BISC-407, Population Dynamics, Fall 2019

Lecture:	Wed		11:30-12:20	AQ 5030		
	Fri		10:30-12:20	AQ 5030		
Tutorial:	Thurs (D101		12:30-13:20	AQ 3148.1		
	Wed (D102)	10:30-11:20	AQ 3148.1		
Instructor:		Dr. Leithen M'Gonigle				
e-mail address:		lmgonigl@sfu.ca				
Office Location:		Shrum Science B8273				
Office Hours:		Tues, 10:30-11:30 & by appointment				
Website: https://			//www.sfu.ca/~lmgonigl			
Teaching assistant: Elijah Reyes						

e-mail address:	elijahr@sfu.ca
Office Location:	Shrum Science, B8227
Office Hours:	Wed, 1300:14:00 & by appointment

Pre-requisites: BISC 102 and either BISC 204 or GEOG 215, all with a grade of C- or better.

Course Description: Using a combination of theory and applied exercises students will explore various facets of population biology and evaluate the factors influencing the natural fluctuation and regulation of plant and animal populations.

Grade Breakdown:

Tutorial & Assignments	30%
Midterm Exam (Fri, Oct 11)	30%
Final Exam	40%

Letter Grade Distribution:

≤ 50	50-	55 -	60 -	65 -	70 -	75 -	80-	85 -	90-	95-
F	D	C-	С	C+	B-	В	B+	A-	A	A+

Final grades may be curved in a fair and impartial manner, with distribution reflecting the performance and effort of the class.

General:

- Attached to the end of this document is a tentative course schedule. This will be updated throughout the term.
- Exams are closed book, closed notes, unless instructed otherwise.
- No makeup assignments or exams will be given.

Course Schedule:

To be updated as we progress.

Week	Content	Tutorial Topic
Sept 2	Welcome and Introduction	No tutorial
	Introduction to Maple, Population growth	
Sept 9	Population growth	Introduction to Maple
	Model construction	
Sept 16	One locus selection	Writing functions
	Graphical analyses, Equilibria	
Sept 23	Stability	Graphing
	No class Sept. 27 th (Climate Strike)	
Sept 30	Stability	Finding equilibria and
	Applications of the theory	assessing stability
Oct 7	Midterm review	Review of previous labs
	Midterm	
Oct 14	Dispersal	More stability analyses
	Introduction to matrix algebra	
Oct 21	Matrix algebra	Ricker model
	Solving linear equations, general solutions	
Oct 28	Solving linear equations	Matrix algebra
	Introduction to demography	
Nov 4	Demography continued	Eigenvectors
	Lotka-Volterra competition	
Nov 11	Multi-variable stability analysis	Growth with alternation of generations
Nov 18	Spread of disease	Competition between two species
	Predator-prey models	
Nov 25	Simulation models	Predator-prey models
	Review	