check the type of variable year is, and as.character to change it to
a character.

3. Plot survival against tarsus length of female sparrows. Use a method to reduce the
overlap of points (the response variable is 0 or 1) to see the patterns more clearly.

4. Examine the plot. Can you visualize a trend? Add the best fit line from a simple lm

(note that this is not the appropriate model for this data).
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Fit a generalized linear model

Let’s start by ignoring the fact that the data are from multiple years. If time permits we
can add year to the model to see how much difference it makes.

1. The response variable is binary. What probability distribution is appropriate to de-
scribe the error distribution around a model fit? What is an appropriate link function?

2. Fit a generalized linear model to the data on survival and tarsus length.

3. Use visreg to visualize the model fit. Remember to load the visreg package.

4. Obtain the estimated regression coefficients for the fitted model. What is the interpre-
tation of these coefficients? On a piece of paper, write down the complete formula for
the model shown in the visreg plot.

5. Use the coefficients to calculate the predicted survival probability of a song sparrow
having tarsus length 20.5mm. Does the result agree with your plot of the fitted regres-
sion curve?

6. The ratio (-intercept/slope) estimates the point at which probability of survival is
changing most rapidly. In toxicology this point is known as the LD50. Calculate this
value and compare it visually with the fitted curve. Does it agree? Finally, the slope
of the curve at a given value for the explanatory variable x is

b ∗ p(x) ∗ (1–p(x))

where b is the slope coefficient of the fitted logistic regression model and p(x) is the
predicted probability of survival at that x.

7. Calculate the likelihood-based 95% confidence interval for the logistic regression coef-
ficients.

8. The summary(out) output for the regression coefficients also includes z values and
P -values. What caution would you take when interpreting these P -values? Use drop1

to test the null hypothesis of zero slope.

9. If time permits, add year to your logistic regression model as a categorical variable
(ensure that year is a factor in your data set). Ignore the interaction between year and
tarsus length. Plot the resulting curves using visreg with option xvar='year'. Is
there any evidence of a difference among years in the relationship between survival and
tarsus length in these data? Use emmeans to calculate the model estimates of mean
survival in each year.
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Crab satellites

The horseshoe crab, Limulus polyphemus, has two alternative male reproductive morphs.
Some males attach to females with a special appendage. The females bring these males with
them when they crawl onto beaches to dig a nest and lay eggs, which the male then fertilizes.
Other males are satellites, which are unattached to females but crowd around nesting pairs
and obtain fertilizations. What attributes of a female horseshoe crab determine the number
of satellite males she attracts on the beaches?

The data here provide measurements of 173 female horseshoe crabs and record the number of
satellites she attracted. The data were gathered by Brockman (1996. Satellite male groups
in horseshoe crabs, Limulus polyphemus. Ethology 102:1-21) and were published by Agresti
(2002, Categorical data analysis, 2nd ed. Wiley). The variables are female color, spine
condition, carapace width (cm), mass (kg), and number of satellite males.

Read and examine the data

1. Read the data from the file. View the first few lines of data to make sure it was read
correctly. Use the str command to see the variables and groups.

2. Plot the number of satellites against the width of the carapace, a measure of female
body size. Fit a smooth curve to examine the trend.

Fit a generalized linear model

1. What type of variable is the number of satellites? What probability distribution might
be appropriate to describe the error distribution around a model fit? What is the
appropriate link function?

2. Fit a generalized linear model to the relationship between number of satellite males
and female carapace width.

3. Use visreg to examine the relationship on the transformed scale, including confidence
bands. This plot reminds us that on the transformed scale, glm() is fitting a straight
line relationship. Don’t worry about the points - they aren’t the transformed data, but
rather are “working values” for the response variable from the last iteration of model
fitting, which glm() uses behind the scenes to fit the model on the transformed scale.

4. Extract the estimated regression coefficients from your model object. What is the
interpretation of these coefficients? On a piece of paper, write down the complete
formula for your fitted model.

5. Plot the data on the original scale, and add the glm() model fit to your plot. Note
that it is not linear.
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6. Calculate the likelihood-based 95% confidence interval for the regression coefficients.
The most useful estimate is that for the slope (width.cm): the quantity exp(x) (where
x is the slope) corresponds to the magnitude of expected change in the response variable
accompanying a 1-unit change in the explanatory variable.

7. Test the null hypothesis of no relationship between number of satellite males and female
carapace width. Notice how small the P -value is for the null hypothesis test for the
slope. I’m afraid that this is a little optimistic. Why? Read on.

8. When you extracted the regression coefficients from your model object, you probably
saw the following line of output: “(Dispersion parameter for poisson family taken to
be 1)”. What are we really assuming here?

9. If you did not want to rely on this assumption (or you wanted to estimate the dispersion
parameter), what option is available to you? Refit a generalized linear model without
making the assumption that the dispersion parameter is 1. Save the results in a new
glm object so that you can compare your results with the previous fit.

10. Extract and examine the coefficients of the new glm model object. Examine the esti-
mated dispersion parameter. Is it close to 1? On this basis, which of the two glm fits
to the same data would you regard as the more reliable?

11. How do the regression coefficients of this new fit compare with the estimates from the
earlier model fit? How do the standard errors compare? Why are they larger this time?

12. Compare the visreg plot of the current model to that of the earlier fit. What difference
do you notice?

13. Redo the test of significance for the slope of the relationship between number of satellite
mates and female carapace width. Use the F -test, rather than the likelihood ratio test
in the drop1 command (because we are using a quasi-distribution). How do the results
compare with those from the previous fit?

Prion resistance not futile

This last exercise is to demonstrate the use of glm() to model frequencies of different com-
binations of two (or more) variables in a contingency table. The presence of an interaction
between the variables indicates that the relative frequencies of different categories for one
variable differ between categories of the other variable. In other words, the two variables are
then not independent.

Kuru is a prion disease (similar to Creutzfeldt–Jakob disease) of the Fore people of highland
New Guinea. It was once transmitted by the consumption of deceased relatives at mortuary
feasts, a ritual that was ended by about 1960. Using archived tissue samples, Mead et al.
(2009, New England Journal of Medicine 361: 2056-2065) investigated genetic variants that
might confer resistance to kuru. The data in the accompanying table are genotypes at codon
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129 of the prion protein gene of young and elderly individuals all having the disease. Since
the elderly individuals have survived long exposure to kuru, unusually common genotypes
in this group might indicate resistant genotypes. The data are here.

Read and examine the data

1. Read the data from the file. View the first few lines of data to make sure it was read
correctly. Use the str command to see the variables and groups.

2. Create a contingency table comparing the frequency of the three genotypes at codon
129 of the prion protein gene of young and elderly individuals (all having the disease).
Notice any pattern? Hint: You can use the function table. By comparing the fre-
quencies between young people and older people, which genotype is likely to be more
resistant to the disease?

3. Optional: create a grouped bar graph illustrating the relative frequencies of the three
genotypes between afflicted individuals in the two age categories.

Fit a generalized linear model

1. Model the frequencies in the contingency table with a generalized linear model. You
will first need to convert the contingency table to a “flat” frequency table using
data.frame().

2. To begin, fit the additive model (i.e., a glm() model lacking an interaction between
the two variables genotype and age).

3. Examine the fit of the additive model to the frequency data using visreg. Notice how
the additive model is constrained from fitting the exact frequencies in each category.

4. Repeat the model fitting but include the interaction term as well. Visually compare
the fit of the model to the data. Notice how this “full” model really is full - it fits the
frequencies exactly.

5. Using the “full” model, which includes the interaction term, test whether the relative
frequencies of the three genotypes differs between the two age groups.
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