
Workshop 10: Bayesian analysis

This workshop demonstrates principles of data analysis (estimation and model selection) in
a Bayesian framework.

Estimation using maximum posterior probability

Estimation in a Bayesian framework is related to likelihood methods. With likelihood, we
treat the data as given and vary the parameter to find that value for which the probability of
obtaining the data is highest. Bayesian methods go one step further, treating the parameter
(or hypothesis) as a random variable and seeking the value having highest posterior proba-
bility, given the data. We need to specify a prior probability distribution for the parameter
values.

Bayesian model selection

Selecting among candidate models requires a criterion for evaluating and comparing models.
We’ve already investigated AIC in a previous workshop. Here we demonstrate the superfi-
cially similar Bayesian information criterion (BIC). The approach has a tendency to pick a
simpler model than does AIC.

Elephant population size estimation

This example continues one from the likelihood workshop. Eggert et al. (2003.Molecular
Ecology 12: 1389-1402) used mark-recapture methods to estimate the total number of for-
est elephants inhabiting Kakum National Park in Ghana by sampling dung and extracting
elephant DNA to uniquely identify individuals. Over the first seven days of collecting the
researchers identified 27 elephant individuals. Refer to these 27 elephants as marked. Over
the next eight days they sampled 74 individuals, of which 15 had been previously marked.
Refer to these 15 elephants as recaptured.

Provided the assumptions are met (no births, deaths, immigrants, or emigrants while the
study was being carried out; the dung of every elephant had an equal chance of being sam-
pled, and selection of each individual was independent of the others), then the number of
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recaptured (previously marked) individuals X in the second sample should have a hyper-
geometric distribution with parameters k (the size of the second sample of individuals), m
(total number of marked individuals in the population when the second sample was taken),
and n (total number of unmarked individuals in the population at the time of the second
sample).

The following two questions are repeated from the Likelihood workshop.

1. Using the dhyper command in R (for the hypergeometric distribution), calculate the
maximum likelihood estimate for the total number of elephants in the park. Note that
the total number is n + m, where n is the unknown parameter to be estimated. Note
also that only integer values for n are allowed, and that n cannot be smaller than
k −X, the observed number of unmarked individuals in the second sample.

2. Calculate a likelihood-based 95% confidence interval for the total number of elephants.

To develop a Bayesian estimate of population size, we will need to come up with prior
probabilities for each of the possible values for n. In reality this might be based upon previous
information (visual counts; tracks; knowledge of the maximum number of elephants that can
be sustained in an area the size of the Park, etc.). In the absence of prior information, the
convention is to use a “flat” or non-informative prior. To apply this to the elephant problem
we will come up with a realistic minimum and maximum possible population size. Then we
give each value within this interval a prior probability equal to 1 divided by the number of
integer values within the interval.

3. Create a vector of n values (or n + m values) containing all the integers between
and including the minimum and maximum values. To do this, you must decide on a
minimum and maximum possible value for n, the number of unmarked elephants in
the Park (or n+m, the total number, if that’s how you’re calculating the likelihoods).
The minimum n can be as small as 0 but the likelihood will be 0 for values smaller
than k–X, so it is practical to set the smallest n to something greater or equal to k–X.
For this first exercise don’t set the maximum too high. We’ll explore what happens
later when we set the maximum to be a very large number.

4. Calculate the likelihoods of each of these values for n. Plot the likelihoods against n.
We need the likelihoods rather than the log-likelihoods for the posterior probability
calculations.

5. Create a vector containing the prior probabilities for each of the possible values for n
that you included in your vector in (4). If you are using a flat prior then the vector
will be the same length as your n vector, and each element will be the same constant.
Plot the prior probabilities against n. If all is OK at this stage then the plot should
show a flat line. Also, confirm that the prior probabilities sum to 1.

6. Using your two vectors from (4) and (5), calculate the posterior probabilities of all the
possible values of n (or of n+m) between your minimum and maximum values. After
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your calculation, confirm that the posterior probabilities sum to 1. Plot the posterior
probabilities against n (or n + m). Compare with the shape of the likelihood curve.

7. What is the most probable value of n + m, given the data? Compare this with your
previous maximum likelihood estimate.

8. Calculate the 95% credible interval for n (or n + m, the total population size). The
procedure for finding the lower and upper limits of the credible interval is a bit like that
for likelihood. The idea is illustrated in the figure below. Starting from the highest
point of the posterior probability, slide a horizontal line downward until you reach a
point at which the corresponding values for the parameter (indicated below by the
dashed vertical lines) bracket an area of 0.95 under the curve.
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Try to think of a method to find the values for n (or n + m) that corresponds to an
area under the curve equal to 0.95. Trial and error might work. See solution if you
can’t figure this out.

9. Compare your 95% credible interval for population size with the approximate likelihood-
based 95% confidence interval. Which interval is narrower? Also compare the inter-
pretations of the two intervals. How are they different? Are they compatible? Which
makes the most sense to you? Why?

10. Repeat the procedures (4)-(9) but using a much larger value for the maximum possible
population size. How is your credible interval affected by the increase in the maximum
value of the posterior probability distribution?

11. What general implication do you draw from the influence of the prior probability dis-
tribution on the interval estimate for population size? Do you consider this implication
to be a weakness or a strength of the Bayesian approach?
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Biodiversity and ecosystem function

In this second example we will compare the fit of linear and nonlinear models to a data set
using a Bayesian model selection criterion. We haven’t discussed nonlinear model fitting
before. One can fit a nonlinear model using nls in R.

We will investigate the relationship between an ecosystem function variable, CO2 flux, and
the number of eukaryote species (protists and small metazoans) in an experimental aquatic
microcosms. An average of 24 bacterial species was present but not included in the species
counts. The data are from J. McGrady-Steed, P. M. Harris & P. J. Morin (1997, Nature
390: 162-165). Download it from here. The variables are:

• Realized number of species, ranging from 2 to 19; may be lower than the number of
species initially introduced by the experiments because of local extinctions.

• Cumulative CO2 flux, a measure of total ecosystem respiration.

There are 82 data points representing replicate mesocosms. For this exercise we will assume
that each replicate is independent, even though there is overlap in the species composition
of different assemblages.

These data can be used to test two alternative hypotheses about the role of biodiversity in
ecosystem function:

H1: Each new species added makes the same contribution to ecosystem respiration
regardless of how many species are already present. In this case, a linear relationship
is expected between community respiration and the number of species.

H2: Multi-species communities include species that are functionally redundant, at
least for univariate measures of ecosystem function. Under this view, as the number
of species increases in a community, each new species makes a smaller and smaller
contribution to ecosystem respiration until an asymptote is reached. In this case, the
relationship might be described by a Michaelis-Menten model.

1. Download and read the data from the file.

2. Plot CO2 flux against number of species.

3. Fit a simple linear regression to the data. Add the regression line to the plot. Judging
by eye, is it a good fit?

4. Fit a Michaelis-Menten model to the data using the following code.

nls(co2flux ~ a + b * (species -2)/(c+(species -2)),

data=bb ,

start=list(a=-1000, b=1000 , c=1))
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Add the fitted line to the plot. Judging by eye, is it a good fit?
Note: When I tried to fit the model to the data the estimation process did not
converge, perhaps because 2 rather than 0 or 1 is the smallest value for the explanatory
variable. I had better luck when I used the number of species minus 2 rather than
number of species as the explanatory variable in the model formula (this is why there
is a -2 above). In fitting this model, you’ll notice that I also had to provide initial
values for a, b, and c. These matter. I found that the values above worked well.

5. Calculate BIC for both the linear and nonlinear models that you fit in (3) and (4).
Which hypothesis has the lowest BIC? Does this accord with your visual judgements
of model fit?

6. Calculate the BIC differences for the two models, and then the BIC weights. These
weights can be interpreted as Bayesian posterior probabilities of the models if both the
linear and Michaelis-Menten models have equal prior probabilities, and if we assume
that one of these two models is the “true” model. Of course, we can never know
whether either of these models is “true”, but we can nevertheless use the weights as a
measure of evidence in support of both models, if we are considering only these two.

7. Compare the models using AIC instead of BIC. Do you get the same “best” model
using this criterion instead?

8. Which hypothesis about the role of biodiversity in ecosystem function receives strongest
support from these data?

9. Assuming that it were possible, would conventional null hypothesis significance testing
be a poorer, equivalent, or superior approach to the one used above to decide between
the two models? Why?

10. Will ecosystem respiration really reach an asymptote or might it continue to increase,
albeit at a slower and slower rate, as the number of species increases? The power
function can be used to model the latter situation. Which function, the Michaelis-
Menten or the power function, has strongest support?
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